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The liver is a primary organ that stores body iron, and plays a central role in the regulation
of iron homeostasis. Hepatic iron overload (HIO) is a prevalent feature among patients with
chronic liver diseases (CLDs), including alcoholic/nonalcoholic liver diseases and hepatitis
C. HIO is suggested to promote the progression toward hepatocellular carcinoma
because of the pro-oxidant nature of iron. Iron metabolism is tightly regulated by
various factors, such as hepcidin and ferroportin, in healthy individuals to protect the
liver from such deteriorative effects. However, their intrinsic expressions or functions are
frequently compromised in patients with HIO. Thus, various nutrients have been reported
to regulate hepatic iron metabolism and protect the liver from iron-induced damage.
These nutrients are beneficial in HIO-associated CLD treatment and eventually prevent
iron-mediated hepatocarcinogenesis. This mini-review aimed to discuss the mechanisms
and hepatocarcinogenic risk of HIO in patients with CLDs. Moreover, nutrients that hold
the potential to prevent iron-induced hepatocarcinogenesis are summarized.
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INTRODUCTION

Iron is an essential micronutrient that is utilized as a co-factor for various proteins, including heme
and Fe-S proteins (1, 2). However, iron facilitates hydroxyl radical production via a well-established
mechanism, the Fenton reaction (3). Hydroxyl radical is one of the most potent reactive oxygen
species, which harshly damages cellular components, including nucleic acids, proteins, and lipids,
leading to the collapse of cellular homeostasis. Moreover, excessive cellular iron causes ferroptosis, a
nonapoptotic programmed cell death, which is recently suggested to be involved in the development
of a broad range of diseases, including chronic liver diseases (CLDs) (4). Thus, iron metabolism is
precisely controlled by various factors, such as hepcidin and ferroportin (1, 2, 4).

Body iron is mainly stored in the liver; thus, compromised function and expression of these iron
metabolism-related factors readily cause hepatic iron overload (HIO). Hereditary
hemochromatosis, which leads to massive iron accumulation not only in liver, but also in many
other organs, such as heart and pancreas, etc., is caused by genetic defects in the iron metabolism-
related factors that frequently result in diabetes mellitus, cardiomyopathy, and liver cancer (5).
Moreover, nonhereditary, secondary HIO is prevalent among patients with CLDs, such as chronic
hepatitis C, alcoholic liver disease, and nonalcoholic fatty liver disease (NAFLD), all of which are
important etiologies of hepatocellular carcinoma (HCC) (6). As mentioned above, excessive iron
severely impairs normal tissue functions by aggravating oxidative stress; thus, HIO is suggested to
promote the development and progression of these CLDs and even predispose them to HCC.
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Contrastingly, several lines of evidence indicate that the
correction of dysregulated iron metabolism significantly
improves liver functions and ameliorates pathologies related to
CLDs associated with HIO. Therefore, HCC is reasonably
expected to arise from HIO-associated CLDs, which can be
prevented by interventions that target iron metabolism.

The present mini-review briefly described the current
knowledge on HIO associated with CLDs, focusing on
mechanisms and hepatocarcinogenesis. Moreover, nutritional
interventions with protective effects against HIO by correcting
iron dysmetabolism are concisely summarized.
HIO IN CLDS

HIO is attributable to both genetic and nongenetic causes.
Hemochromatosis results from genetic defects of iron-
metabolism-related genes, including HFE, HAMP (encoding
hepcidin), HJV (hemojuvelin), TFR2 (transferrin receptor 2),
and SLC40A1 (ferroportin) genes (5), whose functions are
described below. Moreover, thalassemia is a severe hereditary
anemia that is caused by genetic defects of globin genes and is
prevalently associated with HIO. Contrastingly, the pathogenic
mechanisms of nonhereditary HIO are yet to be fully elucidated.
However, several molecular mechanisms underlying HIO in
CLDs have been postulated based on clinical and basic
research and are herein presented, followed by a summary of
the hepatocarcinogenic potential of HIO.

Hepcidin-Mediated Regulation of Systemic
Iron Metabolism
Hepcidin is a central player in iron metabolism in humans and is
mainly expressed and secreted from hepatocytes and binds to
ferroportin, a cellular iron exporter, which is present in the
cellular membrane of all types of cells involved in systemic iron
metabolism, including hepatocytes, macrophages, and
enterocytes (7, 8). Upon binding to hepcidin, ferroportin is
taken up by endocytosis and degraded in lysosomes (7, 8).

The primary physiological function of hepcidin is to decrease
circulating iron levels by inhibiting cellular iron efflux. Dietary iron
absorbed by enterocytes is released to the circulation via ferroportin
and storedmainly in the liver, skeletalmuscle, and reticuloendothelial
cells. Whereas, aged or injured red blood cells were phagocytosed by
liver Kupffer cells and spleen red pulp macrophages (9). Moreover,
hepatocytes and Kupffer cells take up hemoglobin released from
hemolytic red blood cells (9). The intracellularly stored iron is
exported to the circulation via ferroportin and utilized for
erythropoiesis. Thus, hepcidin obstructs dietary iron absorption,
while it also suppresses the release of stored iron, leading to cellular
iron accumulation. Thus, hepcidin decreases body iron storage and
systemic ironmobilization, and, in somecases, causes iron-deficiency
anemia (10).

Hepcidin expression in the liver is tightly regulated by several
factors. HFE is a membrane protein that binds to TFR1, competing
with holo-transferrin (11). Increased transferrin saturation
facilitates the dissociation of HFE from TFR1 and binding of HFE
to TFR2, resulting in transferrin-induced hepcidin upregulation
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(11, 12). Hemojuvelin is a BMP co-receptor required for BMP6-
induced hepcidin expression (13, 14). Iron overload upregulates
BMP6 in the liver, thereby inducing iron-dependent hepcidin
expression via the BMP6/hemojuvelin/SMAD pathway (14, 15).
It is demonstrated thatHFEalsobinds toBMPtype I receptorALK3
and induceshepcidinexpressionvia theSMADpathway (16).Thus,
it is suggested that theBMP/SMADpathway is a critical regulator of
iron metabolism by regulating hepcidin expression. In addition to
iron, hepatic hepcidin expression is also induced by inflammatory
stimuli, such as interleukin-6 and lipopolysaccharide (17, 18). The
increase in hepcidin expression upon inflammation leads to the
development of inflammatory anemia, which is characterized by
decreases in serum iron and erythropoiesis, despite of increased
cellular iron stores in the reticuloendothelial system (10).

Molecular Mechanisms
HIO is found in 10–36% of patients with chronic hepatitis C, and
the hepatic iron amount is associated with a disease severity and
decreased by interferon therapy (19, 20). In healthy individuals,
hepatic iron accumulation induces hepcidin expression in
hepatocytes via the BMP pathway to inhibit dietary iron uptake
(13, 21). However, patients with chronic hepatitis C show lower
hepcidin expression than patients with hepatitis B and nonviral
hepatitis despite HIO (22). Moreover, although hepatic
inflammation is evident, chronic hepatitis C virus (HCV)
infection was shown to downregulate hepcidin (23). This might
be due to the impairment of the BMP6/hemojuvelin pathway by
TNFa, which suppresses the transcription of hemojuvelin (24).
Contrastingly, hepcidin expression was reported to increase in
culture cells and experimental animal models of HCV infection
(25, 26). At a molecular level, HCV core protein activates the
HAMP gene promoter while nonstructural protein 5A suppresses
it (25, 27, 28). Thus, hepcidin levels in HCV-infected patients
might be altered by infection status (acute/chronic, inflammation
status, virus load, infection period, etc.) (29).

Alcohol intake is a trigger of systemic iron overload and
concomitantly reduces the risk of iron-deficient anemia (30).
Increased serum ferritin and transferrin saturation were observed
(31, 32) and approximately half develop HIO in patients with
alcoholic liver disease (33). Alcohol was shown to suppress
hepcidin transcription in cultured cells and laboratory animals,
possibly by inhibiting C/EBPa (34, 35). Likewise, decreased serum
hepcidin levels and increased intestinal ferroportin expression were
depicted in patients with alcoholic liver disease (36, 37), and
intestinal iron absorption was consistently increased two-fold in
chronic alcoholics (38). Thus, excessive dietary iron absorption due
to the decreased hepcidin expression might occur in patients with
alcoholic liver disease as well as chronic hepatitis C.

Like chronic hepatitis C, approximately one-third of patients
with NAFLD are associated with HIO (39). Iron metabolism
alteration results in hyperferritinemia, which is significantly
associated with patients with NAFLD (40). Variants of HFE,
TMPRSS6, HBB, and CP have been reported as genetic factors
associated with HIO in patients with NAFLD (41–44); however,
nongenetic factors remain unclear. We and other groups have
determined hepatic expression levels of iron metabolism-related
genes inpatients or ratswithNAFLDand found the upregulation of
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hepcidin (45–47). Moreover, hepatic ferroportin expression was
downregulated inNAFLD (45, 47, 48). Basedon these observations,
dysregulated hepcidin expression might suppress hepatic iron
export via ferroportin in patients with NAFLD. Interestingly,
amelioration of HIO, concomitant with the upregulation of
hepatic ferroportin expression, was observed in mice fed with a
high-fat diet after a fibroblast growth factor 21 treatment (48).

Hepatocarcinogenic Risk
Hepatic neoplastic nodules were found in 5 of 8 rats fed with an
iron-supplemented diet for 32 months and one of the rats with
neoplastic nodule developed a HCC, while only 1 of 9 control rats
developed neoplastic nodules (49). This iron challenge significantly
exacerbated hepatic oxidative stress and DNA damage (50). Adult
males in sub-Saharan Africa are often affected with dietary iron
overload from a traditional home-brewed beer fermented in steel
drums (51). Several lines of studies suggest that there is an
association between HCC and dietary iron overload in black
Africans (52–54). Consistently, two retrospective studies
demonstrated that HCC prevalence in patients with nonalcoholic
steatohepatitis (NASH)- or HCV-related cirrhosis is significantly
associated with the presence of HIO (55, 56). In particular, iron
deposition in the portal tract was significantly associated with poor
survival of patients with HCC after curative resection (57).
Whereas, phlebotomy with a low-iron diet effectively reduced the
risk of development of HCC in chronic hepatitis C patients (58).
Thus, HIO has a hepatocarcinogenic potential and is considered a
risk factor for HCCdevelopment while interventions targeting iron
metabolism, such as iron reduction therapy, are promising for
preventionofHCC.However, there remains a need formore robust
evidence of the hepatocarcinogenic risk of HIO, for example,
through long-term follow-up studies.

Liver fibrosis is known as a major risk factor for HCC
development (59). Hyperferritinemia in NAFLD patients with
HIO independently predicts the risk of advanced liver fibrosis
(60). Consistently, predominant parenchymal iron deposition was
associated with advanced fibrosis stages in patients with NAFLD
(61). However, a contradictory report demonstrated that
nonparenchymal iron deposition in patients with NAFLD was
more associated with advanced histological features, including
fibrosis and inflammation (39). A recent study of 299 patients
with NAFLD with a mean follow-up period of 8.4 years
demonstrated that nonparenchymal iron deposition more likely
leads to fatal hepatic or cardiac disease development (62). However,
this study did not show the association between HIO and HCC,
possibly due to the insufficient sample size and follow-up period.
The clinical significances of parenchymal and nonparenchymal iron
depositions remain elusive; however, liver fibrosis could be a key
factor in HIO-induced hepatocarcinogenesis.
PREVENTION OF IRON-INDUCED LIVER
DAMAGE BY NUTRIENTS

HIO would be a therapeutic target to prevent CLD progression.
Phlebotomy, indeed, improves disease severity in patients with
chronic hepatitis C and reduces the risk of HCC development (58,
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63). However, the clinical benefit of phlebotomy has not been
established in patients withNAFLD (64). Contrastingly, the dietary
iron restriction is shown effective in attenuating liver fibrosis and
steatosis in diet-induced NAFLD/NASH model animals (65, 66).
Whereas, a negative correlation of hepatic iron contents was
observed with dietary intake of vitamins C and E and zinc in
patients with thalassemia (67), implying a close relationship
between nutritional status and hepatic iron accumulation.
Furthermore, several nutrients have been reported to protect the
liver from iron-induced damage (Figure 1), as discussed below.
Therefore, nutritional interventions can be a promising strategy not
only for CLD amelioration but also for preventing HIO-induced
HCC development.

Vitamin A
Retinoids are compounds that exert physiological actionsofvitamin
A. In its active form, retinoic acids, including all-trans and other
isomers, bind to the retinoic acid receptor and retinoid X receptor
and regulate the expression of various target genes. However, we
and another group have reported that retinoid signals are
metabolically suppressed in NAFLD livers of humans and mice
(68, 69). Moreover, retinoid signals are suggested to be
epigenetically silenced in HCC by histone lysine-specific
demethylase 1 (70). These results suggest that the downregulation
of hepatic retinoid signals might be a causative factor for the
FIGURE 1 | Nutritional interventions targeting iron metabolism for HCC prevention.
Vitamin A suppresses hepcidin expression by downregulating hemojuvelin, leading
to the enhancement of hepatic iron export. Vitamin D (possibly via Ca2+

homeostasis), niacin (via zinc), vitamin C, folate, and riboflavin also enhance
hepatic iron export and iron mobilization, thereby reducing hepatic iron
contents. Vitamin C and vitamin E are potent antioxidant, thereby protecting
liver from HIO-induced injury. Adenine increases hepcidin expression, thereby
suppressing dietary iron absorption. These nutrients have potential to treat or
prevent HIO and may reduce the risk of hepatocarcinogenesis.
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development and progression of CLDs. Contrastingly,
supplementation of all-trans-retinoic acid and a synthetic
retinoid, tamibarotene, significantly suppressed HIO and hepatic
oxidative stress in iron-challenged mice (71, 72). Mechanistically,
these retinoids downregulate the hepatic expression of hemojuvelin
through retinoic acid receptor a, leading to hepatic hepcidin
downregulation and hepatic and intestinal ferroportin
upregulation (71, 72). Consequently, hepatic iron export was
significantly enhanced (71, 72). Moreover, we observed that the
erythroid colony formationunit of bonemarrowcellswas increased
in the presence of all-trans-retinoic acid (71). Consistently,
retinoids are suggested to have an ability to promote
erythropoiesis while their deficiency is associated with anemia
(73). Thus, erythropoietic action, at least in part, contributes to
HIO amelioration by retinoids. Additionally, retinoids significantly
ameliorated hyperglycemia, insulin resistance, andhepatic steatosis
in a mouse model of NAFLD (74, 75). Hyperglycemia and
hyperinsulinemia, which are frequently complicated with
NAFLD, are also risk factors for HCC (76). Thus, from dual
aspects, retinoid supplementation would be an efficient strategy
to prevent HCC development in patients with NAFLD.

Vitamin C
Vitamin C is a water-soluble antioxidant required for duodenal
cytochrome b to reduce Fe3+ to Fe2+. This process is necessary for
dietary nonheme iron absorption through divalent metal transporter
1 (DMT1) (77). Likewise, vitamin C increased hemoglobin synthesis
in patients on hemodialysis with anemia refractory to erythropoietin
(78). An observational study with >8,000 Chinese adults showed that
dietary vitamin C intake was associated with lower plasma ferritin
level (79). These data suggest that vitamin C suppress iron
accumulation by enhancing systemic iron mobilization.
Contrastingly, in an animal model of alcoholic liver disease,
vitamin C supplementation restored the decreased hepcidin
expression in the liver and concomitantly downregulated intestinal
ferroportin expression, leading to alcohol-induced HIO amelioration
(80). Based on these findings, vitamin C is expected to reduce dietary
iron absorption in patients with HIO associated with hepcidin
downregulation, such as alcoholic liver disease and chronic
hepatitis C. However, the nutritional effect of vitamin C on hepatic
hepcidin expression and iron mobilization is required further
investigation. Moreover, vitamin C was shown to improve glycemic
control in patients with type 2 diabetes and NAFLD (81, 82). It is also
observed that dietary vitamin C intake was associated with lower
HbA1c level (79). Considering its antioxidant effects, vitamin C holds
a high potential to prevent HCC development.

Vitamin D
Vitamin D is a fat-soluble vitamin essential for calcium
homeostasis and is produced by ultraviolet light in the dermis
or epidermis and activated by successive 25- and 1-
hydroxylations in the liver and kidney, respectively (83). 1,25-
dihydroxyvitanmin D was shown to protect zebrafish liver cells
from ferroptosis, concomitant with decreases in hepcidin
expression and cellular iron contents (84). Moreover, it was
demonstrated that vitamin D receptor activation inhibits
ferroptotic cell death in human renal proximal tubule cells and
Frontiers in Oncology | www.frontiersin.org 4
mouse hippocampal cells (85, 86). However, the protective effects
of vitamin D in the liver remains elusive.

Decreased 25-hydroxyvitamin D levels are frequently observed
and are associated with diseased severity in patients with CLDs (87–
90). The possible explanation of this is that HIO suppresses 25-
hydroxyvitamin D production, as its serum levels were negatively
correlated with hepatic iron contents in patients with thalassemia
major (91–93). Likewise, a negative correlationwas found inpatients
with hereditary hemochromatosis, and 25-hydroxyvitamin D levels
were significantly restored after phlebotomy (94). These results
suggest that iron is a negative regulator of metabolic activation of
vitamin D although its precise mechanism remains unknown.
Moreover, vitamin D depletion exacerbated HIO in hemojuvelin-
knockout mice (95), suggesting that there is a vicious cycle
exacerbating HIO by suppressing vitamin D signals. However,
1,25-dihydroxyvitamin D supplementation failed to ameliorate
HIO in the hemojuvelin-knockout mice (95). Contrastingly,
verapamil, a calcium channel blocker, treatment significantly
decreased hepatic iron contents and ameliorated HIO-induced
liver fibrosis (95, 96). These results suggest that the physiological
link between iron and calcium may exist, and that blockade of
cellular calcium influx would be relevant for treating HIO. The
transport systems of these ions are totally different; however, the
involvement of DMT1 is suggested (96, 97). Moreover, duodenum
calcium absorption is inversely correlated with duodenum iron
absorption and is activated by hepcidin and vitamin D (98). The
therapeutic effects of vitamin D supplementation on CLDs are still
under debate; however, it is recently suggested that impaired calcium
signaling plays a critical role in the development of NAFLD (90, 99).
Vitamin D and calcium homeostasis would provide new insights
into the pathogenic mechanisms of HIO in CLDs.

Vitamin E
Tocopherol is a lipophilic antioxidant known as vitamin E, which
hasbeenreported toameliorate steatosis, inflammation, ballooning,
and fibrosis in patients with NASH (100, 101). Thus, tocopherol is
clinically used for the treatment of NASH. Although its clinical
effects onHIOhas not been investigated,a-tocopherol significantly
reduced hepatic oxidative stress in rats withHIO (102). As its safety
and efficacyhavebeenestablished, it shouldbe investigatedwhether
a-tocopherol also provides clinical benefit for the treatment ofHIO
in patients with NASH. However, a-tocopherol did not decrease
hepatic iron contents in rats with diabetes or with iron overload
(102, 103) while it suppressed lipid peroxidation and ferroptosis
induced by hepatic ischemia-reperfusion in rats (104). Therefore,
the hepatoprotective effects of tocopherol are likely attributable
solely to its antioxidant properties.

It was revealed that HIO downregulates miR-122 while
upregulating its target gene, CCL-2, leading to hepatic
inflammation in iron-challenged rats (102). In contrast to
patients with NASH (100), a-tocopherol did not improve
inflammation in the iron-challenged rats, possibly because miR-
122 and CCL-2 expressions were not restored by a-tocopherol in
those rats (102). Thus, a-tocopherol might have a species-specific
therapeutic efficacy, suggesting the importance of clinical studies in
patients with HIO. Moreover, the suppression of ferroptosis by
tocopherol remained to be clarified in patients with CLDs.
June 2022 | Volume 12 | Article 940552
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Adenine
Zhang et al. identified adenine as a potent hepatic hepcidin
expression inducer from a commercially available vitamin library
and found that adenine regulates hepcidin expression via the
protein kinase A/SMAD pathway (105). Interestingly, adenine
significantly ameliorated blood iron parameters and suppressed
HIO in mice fed with an iron-enriched diet and Hfe-knockout
mice, in which hepcidin expression is suppressed (105). Because
adenine is clinically used for the treatment of leukopenia, its
clinical application for HIO treatment is expected. However,
dietary adenine supplementation rapidly induces experimental
chronic kidney disease in rodents (106, 107). These animals also
develop anemia although serum erythropoietin, which is
produced in the kidney, was not altered (107). Whereas,
hepcidin was upregulated concomitant with increased serum
ferritin and decreased serum iron levels (107). These findings are
in agreement with clinical characteristics of inflammatory
anemia induced by hepcidin, suggesting that adenine
supplementation inhibits iron mobilization by the upregulation
of hepcidin. Therefore, the clinical application of adenine for
HIO treatment requires optimal dosage determination.

Zinc
Zinc is a hepatoprotective micronutrient, and its deficiency is
suggested to be involved in CLD development and eventually
HCC (108). Rats fed with a zinc-deficient diet for 7 weeks
developed HIO associated with an increased plasma ferritin level,
while zinc intervention returned hepatic iron contents to the
normal level (109). The zinc-deficient diet increased plasma
hepcidin level, consistent with reduced intestinal iron absorption
(109). There might be a physiological crosstalk between iron and
zinc in erythropoiesis because clinical studies revealed that patients
with iron deficiency anemia were significantly associated with zinc
deficiency (110, 111). Moreover, zinc supplementation stimulates
erythropoiesis while zinc plus iron more efficiently ameliorated
anemia than iron alone (112, 113). These results suggest that zinc
ameliorates HIO by enhancing iron mobilization and utilization.
The therapeutic effects of zinconCLDshave beenestablished (108);
however, the benefit of zinc supplementation for HIO in patients
with CLDs remained unclear.

Niacin
Dietary nicotinic acid intake was shown to increase intestinal
zinc uptake, hepatic zinc and iron contents, and blood
hemoglobin levels in weanling rats, thereby promoting their
growth (114). Nicotinic acid supplementation restored hepatic
zinc to the normal level in rats fed with a low-zinc diet, while
depletion of nicotinic acid the low-zinc diet significantly lowered
hepatic zinc level (115). These results suggest that nicotinic acid
promotes zinc bioavailability; thus, it may ameliorate HIO in
patients with CLDs via zinc. This point has not been investigated
so far. However, nicotinic acid suppresses lipid peroxidation and
protects the liver from oxidative stress (115). Thus, nicotinic acid
would provide some benefit for patients with CLDs.

Koppe, et al. found that hepatic nicotinamide levels were
significantly increased by a dietary iron challenge in mice (116).
This was possibly due to iron-induced downregulation of
Frontiers in Oncology | www.frontiersin.org 5
nicotinamide N-methyltransferase (NNMT) in hepatocytes
(116). Additionally, hepatic NNMT expression was negatively
correlated with serum iron parameters in obese individuals
(116). Interestingly, NNMT knockdown exacerbated iron-
induced damages while its overexpression protected
hepatocytes from iron overload (116). NNMT stabilizes
NAD+-dependent deacetylase SIRT1 by producing N1-
methylnicotinamide (117). SIRT1 regulates various metabolic
pathways, and its overexpression ameliorates perturbations of
glucose, lipid, and cholesterol metabolisms (117). Thus, N1-
methylnicotinamide is expected as a new nutritional
intervention for the treatment of HIO and metabolic
syndrome. However, N1-methylnicotinamide is rapidly
inactivated in the liver by aldehyde oxidase. It is demonstrated
that the combination of N1-methylnicotinamide and an aldehyde
oxidase inhibitor, hydralazine, significantly ameliorated liver
steatosis while N1-methylnicotinamide alone failed to decrease
hepatic triglyceride contents (118).

Clinical research of niacin as a therapeutic for NAFLD is
ongoing (119); however, whether niacin ameliorates HIO in
patients with CLDs and prevents HCC needs to be addressed
by future studies.

Folate
A recent finding provided a new clue for hepatic heme uptake.
Solute carrier family 46 member 1 (SLC46A1) has been suggested
to mediate intestinal heme and folate uptake (120). Li et al.
investigated its physiological roles by liver-specific SLC46A1
knockdown because its expression is also abundant in the liver
(121). In that study, SLC46A1 was shown to uptake heme also in
the liver and contribute to the development of HIO in an
experimental setting (121). Because SLC46A1 expression was
negatively regulated by iron (120, 121), intestinal and hepatic
SLC46A1 expression is worth to be determined in patients with
CLDs. Interestingly, heme inhibited folate uptake by
downregulating SLC46A1 expression while folate did not affect
heme uptake and SLC46A1 expression (121), suggesting that
folate deficiency is caused by secondary hepatic heme uptake
excess. Although folate supplementation unlikely suppressed
heme-induced HIO, it promotes iron utilization and
mobilization for erythropoiesis. Indeed, it was demonstrated
that tissue iron contents including liver and spleen in female
rats were significantly lowered by a combined administration of
iron and folate, compared with administration of iron alone
(122). Therefore, folate supplementation is expected to prevent
HIO because of its hematopoietic action.

Riboflavin
Riboflavin deficiency was shown to reduce intestinal iron
absorption and utilization, leading to anemia in humans and
rats (123, 124). Consequently, hepatic iron contents were
significantly reduced by riboflavin deficiency. Thus, riboflavin
antagonists, such as galactoflavin (124), would be expected as a
novel therapeutic agent for HIO, unlike other nutrients whose
agonistic actions are desired therapeutically. However, there are
contradictory studies on the effect of riboflavin on anemia (125–
127). Despite that, these findings suggest that riboflavin is a
June 2022 | Volume 12 | Article 940552
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confounder of the systemic iron mobilization. The physiological
effects of riboflavin on iron metabolism and its mechanism
remain as unanswered questions.
CONCLUSIONS

Considering its potent pro-oxidant nature, dysmetabolism of
iron has been suggested as a risk factor for CLD development and
progression. Moreover, accumulating evidence indicates that
iron also has intrinsic functions that exacerbate CLDs, for
example, HCV replication/translation promotion and
macrophage activation in NAFLD (29, 128–130). Therefore,
iron metabolism is an ideal target for CLD treatment, and
eventually, HCC prevention. Nutritional interventions are, in
general, considered to provide several benefits for patients,
including not only therapeutic effects, but also cost-
effectiveness. Therapies targeting iron metabolism with
nutrients are expected as an alternative approach to prevent
the development of HCC.
PERSPECTIVES

This study has the following limitations: 1. Although several
nutrients that are beneficial for HIO amelioration were
introduced, there remain many other nutrients that are potentially
useful for iron metabolism correction. 2. Clinical efficacies of most
nutrients are yet to be clarified, in part because the preventive effects
of nutrients on hepatocarcinogenesis require long-term follow-up to
confirm them. 3. The concerns that side effects such as iron
deficiency and anemia could be caused by nutrients were not
sufficiently considered. 4. The nutritional effects were discussed in
the same way for all CLD patients even though their HIO could
arise from different mechanisms.

The clarification of molecular mechanisms underlying HIO
development is quite necessary for each etiology of CLD.
Frontiers in Oncology | www.frontiersin.org 6
Whereas, ferroptosis is currently attracting much attention
because of its involvement in the development and progression
of many diseases including CLDs and HCC (4). However,
research focusing on hepatic ferroptosis has not been
undertaken for most of nutrients. Moreover, most nutrients
have been studied in their sole use; however, combination of
nutrients would show synergistic or additive effects on HIO.
These points should be investigated in future studies.

As mentioned above, most nutrients still need robust
evidence because of the limited number of clinical and
biochemical research. Particularly, their HIO amelioration
mechanism needs to be studied to provide a scientific rationale
for clinical studies. On this point, hepcidin is an ideal target
because of its central role in iron metabolism. However, hepcidin
has dual aspects on HIO, namely, it suppresses dietary iron
absorption while inhibiting systemic iron mobilization.
Therefore, hepcidin upregulation could be useful for HIO
prevention while its downregulation could ameliorate or treat
HIO. Taking this point into consideration, future studies should
be undertaken.
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