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ABSTRACT
Background: Mutations in the GJB2 gene, which encodes the Connexin26 (Cx26) protein, are the most
common cause of childhood hearing loss in American and European populations. The cochlea contains
a gap junction (GJ) network in the sensory epithelium and two connective tissue networks in the lat-
eral wall and spiral limbus. The syncytia contain the GJ proteins beta 2 (GJB2/Cx26) and beta 6 (GJB6/
Cx30). Our knowledge of their expression in humans is insufficient due to the limited availability of tis-
sue. Here, we sought to establish the molecular arrangement of GJs in the epithelial network of the
human cochlea using surgically obtained samples.
Methods: We analyzed Cx26 and Cx30 expression in GJ networks in well-preserved adult human audi-
tory sensory epithelium using confocal, electron, and super-resolution structured illumination micros-
copy (SR-SIM).
Results: Cx30 plaques (<5lm) dominated, while Cx26 plaques were subtle and appeared as ‘mini-
junctions’ (2–300 nm). 3-D volume rendering of Z-stacks and orthogonal projections from single optical
sections suggested that the GJs are homomeric/homotypic and consist of assemblies of identical GJs
composed of either Cx26 or Cx30. Occasionally, the two protein types were co-expressed, suggesting
functional cooperation.
Conclusions: Establishing the molecular composition and distribution of the GJ networks in the human
cochlea may increase our understanding of the pathophysiology of Cx-related hearing loss. This infor-
mation may also assist in developing future strategies to treat genetic hearing loss.
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Introduction

Gap junctions (GJs) form intercellular channels connecting
adjacent cells, allowing the passage of small molecules
(<1 kD), ions, metabolites, and electrical impulses. GJ plaques
are composed of closely gathered hemi-channels composed
of connexin (Cx) proteins arranged as hexameric rings or con-
nexons with a central pore. These plaques are thought to
play multiple roles in fluid homeostasis, metabolic supply,
nerve excitation, and intercellular Ca2þ signaling (1,2).

The human cochlea contains an astonishing number of GJ
channels in both epithelial and connective tissue networks.
The organization and functions of these networks are poorly
understood. The GJ networks are crucial for normal hearing
(3), and in the lateral wall they have been associated with
the generation of the endocochlear potential (EP) (4–8).
Endolymph has a high Kþ concentration important for hair

cell transduction. Kþ recycling from hair cells is assumed to
be mediated by GJs, which allow the passage of Kþ to the
spiral ligament, where it is taken up by fibrocytes (9,10) and
relayed via GJ syncytia to the stria vascularis (SV) through
electrochemical gradients (11–13). Recently, it was shown
that GJs are important for cochlear amplification (14), that
miRNAs may pass through GJs, and that Cx-mediated inter-
cellular communication may be required for cochlear devel-
opment (15,16).

Mutations in the genes encoding Cx26 (GJB2) and Cx30
(GJB6) cause non-syndromic inherited deafness (3,17–22), and
alterations in the GJB2 gene are the most common etiology
of childhood hearing loss in American and European popula-
tions (17). A review describing the mechanisms underlying
Cx mutation-induced hearing loss was recently published by
Wingard and Zhao (23).
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Connexons can be homomeric, i.e. consisting of a single
connexin isotype, and two identical homomeric connexons
can come together to form a homotypic GJ channel.
Heteromeric hemi-channels and heterotypic GJ channels
have also been described. Hence, different Cx proteins may
be present in the same hemi-channel or channel (Figure 1).
The function of the GJs may vary with the molecular arrange-
ment and composition of Cx proteins, and multiple different
configurations have been described in the cochlea. Co-immu-
noprecipitation has been used to demonstrate the oligomer-
ization of Cx26 and Cx30 (24–26), indicating that some GJ
subunits are heteromeric/heterotypic (27). Cochlear hybrid GJ
channel configurations were first described by Zhao and
Santos-Sacchi (28) based on patch clamp recordings, and
their permeability was first described by Zhao (29). Dye-
selective permeation experiments have indicated the pres-
ence of Cx26-only channels in supporting cells within the
sensory epithelium (27). According to Zhao and Yu (2), Cx26
labeling in the guinea pig cochlear sensory region largely
overlaps that of Cx30, but there are also areas of exclusive
expression. According to Lautermann et al. (30,31), who used
immunofluorescence staining and western blot analyses,
Cx30 is the main isoform expressed in the cochlea. In a study
of the human organ of Corti using confocal immunohisto-
chemistry, Liu et al. (32) found Cx26/30 co-labeling in the
supporting cell area but also found areas of isolated
Cx26 or Cx30 expression, suggesting the existence of both
homomeric/homotypic and hybrid forms (heteromeric or
heterotypic).

A super-resolution structured illumination microscopy
(SR-SIM) study on human cochlear material suggested
recently that Cx26 and Cx30 proteins are not co-expressed in
the lateral wall of the human cochlea but, rather, form
closely associated GJ plaques (33). As variations in molecular
organization may reflect unique functions, structural charac-
terization is crucial for understanding cochlear physiology
and the consequences associated with Cx mutations. Human
studies are demanding because well-preserved tissue is diffi-
cult to obtain. Moreover, human inner ear tissue is sur-
rounded by the hardest bone in the body. Here, we prepared
samples of decalcified human cochleae for SR-SIM, in com-
bination with scanning electron microscopy (SEM) and trans-
mission electron microscopy (TEM), focusing on the sensory

epithelium. Tissue was obtained during surgery after patients
had provided informed consent. The volume resolution of 3-
D SR-SIM is approximately eight-fold higher than that of con-
ventional microscopy (34), with a two-fold improvement in
lateral resolution (100–130 nm).

Materials and methods

The use of human materials was approved by the local ethics
committee (no. 99398, 22/9 1999, cont., 2003, Dnr. 2013/190),
and patient consent was obtained. The use of animal coch-
lear material was also approved by the local ethics commit-
tee (no. C254/4, C209/10). The study adhered to the
guidelines of the Helsinki Declaration.

TEM

Two archival specimens collected during surgery and two
specimens collected after perilymphatic perfusion were ana-
lyzed in Uppsala (35,36) and Innsbruck. The specimens were
fixed in 3% phosphate-buffered glutaraldehyde, pH 7.4, and
rinsed in cacodylate buffer, followed by fixation with 1%
osmium tetroxide at 4 �C for 4 h. The specimens were infil-
trated with Epon resin in a vacuum chamber for 4 h. For TEM
analysis, sections were viewed under a JEOL 100 SX electron
microscope (Uppsala) and under Zeiss LIBRA (Institute of
Zoology, Innsbruck) and Philips CM 120 (Division of
Anatomy, Histology and Embryology, Innsbruck) transmission
electron microscopes (Innsbruck).

Fixation and sectioning of human cochlea for
immunohistochemistry

Five cochleae from five adult patients (2 male, 3 female;
aged 40–65 years; Table 1) were dissected out as a whole
piece during petro-clival meningioma surgery. In the operat-
ing room, the cochleae were immediately placed in 4% paraf-
ormaldehyde diluted with 0.1M phosphate-buffered saline
(PBS, pH 7.4). After a 24-h fixation period, the fixative was
replaced with 0.1 M PBS and then with 10% EDTA solution at
pH 7.2 for decalcification. After approximately four weeks,
the thoroughly decalcified cochleae were rinsed with PBS.
For frozen sections, the cochleae were embedded in Tissue-

Figure 1. Composition of gap junctions as adapted from Kumar and Gilula (1996) (64). In humans, there are more than 20 isoforms encoded by the gene family,
and different cell types may express several connexin isoforms. The possible combinations of hetero-oligomeric connexons seem to be restricted to members of the
same subgroup, such as a and b.
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Tek (OCT Polysciences), rapidly frozen, and sectioned into sli-
ces 8–10 lm thick using a Leica cryostat microtome. The fro-
zen sections were collected onto gelatin/chrome alum-coated
slides and stored below �70 �C before processing for
immunohistochemistry.

Antibodies and immunohistochemistry

The Cx30 antibody was a rabbit polyclonal antibody (catalog
number 71-2200, Invitrogen, Carlsbad, CA, USA). Its selectivity
for human Cx30 was confirmed by western blotting. The
anti-Cx26 monoclonal antibody was derived from mice and
has a high specificity (1:50, catalog number 33-5800,
Invitrogen, Carlsbad, CA, USA). The antibody against laminin
b2 was a rat monoclonal antibody (catalog number 05-206,
Millipore, Billerica, MA, USA; dilution 1:100) specific for the
laminin b2 chain. This antibody was used to demarcate
the basal lamina at the bottom border of the epithelium in
the organ of Corti (OC). It recognizes and is specific for the
laminin b2 chain. The anti-laminin antibody showed no
cross-reaction with other basement membrane components,
such as type IV collagen. Both a polyclonal antibody (catalog
number 04-1049, Millipore, Billerica, MA, USA; dilution 1:200)
and a monoclonal tubulin antibody (catalog number
MAB1637, Millipore, Billerica, MA, USA; dilution 1:200) against
neuron-specific class III beta-tubulin (Tuj-1) were used. The
combinations, characteristics, and sources of antibodies used
in this study are summarized in Table 2. The immunohisto-
chemistry procedures performed on cochlear sections have
been described in previous publications (Liu et al. 2009,
2016). Briefly, sections on slides were incubated with an anti-
body solution under a humid atmosphere at 4 �C for 20 h.
After rinsing with PBS (3� 5min), the sections were incu-
bated with secondary antibodies conjugated to Alexa Fluor
488 and 555 (Molecular Probes, Carlsbad, CA, USA), counter-
stained with the nuclear stain DAPI (4’,6-diamidino-2-phenyl-
indole dihydrochloride) for 5min, rinsed with PBS (3� 5min),
and mounted with Vectashield (Vector Laboratories,
Burlingame, CA, USA) medium. Primary and secondary anti-
body controls and labeling controls were prepared to

exclude endogenous labeling or reaction products (37).
Control sections were incubated with 2% bovine serum albu-
min (BSA) without the primary antibodies. As a result, the
control slides showed no visible staining in any cochlear
structures. Both wide-field and confocal fluorescent imaging
software employed sensitive fluorescent saturation indicators
to prevent overexposure.

Imaging and photography

The stained sections were visualized with an inverted fluores-
cence microscope (Nikon TE2000) equipped with a spot
digital camera with three filters (emission spectrum maxima
at 358, 461, and 555 nm). Image-processing software (NIS
Element BR-3.2, Nikon) including image merging and fluores-
cence intensity analyzer features was installed on a computer
system connected to the microscope. For laser confocal
microscopy, we used the same microscope equipped with a
three-channel laser emission system. The optical scanning
and image-processing tasks, including the reconstruction of
Z-stack images into projections and 3-D images, were per-
formed using Nikon EZ-C1 (ver. 3.80) software. Structured illu-
mination microscopy (SR-SIM) was performed with a Zeiss
Elyra S.1 SIM system using a 63x/1.4 oil Plan-Apochromat
lens (Zeiss), a sCMOS camera (PCO Edge), and ZEN 2012 soft-
ware (Zeiss). Multicolor SR-SIM imaging was achieved with
the following laser and filter setup: first channel, 405-nm
laser excitation and BP 420-480 þ LP 750 filter; second chan-
nel, 488-nm laser excitation and BP 495-550 þ LP750 filter;
and third channel, 561-nm laser excitation and BP 570-620 þ
LP 750 filter. To maximize image quality, five grid rotations
and five phases were used for each image plane and chan-
nel. The grid size was automatically adjusted by the ZEN soft-
ware for each excitation wavelength. SR-SIM images were
processed with ZEN software using automatic settings and
theoretical point spread function (PSF) calculation. A 3-D
reconstruction was performed from the SR-SIM dataset using
Imaris 8.2 software (Bitplane, Z€urich, Switzerland). The micro-
scope was capable of achieving a lateral (X–Y) resolution of
approximately 100 nm and an axial (Z) resolution in the
approximately 300 nm range (38). The resolution of the SIM
system was measured with sub-resolution fluorescent beads
(40 nm, Zeiss) in the green channel (BP 495-550 þ LP750) at
the BioVis facility in Uppsala. An average PSF value was
obtained from multiple beads using the built-in experimental
PSF algorithm of the ZEN software. The typical resolution of
the system was 107 nm in the X–Y plane and 394 nm in the
Z plane (Supplementary Figure 1, available online).

Results

Confocal microscopy

The human cochlea contains three GJ networks: one in the
sensory epithelium and two in the connective tissue
(lateral wall/spiral limbus). Figure 2 shows the complex cell
architecture in a well-fixed human OC using SEM. Confocal
microscopy revealed that Cx30 was highly expressed, while
Cx26 was barely detectable. Cx30 staining extended both

Table 2. Antibodies used in this investigation.

Targeting protein Type Dilution Host
Catalog
number Company

Laminin b2 monoclonal 1:100 rat #05-206 Millipore
Type II col monoclonal 1:100 mouse CP18 Millipore
Cx30 polyclonal 1:100 rabbit 71-2200 Invitrogen
Cx26 monoclonal 1:50 mouse 33-5800 Invitrogen
Cx26 polyclonal 1:200 rabbit ACC-2121 Alomone
Tuj-1 polyclonal 1:200 rabbit #04-1049 Millipore
Tuj-1 monoclonal 1:200 mouse MAB1637 Millipore

Table 1. Patient data and method of analysis.

Age (years) Sex PTT Analysis

43 female 50 dB (1 kHz to 8 kHz) immunohistochemistry
51 male normal immunohistochemistry
72 male 50 dB (2 kHz to 4 kHz) immunohistochemistry
67 female normal immunohistochemistry
60 male normal TEM
65 male normal TEM

dB: decibels; PTT: pure tone threshold; TEM: transmission electron microscopy.
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medially into the inner sulcus and laterally to the outer sul-
cus and root cells at the spiral prominence.

SR-SIM

Isolated scans, 3-D rendering, and maximum-intensity projec-
tions (MIPs) were analyzed and compared. Cx26 was weakly
expressed. Numerous Cx30-positive plaques were found
between all supporting cells. The shapes of the Cx30 plaques
varied (round, discoid, or elongated), and their size was up
to five microns in diameter. In contrast, the Cx26 plaques
were small (0.1–0.5 lm) and dot-like (Figures 3–6). No label-
ing was observed between the hair and supporting cells. The
geometry of the Cx30 plaques varied in different supporting
cells. Between Hensen cells (HCs) and Deiters cells (DCs), the
plaques were round, ovoid, and disc-like and increased in
size from the apical surface to the base of the cells (Figure 4,
left; Figure 5). Smaller Cx30 plaques were observed between
the inner and outer pillar heads along with a few Cx26 ‘mini-
plaques’ (Figure 3, inset A). Prominent Cx30-positive plaques
or stripes were observed between outer pillar columns
(Figure 3). The inner pillar feet displayed prominent, irregu-
larly shaped plaques. A few supporting cell plaques faced the
basal lamina. The lateral cell membrane of the outer pillar
columns showed extensive Cx30 GJ stripes (Figure 3).

Association of Cx26 and Cx30 labeling

Cx26 staining was mostly independent of Cx30. Although
some areas showed superimposed Cx26 and Cx30 staining,

orthogonal views of single optical sections showed separate
color signals (Supplementary Figure 2, available online).
Annular patterns of Cx30 staining were frequent. These rings
had a diameter of 100–1000 nm, with a central subdomain
composed of Cx26 (Figure 4, left, insets). A 3-D reconstruc-
tion of Cx26 and Cx30 expression is shown in Figure 4. The
green signal was reconstructed in surface-rendering mode,
and the red signal was rendered in spot detection mode
using Imaris 8.2 software. Neurons beneath outer hair
cells (OHCs) were positive for the neuron marker Tuj-1 but
not for Cx26 or Cx30 (Supplementary Figure 5 inset,
available online). Nerve endings beneath the inner hair
cells (IHCs) were generally swollen and did not show any
staining.

Outer sulcus epithelium and root cells

Epithelial cells in the outer sulcus heavily expressed Cx30.
The root cells displayed two separate domains of GJ plaques.
Large Cx30 plaques were seen at the nuclear level, whereas
on the basal surface, facing the sub-epithelial space, plaques
were smaller (<1 lm) and associated with Cx26 plaques
(Figure 6(A), inset). Laminin b2 co-staining of the basal lam-
ina (BL) confirmed that these GJ plaques were located
between the root cell processes (Figure 6(B)). Across the BL,
the type II fibrocytes also exhibited numerous Cx30-positive
GJs. These plaques were similar in size to those between the
root processes and were occasionally associated with a few
Cx26-positive GJ plaques (Figure 6).

Figure 2. Scanning electron microscopy of the cochlear sensory epithelium (organ of Corti) in the low-frequency region. Modified versions of this image were pub-
lished earlier in the Anatomical Record (65) and with permission in the book Functional Ultrastructure: Atlas of Tissue Biology and Pathology by Margit Pavelka and
J€urgen Roth (2015) (66).
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Transmission electron microscopy (TEM)

TEM images confirmed the copious number of GJ plaques
existing between supporting cells. Border and inner phalan-
geal cells (IPhCs) surrounding the IHCs displayed large num-
bers of GJs (Supplementary Figure 3, available online). In
some cases, folded IPhCs were squeezed between an IHC
and an inner pillar cell (IPC). The presence of GJs could not
be verified with certainty between the IPC and IPhC
(Supplementary Figure 3(A,B), available online). No GJs were
observed between sensory and supporting cells. The oppos-
ing lateral cell membranes of the Claudius cells (CCs)
often had an undulating outline decorated with GJs
(Supplementary Figure 4, available online). Annular GJs were
not observed with TEM. The lateral cell membranes between
HCs and Boettcher cells showed occasional sub-plasma mem-
brane sacs suggestive of rough ER (not shown). The basal
plasma membrane of the supporting cells, facing the
basilar membrane (BM), often displayed focal densities
(Supplementary Figure 5, available online). On confocal
microscopy and SR-SIM, these sites frequently demonstrated
Cx30 positivity, suggesting that they represented hemi-junc-
tions (Figure 3, inset). The lateral cell membranes of the basal

components of the DCs and IPCs were tightly assembled and
had several intercellular GJs. The presence of an extensive
number of GJs between the basal processes of the root cells
was also confirmed with TEM.

Discussion

Subtle Cx26 expression in the adult human organ of
Corti

There was surprisingly little expression of Cx26 in the sensory
epithelium compared to Cx30. However, a fairly large amount
of diffuse intracellular Cx26 staining was observed in DCs,
particularly near the base of OHCs. This finding suggests that
the epithelial GJ network consists mostly of Cx30 in human
adults. MIP results indicated possible co-expression, but 3-D
rendering revealed that Cx26 and Cx30 were expressed sep-
arately in different plaques. These findings indicate that GJs
consist mainly of homomeric/homotypic Cx pairs (Figure 4).
A similar arrangement was found in the lateral wall of the
human cochlea (33). This result was unexpected, as the
selective vulnerability of the ear to GJB2 gene disruption has
been linked to unique oligomeric varieties of heteromeric

Figure 3. SR-SIM of the inner hair cell (IHC) region in a human cochlea (single optical plane). Cx30 is richly expressed, while Cx26 is hardly detectable. Outer pillar
columns display prominent intercellular GJs (filled arrow). Inner pillar feet show large Cx30-positive areas facing the basal lamina (BL). Inset: Confocal micrograph of
IHC region. The basal lamina of the epithelium, blood vessels, and neurons are stained for laminin b2. Frames A and B are magnified in insets. A: A few Cx26 GJ pla-
ques are seen among the Cx30-positive GJs. B: An annular GJ with central Cx26-positive domains is seen in the pillar foot. BC: basal cell; E: endolymph; IPC: inner
pillar cell; OPC: outer pillar cell.

164 W. LIU ET AL.

https://doi.org/10.1080/03009734.2017.1322645
https://doi.org/10.1080/03009734.2017.1322645
https://doi.org/10.1080/03009734.2017.1322645
https://doi.org/10.1080/03009734.2017.1322645


GJs, as found in several other tissues (21,26). The molecular
and subunit composition of GJs influences their physiological
properties and permeability characteristics (39), including
both the speed and type of molecular passage (e.g. intercel-
lular Ca2þ signaling), which can differ between heteromeric
and homomeric GJs (26). Heteromeric channels show select-
ive biochemical properties (28,29). According to Sun et al.
(26), hybrid Cx26/30 cochlear GJs show faster intercellular
Ca2þ signaling than the homomeric forms. These authors
also found that Cx26 and Cx30 co-localize in most GJ plaques
in the cochlea in co-immunoprecipitation experiments. In the
present analysis, the Z-stacks that were converted into MIPs
to create a 2-D image lacked depth information in the
Z plane. Therefore, 3-D renderings were prepared from the
Z-stacks to discriminate between objects on the Z-axis, and
single optical sections in orthogonal planes enabled the
accurate visualization of the physical relationship between
Cx26 and Cx30 GJ plaques (Figure 4; Supplementary Figure
2, available online). The close relationship between Cx26 and
Cx30 homomeric/homotypic GJ plaques suggests a yet-
undefined functional link and cooperation.

Cx30 and motility of supporting cells

The widespread distribution of Cx30-positive GJ plaques
suggests that they are crucial for human hearing. The GJ syn-
cytium connecting most supporting cells may supply the
avascular sensory epithelium with nutrients as well as remove
metabolic waste products from the highly active hair cells.
The outer pillar columns also showed lateral intercellular
Cx30 strands. Such coupling may be important to synchron-
ize the motion of these cells, allowing them to act in concert

for cochlear amplification (14). GJ strands were not seen
between the inner pillar columns, suggesting that these cells
have different biophysical properties. The inner pillars are
anchored to a static foundation, whereas the outer pillars are
tightly connected to the mobile BM.

K1 recycling—spectacular Cx30 network at the root
cells

Various models have been presented for the transfer of Kþ

ions from the sensory epithelium back to the connective tis-
sue GJ networks in the lateral wall (10,40–44). These
transfer mechanisms include both a medial and a lateral
trans-epithelial flux of Kþ as well as extra-epithelial recycling
to the perilymph (40,41). An extra-epithelial Kþ recycling sys-
tem would involve a basally directed flow across the cell
membrane and the extra-cellular matrix of the BM into the
scala tympani. Our findings support the existence of medial
and lateral trans-cellular Kþ recycling across Cx30 GJs. The
multitude of GJs between root cell processes and the type II
fibrocytes was remarkable (Figure 6). The outer sulcus cells
and root cells exhibited two different GJ systems closely
related to the sub-epithelial GJ network. Intense labeling for
Cx26 and Cx30 in the outer sulcus cells and root processes
was previously demonstrated by Liu and Zhao (44).
Additionally, it has previously been proposed that Kþ ions
are transferred through rectifying Kþ currents at the basolat-
eral processes of root cells, likely mediated via Kir4.1 chan-
nels (10). The Kir4.1 channels have also been found to co-
localize with aquaporin channels (42) to maintain hydrostatic
equilibrium within the spiral ligament micro-environment.

Figure 4. Left: A: Maximum-intensity projection of the Hensen cell (HC) region in the human organ of Corti. Cx30-positive intercellular GJ plaques dominate. Some
GJs seem to face the BM (filled arrow). Cx26-expressing GJ plaques are located near the Cx30 plaques (inset top left). Framed areas are magnified in insets A and B.
Annular GJ plaques with Cx26 expressed inside can be seen. B: An annular GJ surrounds smaller dots of Cx26 staining. One is superimposed (yellow) on the Cx30
plaque and is shown in higher magnification in B. Right: A 3-D reconstruction of Cx26 (red) and Cx30 (green) protein expression is shown in B. The green signal was
reconstructed in surface rendering mode, and the red signal was rendered in spot detection mode using Imaris 8.2 software. The inset demonstrates the GJ complex
after clock-wise rotation. A single optical plane with orthogonal sectioning is shown in the Supplementary material. BM: basilar membrane.
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These results seem highly suggestive of an active radial ion
flux across these cell layers.

Mechanisms underlying Cx deficiency in
deafness—recent findings

Until recently, deafness caused by GJB6 (Cx30) deletion was
believed to be due to defective Cx26 expression, and Cx30
was considered dispensable for cochlear function (45).
According to Sch€utz et al. (46), it may be difficult to isolate
the role of Cx30 from that of Cx26 because the experimental
alteration of Cx30 causes a downregulation of Cx26. The two
genes share almost 80% identity at the protein level. Human
deletion mutations in both Cx26 and Cx30 cause deafness
(3,20,47).

Considering the important role played by Cx26 in human
deafness, there is a discrepancy between embryonic and
adult human tissue that may be explained by a maturation
process. The development of the cochlear GJ system pre-
cedes the functional maturation of the rat inner ear that
takes place between the second and third postnatal weeks

(30). Kamiya et al. (48) suggested that Cx26 may be crucial
for large GJ plaques to form during embryonic development
and for the establishment of sensory function but less
important for the maintenance of the mature OC. Previous
results have also indicated that GJB2 mutations disturb the
homeostasis of the extra-cellular space surrounding the sen-
sory hair cells rather than endolymph homeostasis. Impaired
Kþ transport by supporting cells may lead to a degeneration
of the OC (49). These changes were shown to occur at a very
early stage of development (50). Therefore, Cx26 may be
more vital for the maturation of the sensory epithelium
(51,52) and less necessary for normal hearing, while Cx30
may be essential for normal repair following sensory cell loss
(53,54). Mouse models demonstrate that Cx26 mutations can
cause both congenital deafness and late-onset, progressive
hearing loss through different mechanisms. Congenital
deafness was thought to be the result of cochlear mal-devel-
opment, whereas late-onset hearing loss was associated with
reductions in cochlear active amplification, which is depend-
ent on supporting cell GJs (14,55). GJB2 deletion of Cx26
before, but not after, postnatal day 5 caused congenital

Figure 5. A: Maximum-intensity projection of Cx26 (red) and Cx30 (green) protein expression beneath the outer hair cell region of the human organ of Corti. Cx26
and Cx30 seem to be expressed separately. Cell borders are outlined. Framed areas are magnified in B–E. B and C: Cx26 is mostly expressed as small dots in close
association with larger Cx30-positive plaques. D: Superimposed GJs are stained yellow (arrow). E. The Cx30-positive GJ profile (arrow) may reflect degradation and
invagination of the channel plaque into the cytoplasm. BM: basilar membrane; DC: Deiters cell.
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deafness due to a closed cochlear tunnel (56). Deafness was
not due to EP reduction (57). The authors concluded that Kþ

recycling may not be a deafness mechanism for GJ defi-
ciency-induced hearing loss in these animals (23).

‘Hybrid plaques’

Remarkably, Cx26 subdomains appeared inside annular Cx30
plaques (Figure 3, inset B; Figure 4). Cx proteins have a half-
life of only hours (58), reflecting their participation in
extremely dynamic physiological processes. This activity is
corroborated by the involvement of sub-membrane-localized
rough ER in the production and swift membrane incorpor-
ation of these proteins, as described in Cx43-GFP-transfected
HeLa cells (59). Similar organelles were found between
Hensen and Boettcher cells (not shown). According to Jordan
et al. (60), who generated time-lapse video of live cells, the
entire GJ or a fragment thereof can be internalized into one
of the two opposing cells as an annular junction during GJ
turnover. Some of the annular GJ plaques identified here
may not represent degradation, as they had a central subdo-
main and were not recognized on TEM. 3-D reconstruction
showed that the two categories of GJs were separate but
physically interrelated. This distinction indicates that Cx26
and Cx30 plaques may act in concert, despite performing

separate functions. Consequently, we hypothesize that
diverse aggregates of GJ channels can populate the same GJ
plaque or represent physically interacting plaques (Figure 7).
Different Cx isoforms have been reported in well-defined GJ
plaques using freeze-fracture replica immunogold
labeling (FRIL), allowing the co-localization of different Cx
proteins (61).

Hemi-channels

In the present study, TEM showed membrane densities, and
SR-SIM demonstrated Cx30 plaques at the basal surface of
the supporting cells facing the BM, which may represent
hemi-channels. Hemi-channels facing the extra-cellular tissue
have been described in the cochlea (29). Hemi-channels may
pass ATP to the extra-cellular compartment so that it can
bind to purinergic receptors on neighboring cells and act as
a signaling molecule.

In summary, the present results seem to support the
notion that GJs in the human cochlear sensory epithelium
are homomeric/homotypic and that plaques are mostly
populated by assemblies of identical GJs that express either
Cx26 or Cx30. The possibility of mixed plaques cannot be
excluded as the diameter of each GJ is below the maximal
resolution of SR-SIM. Establishing the molecular composition

Figure 6. A: SR-SIM of outer sulcus (OS) epithelium and root cells (RCs) at the basal turn of the human cochlea (maximum-intensity projection). Larger Cx30-positive
epithelial GJ plaques are seen in the nuclear region (filled arrow). In the basal region of the RCs, large numbers of smaller Cx30-positive plaques are expressed (�).
A few Cx26-positive plaques are intertwined among the basal Cx30 plaques (inset of framed area). The sub-epithelial space (SS) also expresses Cx30 in type II fibro-
cytes. B: Immunofluorescence of laminin/Cx30 co-labeling (�) shows that this network is located between the epithelial root cell processes. C: The corresponding
region seen with TEM. BM: basilar membrane; E: endolymph; SP: spiral prominence.
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of the GJ networks in the human cochlea is essential for
understanding the pathophysiology of Cx-related hearing
loss and may also assist in developing future strategies to
treat genetic hearing loss (62,63).
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