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Abstract

In the human brain, self-generated auditory stimuli elicit smaller cortical responses

compared to externally generated sounds. This sensory attenuation is thought to

result from predictions about the sensory consequences of self-generated actions

that rely on motor commands. Previous research has implicated brain oscillations in

this process. However, the specific role of these oscillations in motor–auditory

interactions during sensory attenuation is still unclear. In this study, we aimed at

addressing this question by using magnetoencephalography (MEG). We recorded

MEG in 20 healthy participants during listening to passively presented and self-

generated tones. Our results show that the magnitude of sensory attenuation in bilat-

eral auditory areas is significantly correlated with the modulation of beta-band

(15–30 Hz) amplitude in the motor cortex. Moreover, we observed a significant direc-

tional coupling (Granger causality) in beta-band originating from the motor cortex

toward bilateral auditory areas. Our findings indicate that beta-band oscillations play

an important role in mediating top–down interactions between motor and auditory

cortex and, in our paradigm, suppress cortical responses to predicted sensory input.
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1 | INTRODUCTION

In our everyday life, we receive a mixture of sounds arising from dif-

ferent sources. These sounds could be either due to self-generated

actions such as singing a song, playing a musical instrument, or

knocking on a door, or they can come from external sources. The prin-

ciples underlying the generation of brain responses to self-generated

auditory input are different from external stimuli. Typically, self-

generated sounds elicit smaller cortical responses in auditory cortices

compared to externally generated sounds. This phenomenon is known

as sensory attenuation (Martikainen, Kaneko, & Hari, 2005; Schafer &

Marcus, 1973) and its absence or reduction has been associated with

schizophrenia and other neuropathologies (Ford & Mathalon, 2005).

This attenuation is likely mediated by direct or indirect interactions

between motor and auditory cortices. Indeed, previous research has

demonstrated close interactions between both systems in humans

and animals (Nelson et al., 2013; Zatorre, Chen, & Penhune, 2007).

Typically, these interactions are conceptualised within the framework

of a forward model (Friston, 2005; Keller & Mrsic-Flogel, 2018;

Pickering & Clark, 2014). When executing a movement, a copy of the

motor command is used by this forward model to predict the resulting

sensory consequences. The predicted and real sensory input are com-

pared constantly and the resulting prediction error refines and alters

new predictions.

Recently, several studies provided converging evidence that brain

oscillations at different frequencies are differentially involved in pre-

diction processes. In a magnetoencephalography (MEG) study of spa-

tial attention in the visual system, Bauer, Stenner, Friston, and Dolan
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(2014) showed that the suppression of alpha oscillations (7–13 Hz)

before stimulus presentation correlated with prediction precision. On

the other hand, the increase of oscillations in the gamma-band

(40–90 Hz) following stimulus presentation reflected the mismatch

between prediction and sensory stimulus. Similar frequency-specific

results where alpha/beta oscillations are related to predictions and

gamma oscillations are related to prediction errors were also observed

in the auditory cortex in monkeys (Chao, Takaura, Wang, Fujii, &

Dehaene, 2018) and humans (Fontolan, Morillon, Liegeois-Chauvel, &

Giraud, 2014; Sedley et al., 2016). Recently, this model has been

tested in the context of sensory attenuation. Cao et al. demonstrated

a correlation between the prestimulus alpha increase in auditory cor-

tex and the magnitude of sensory attenuation indicating a down-

regulation of auditory excitability when predicted self-generated

sensory input is expected (Cao, Thut, & Gross, 2017; Cao, Veniero,

Thut, & Gross, 2017). In line with the above-mentioned functional dif-

ferentiation between different oscillations, gamma-band changes in

response to self-generated stimuli seem to reflect prediction errors

(Buchholz, David, Sengelmann, & Engel, 2019; Cao, Thut, & Gross,

2017; Cao, Veniero, et al., 2017; Flinker et al., 2010). These prediction

errors are computed by comparing real sensory input and the sensory

input that is predicted on the basis of the motor command by the

internal forward model. This computation, therefore, requires infor-

mation from both the motor cortex and auditory cortex. The mecha-

nism underlying these motor–auditory interactions is unclear.

Morillon et al. reported that temporal predictions are encoded in

beta oscillations originating from the sensorimotor cortex toward

auditory regions (Morillon & Baillet, 2017). More recently, Buchholz

et al. also found that the motor cortex increased its beta-band con-

nectivity with middle temporal gyrus and inferior parietal lobe in a

continuous visuomotor tapping task (Buchholz et al., 2019). However,

the interactions between the motor cortex and auditory cortex in

mediating sensory attenuation are still unclear. Neural connections

between motor and auditory areas have been assessed from an ana-

tomical perspective in rodents. Animal studies have identified neurons

in the secondary motor area (M2) that project directly to the auditory

areas and can exert suppressive effects. These neurons convey

motor-related information during self-generated movements (Nelson

et al., 2013; Schneider, Sundararajan, & Mooney, 2018). Although the

neural projection from the motor region to auditory areas is well

documented, less is known about the role of oscillatory activity in the

motor cortex in sensory attenuation.

In this study, we aimed at investigating the relationship between

neuronal oscillations in the involved motor area and auditory evoked

responses in the bilateral auditory cortices using MEG. We hypo-

thesised that motor oscillatory activity plays a major role in mediating

sensory attenuation. To evaluate our hypothesis, we conducted an

MEG experiment. We recorded MEG data while participants processed

passively presented and self-generated tones. Using correlations and

Granger causality analysis, we found beta-band oscillations in the motor

cortex to be directionally coupled to the auditory cortices and modulate

the degree of sensory attenuation.

2 | METHODS

2.1 | Participants

We recruited 20 healthy right-handed volunteers (10 males, mean age

26.3 ± 3.7 years, median 25.5, range [21 33]) for this experiment from

a local participant pool. The study was approved by the local ethics

committee (University of Münster) and conducted in accordance with

the Declaration of Helsinki. Prior written informed consent was

obtained before the measurement and participants received monetary

compensation after the experiment. Data from two participants had

to be excluded from data analysis due to data distortion caused by

movement artefacts. Therefore, we analysed data from 18 participants

(nine males, mean age 26.6 ± 3.9 years, median 26.5, range [21 33]).

2.2 | Recording

MEG and electrocardiogram (ECG) were acquired simultaneously. All

recordings were carried out with a 275 whole-head sensor system

(CTF Systems) with a sampling rate of 600 Hz. A low-pass online filter

with a 150 Hz cutoff was applied to the recorded data.

2.3 | Paradigm

The participants were asked to sit relaxed on the MEG chair and keep

their eyes open while performing tasks. There were two different condi-

tions (125 trials each). In the passive condition, the auditory stimulus

was presented with random interstimulus intervals between 2,000 and

3,500 ms. The stimulus was a pure tone (1,000 Hz, 50 ms in duration,

sound intensity level: 60 dB above the hearing threshold) delivered

through plastic tubes binaurally. In the active condition, participants

were asked to press a button on a response box with their right index

finger every 3 s without inner counting. The auditory stimulus was

presented immediately after each button press. The two conditions

were presented in a block-wise random order.

2.4 | Preprocessing and data analysis

Prior to data analysis, MEG data were visually inspected for motion-

related artefacts. In order to remove drifts and high-frequency noise, a

zero-phase Butterworth forth-order IIR band-pass filter between 1 and

80 Hz was applied to the data. Heart artefact distorted MEG signals in

one of the subjects (Subject #13). The combination of independent

component analysis and mutual information (mi) was used based on the

method introduced in (Abbasi et al., 2015; Abbasi, Hirschmann,

Schmitz, Schnitzler, & Butz, 2016) to identify artefactual components

(mi between ICs and ECG signal; two artefactual components were

detected for each condition). Finally, MEG data were segmented time

locked to sound onset from −2 to 2 s. In the preprocessing and data

analysis steps, custom-made scripts in MATLAB R2018 (The

MathWorks, Natick, MA) in combination with the MATLAB-based

FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) were

used in accordance with current MEG guidelines (Gross et al., 2013).
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2.5 | Source analysis

Coregistration of T1-weighted structural magnetic resonance images

(MRIs) to the MEG coordinate system was done for each participant by

initial identification of three anatomical landmarks (nasion, left, and right

preauricular points) in the individual's MRI. Using the implemented

segmentation algorithms in Fieldtrip/SPM12, individual head models

were constructed from anatomical MRIs. A solution of the forward

model was computed using the realistically shaped single-shell volume

conductor model (Nolte, 2003) using a 5 mm grid defined in the

template (MNI) brain after linear transformation to the individual MRI.

The eLoreta algorithm, implemented in Fieldtrip, was used to

localise the auditory evoked components. The voxels in the left and

right auditory areas with the strongest M100 amplitude for the pas-

sive condition were selected as representative voxels from the left

and right auditory cortex (LAC and RAC).

To study interactions between the motor cortex and auditory cor-

tex, we functionally localised left motor cortex (LMC) in individual

participants based on the voxel showing strongest modulation of beta-

band activity (Engel & Fries, 2010; Pfurtscheller & Lopes da Silva,

1999). The beta frequency band and time window for localisation were

individually optimised based on time–frequency analysis of sensor data

from the active condition above the LMC. The time–frequency spectro-

grams of groups of MEG sensors above the LMC were inspected visu-

ally in order to determine the individual frequency bands and

time windows with strongest beta suppression and rebound. Time–

frequency power was normalised by computing relative changes with

reference to the mean power from −2 to 2 s. Time–frequency spectro-

grams were plotted from −2 to 2 s around the movement onset. There-

fore, negative components (represented by blue contour) indicate beta

suppression pattern and positive components (red contours) indicate

beta rebound. The individual optimised frequency band, beta suppres-

sion, and beta rebound time windows ranged from 12–33 Hz,

−0.3–0.5 s, and 0.4–1.7 s, respectively, relative to button press onset.

Detailed information about the selected frequency ranges and time

periods are presented in Figure S1, Supplementary section.

We used dynamic imaging of coherent sources (Gross et al.,

2001), a frequency-domain beamformer, to identify the voxel showing

strongest beta-band modulation in the individually optimised time and

frequency window in the LMC. We used both beta suppression and

rebound time range because this peak-to-peak measure could help us

to find the most relevant voxel representing the motor area. Finally,

the eLoreta algorithm was used to compute time series of representa-

tive voxels in auditory and motor areas using the linear mixture of

spatial filters multiplied by their corresponding orientation vectors.

The extracted time series were used for all further analysis steps.

2.6 | Evoked response analysis

Single-trial responses to the auditory stimuli were averaged for the

three selected voxels (LAC, RAC, and LMC) for both active and pas-

sive conditions. The extracted event-related fields time locked to tone

onset were computed for each condition with baseline (−500 to 0 ms)

correction. To find the M100 amplitudes in both, active and passive

conditions, we searched for the maximum values within the LAC and

RAC time series in the range between 75 and 125 ms. Sensory attenu-

ation values were obtained by computing M100 amplitude relative

changes in active condition with reference to passive condition from

the extracted auditory voxels time series, that is, (active–passive)/

passive. We used a paired t test to compare M100 component ampli-

tudes and sensory attenuation values between the passive and active

conditions and also across hemispheres.

2.7 | Time–frequency analysis

We applied time–frequency analysis on the extracted time series from

the selected voxels for each participant and experimental condition.

Time–frequency analysis was performed on time series by a multi-

taper approach with a smoothing of 2 Hz on a 400 ms long sliding

window. The step size of the sliding window was 25 ms and the spec-

tral resolution was interpolated to 1 Hz.

Cluster-based permutation test was used to assess whether there

are differences between the individual time–frequency maps of

different conditions (active vs. passive). Time–frequency power was

normalised by computing relative changes with reference to the mean

power from −2 to 2 s. Monte-Carlo randomisation was performed using

a dependent samples t test for the contrast active versus passive. In

2,000 iterations, the assignment of values to conditions (active, passive)

was randomly changed before cluster computation. Briefly, the resulting

p-values were stored in a new p-value map (2,000 × time × frequency)

in each iteration. Adjacent significant samples (p-value <.05) either in

frequency or in time in this map were grouped in clusters. The sum of

all the t statistics within each cluster was computed and considered as

the cluster level statistics. The largest cluster was detected and its clus-

ter level statistics were used for the permutation distribution. After

2,000 permutations, we estimated the cluster level significance for each

observed cluster by computing the proportion of elements of the per-

mutation distribution greater than the observed cluster-level statistics

resulting from the real comparison between the two conditions. The

resulting time–frequency clusters with cluster-level p-values below an

alpha level of α = .05 are considered significant (Maris & Oostenveld,

2007). In Section 3, only significant results are presented (p < .05).

2.8 | Correlation analysis

We assessed whether there is a relationship between the power of

modulated beta in the motor area and the amount of sensory attenua-

tion in the auditory area using correlation analysis. The individual

power of beta suppression and rebound was calculated for the motor

voxels in the active condition. To compute the individual beta sup-

pression and rebound average power, we used the frequency ranges

and time windows determined by visual inspection in Section 2.5. We

defined sensory attenuation as M100 amplitude relative changes in

the active condition with reference to the passive condition from the

extracted auditory voxels time series. To assess the correlation and

the effects of outliers on the correlation results, we computed skipped
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correlations using an open-source MATLAB toolbox (Pernet, Wilcox, &

Rousselet, 2012).

2.9 | Connectivity analysis

We performed connectivity analysis by using a nonparametric variant

of spectral Granger causality (Dhamala, Rangarajan, & Ding, 2008).

We computed bivariate granger causality to determine the directional-

ity of functional coupling between motor and auditory cortices in the

active condition. The computation was based on time series from

LAC, RAC, and LMC from −0.5 to 1.5 s relative to stimulus onset.

Connectivity measures were computed based on multitaper spectral

analysis with a smoothing of 3 Hz on 600 ms long sliding window with

10 ms time resolution. Granger causality is sensitive to power differ-

ences between both time series which can lead to spurious connectiv-

ity that is not due to genuine time lagged interaction. To detect only

genuine interactions, we controlled for this effect by computing time-

reversed Granger causality as suggested by Haufe, Nikulin, Müller,

and Nolte (2013). We compared the original Granger causality with

the time-reversed Granger causality using the cluster analysis by

Maris and Oostenveld (2007) based on a paired t test and 2,000

permutations to determine the significant directionality between time

series from the motor and auditory voxels. In Section 3, only signifi-

cant results are presented (p < .05).

3 | RESULTS

3.1 | Sensory attenuation in auditory cortices

The first set of analyses examined the sensory attenuation in the audi-

tory cortex. Our results demonstrate significant M100 attenuation for

self-generated tones (active) as compared to externally generated tones

(passive). Source localization of the M100 component for both active

and passive conditions showed the strongest M100 attenuation in bilat-

eral temporal auditory areas (Figure 1a). Voxels with the strongest

evoked responses in passive conditions were selected as the represen-

tative voxels from the right and left auditory cortices (RAC and LAC).

RAC and LAC voxels time series were extracted for further analysis.

Significant M100 attenuation was observed on the RAC and LAC time

series (Figure 1b; RAC: t(17) = 10.64, p < .001; LAC: t(17) = 10.48,

p < .001). We also compared M100 amplitude and attenuation between

hemispheres. However, no significant difference was observed between

the left and right hemisphere.

F IGURE 1 Sensory attenuation in the auditory cortex (top grey panel) and beta-band modulation in the motor cortex (bottom grey panel).
(a) Localization of group average M100 attenuation demonstrates the strongest M100 attenuation in bilateral auditory areas (sensory attenuation
value: [active–passive]/passive). (b) Grand averaged of the extracted time series from left auditory cortex (LAC) voxel shows stronger auditory
evoked field (M100 component) in passive condition as compared to active condition. (c) Group average beta modulation was localised over the
left motor cortex. Colour codes beta power changes relative to beta rebound induced by the right index finger button press. (d) Grand averaged
time–frequency spectrogram for left motor cortex (LMC) voxel in passive (left panel) and active (right panel) conditions. The low-frequency power
increase around 0 ms is caused by motor evoked components. Significant differences are designated by contour lines on the active map. The
statistical test revealed significant changes in beta-band power in LMC voxel in the active condition as compared to LMC voxel in the passive
condition. Colour codes relative changes. Time point 0 s marks tone presentation onset
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3.2 | Cortical beta-band modulation during sensory
attenuation

Time–frequency analysis of the acquired MEG data for the active

condition revealed strong beta-band modulation in the LMC—

contralateral to the button press side. The beta-band modulation is

characterised by a beta suppression before and during button press

followed by a transient increase (rebound). Figure 1c illustrates the

source reconstruction results indicating that the beta modulation was

most prominent in the LMC.

To examine the differences between modulated oscillatory neural

activity in motor and auditory areas, we focus next on the compari-

sons of the calculated time–frequency maps for LAC, RAC, and LMC.

The statistical test revealed significant changes in beta-band power in

the LMC voxel in the active condition as compared to LMC voxel in

the passive condition (Figure 1d) as well as compared to LAC and RAC

voxels (Figure 2, first and second rows) in the active condition. Our

statistical analysis also revealed a significant beta suppression in LAC

and RAC for the active condition as compared to passive condition

(Figure 2, third and fourth rows).

3.3 | Interaction between motor cortex and auditory
cortex

Correlation analysis examined whether there was a significant rela-

tionship between the modulated beta-band power in the motor area

and the magnitude of the attenuation in auditory evoked responses

across participants. We determined for each participant the individual

frequency range and time periods for beta suppression and rebound in

the motor cortex and calculated the mean beta power changes.

Because no significant difference was observed between left and right

sensory attenuations values, we combine data from both hemispheres.

F IGURE 2 Grand averaged time–frequency spectrogram and statistical comparisons of oscillatory power in the motor cortex and auditory
cortices. Rows 1 and 2: Time–frequency spectrograms show beta modulation in LMC, LAC, and RAC voxels in the active condition. The statistical
test revealed significant changes in beta-band power in LMC voxel in the active condition as compared to LAC and RAC voxels in the active
condition (a and b, right panels). The resulting time–frequency clusters with cluster-level p-values below an alpha level of .05 (obtained from the
statistical analysis) are considered significant and designated by black contour on the right spectrograms. Rows 3 and 4: Only left and right
time–frequency maps of auditory cortices in the active conditions show beta modulations. Significant changes (p < .05) were found in beta-band
activity in LAC and RAC voxels (c and d, right panel) for the active condition as compared to passive condition. Colour codes the normalised
power by computing relative changes with reference to the mean power from −2 to 2 s. Time point 0 s marks tone presentation onset. LAC and
RAC, left auditory cortex, LMC, left motor cortex; RAC, right auditory cortex
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Robust skipped-correlation tests demonstrated that the increase of

beta rebound in the LMC was significantly negatively correlated with

increased sensory attenuation in both auditory cortices (r = −.44

CI = [−0.68–0.14]). This negative correlation means that the increase

of the beta rebound (induced by the self-generated movements in the

motor area) is significantly related to the attenuation of the M100

amplitude in the active condition. Figure 3 illustrates the results of the

correlation analysis.

3.4 | The directionality of motor–auditory cortices
interaction

The correlation indicates a significant interaction between motor cor-

tex and auditory cortices during sensory attenuation. However, it is

based on intersubject correlations of local effects in the motor and

auditory cortex. To assess directly motor–auditory interactions in

each participant we computed Granger causality. Figure 4 displays the

Granger causality differences between the original and time-reversed

data in LAC, RAC, and LMC for the active condition. We find signifi-

cant Granger causality in the alpha/beta range from the left motor

area to both left and right auditory areas. No meaningful Granger cau-

sality was observed from the right motor cortices to LAC and RAC

voxels (see Figure S2 in the Supplementary section).

4 | DISCUSSION

This study set out with the aim of assessing the interactions between

motor and auditory areas during sensory attenuation based on the

hypothesis that this interaction plays a major role in attenuating

responses to self-generated sensory input (Keller & Mrsic-Flogel,

F IGURE 3 Scatterplot of the LMC beta rebound (x-axis) and the
LAC and RAC sensory attenuation (y-axis). The blue line indicates the
fitted linear regression. The increase of beta rebound in the left motor
cortex leads to stronger sensory attenuation in the auditory cortices.

LAC and RAC, left auditory cortex, LMC, left motor cortex; RAC, right
auditory cortex

F IGURE 4 Results of Granger causality analysis. Granger causality differences between the original and time-reversed data in motor and
auditory areas for the active condition. There is significant Granger causality in the alpha/beta range from the motor area to both left and right
auditory areas. Colour codes t values. Time point 0 s marks tone presentation onset
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2018). Specifically, we tested whether the neuronal responses in the

auditory area are modulated by beta-band oscillations in the motor

cortex during the processing of self-generated stimuli. The results of

this study support our hypothesis. Typical sensory attenuation was

observed in the auditory evoked responses to self-generated sounds

as compared to sounds generated externally. This result is consistent

with previous studies and demonstrates how actions can modulate

auditory processing (Cao, Thut, & Gross, 2017; Cao, Veniero, et al.,

2017; Hughes, Desantis, & Waszak, 2013; Martikainen et al., 2005;

Schneider & Mooney, 2018). The term sensory attenuation has been

used for the M100 amplitude suppression for a long time (Cao, Thut, &

Gross, 2017; Cao, Veniero, et al., 2017; Hughes et al., 2013; Wolpe

et al., 2018). One possible function of neurons generating M100 is to

call attention to the availability of stimulus information (Näätänen &

Picton, 1987). Therefore, the M100 might represent the initial readout

of information from the sensory analysis. Alternatively, as previous

studies suggested, neurons in the secondary motor area (M2) that

project directly to the auditory areas can exert suppressive effects

(Nelson et al., 2013; Schneider et al., 2018). These neurons convey

motor-related information during self-generated movements. This

could support M100 amplitude changes between self-generated and

externally generated sounds. However, further investigations are

needed to clarify its detailed mechanism.

Moreover, our results also reveal a significant correlation between

beta power changes in the motor cortex and the magnitude of sen-

sory attenuation in auditory cortices. Finally, we report that the motor

cortex is functionally connected to bilateral auditory cortices in beta-

band with direction from motor to auditory cortices in the active con-

dition. Taken together, these findings strongly corroborate the essen-

tial role of motor oscillations in predicting the sensory consequences

of self-generated auditory stimuli.

In the following, we discuss the main results in more detail. We

tested the hypothesis that motor oscillations are involved in sensory

attenuation. Our results showed modulation of beta oscillations in the

primary motor cortex due to the button press for the active condition in

comparison to the passive condition. This is a well-known and often

reported finding. The amplitude of beta oscillations in sensorimotor

areas is suppressed before and shortly after movements and is then

followed by a transient increase (rebound) (Jenkinson & Brown, 2011;

Kilavik, Zaepffel, Brovelli, MacKay, & Riehle, 2013). While the exact

functional role of the premovement suppression is unknown, it likely

reflects the preparation of the motor system for action. Tan et al.

analysed the lateralisation of beta oscillations in the sensorimotor cor-

tex while participants observed pointing movements made by an actor

(Tan, Leuthold, & Gross, 2013). Interestingly, this beta lateralisation

dynamically tracked the actor's movement within and across visual

hemifields. Specifically, while the actor's finger was in the observers' left

hemifield, beta lateralisation indicated a bias of observers to perform a

left motor response. Once the actor's finger crossed the midline into

the other hemifield, the observer's beta lateralisation changed to reflect

a bias for responding with the other hand. The amount of beta

lateralisation before response correlated with subsequent reaction time.

This indicates that beta amplitude in sensorimotor cortex reflects

ongoing predictions about upcoming movements in a way that shapes

the execution of this movement. Overall, this is consistent with previ-

ous reports showing that high levels of beta-band power inhibit move-

ment (Jenkinson & Brown, 2011) and preserve the status-quo (Engel &

Fries, 2010). Beta suppression and rebound instead seem to reflect

dynamically changing predictions related to upcoming movements.

Some studies indicate potentially different roles for suppression and

rebound. Beta suppression might be more related to efferent motor

control while the postmovement beta rebound might indicate rec-

alibration of the motor system possibly associated with an updating of

the internal forward model (Kilavik et al., 2013; Kühn et al., 2006).

However, beta modulation is not restricted to the motor cortex.

We report significant beta power decrease in left and right auditory

cortex following stimulus onset in the active condition compared to

the passive condition. This replicates a similar finding in right auditory

cortex in a similar task (Cao, Thut, & Gross, 2017; Cao, Veniero, et al.,

2017) and suggests an interaction between motor and auditory cortex

in this frequency band. Indeed, we observed two interactions. First,

the power change in beta-band in motor cortex was correlated with

the suppression of stimulus-evoked activity in left and right auditory

cortex when the stimulus was self-generated compared to when it

was passively presented. Second, our results also revealed a signifi-

cant connectivity in the beta-band originating from motor cortex

toward auditory cortices lasting for around 250 ms after the stimulus

onset. Our results add to the growing literature that postulates a role

of beta oscillations in reflecting top–down processes in auditory and

motor–auditory processing. Sedley et al. analysed invasively recorded

data from human auditory cortex and found that beta oscillations

reflect the process of updating sensory predictions (Sedley et al.,

2016). Similarly, an MEG study demonstrated that the modulation of

beta oscillations in auditory cortex reflects temporal predictions about

upcoming sensory stimuli that likely originate from motor–auditory

interactions (Fujioka, Trainor, Large, & Ross, 2012). Morillon et al.

reported that temporal predictions are encoded in beta oscillations

that originated from sensorimotor cortex toward auditory regions

(Morillon & Baillet, 2017). Another study demonstrated increased beta

connectivity between motor cortex and inferior parietal lobe and mid-

dle temporal gyrus in a visuomotor tapping task and suggested that

this is related to the belief of agency (Buchholz et al., 2019). This is

relevant in the context of our study because the absence of sensory

attenuation in schizophrenia is thought to reflect the reduced sense

of agency (Roach et al., 2019). These reports together with our results

are in line with previous studies indicating the role of beta oscillations

in facilitating long-range interactions on cortical networks and distant

communication in the brain (Buchholz et al., 2019; Kilavik et al., 2013;

Spitzer & Haegens, 2017).

Further evidence for the role of beta oscillations in top–down

processing comes from invasive and non-invasive studies that quan-

tify directed connectivity (often through the use of Granger causality

as in our study) in cortical hierarchies. The typical finding in these

studies is that higher order areas show stronger directed connectivity

in the alpha/beta-band to lower order areas (top–down) as compared
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to the opposite (bottom-up) direction (Bastos et al., 2015; Chao et al.,

2018; Fontolan et al., 2014; Michalareas et al., 2016). Motor cortex is

an important node in the auditory dorsal stream that has been exten-

sively studied in speech perception and production (Hickok, 2012;

Hickok & Poeppel, 2015). Indeed, in speech perception, motor areas

have been shown to functionally interact with auditory cortex in a

way that is behaviourally relevant (Keitel, Gross, & Kayser, 2018; Park,

Ince, Schyns, Thut, & Gross, 2015). Overall, a number of recent stud-

ies converge on the notion that beta oscillations play an important

role in predictive top–down processing along the auditory–motor axis

(Spitzer & Haegens, 2017). Here, beta oscillations may carry informa-

tion that goes beyond a simple preparation signal. Recently, it has

been reported that movement and force are encoded in beta oscilla-

tions (Tan et al., 2016). In fact, previous studies suggested that beta

oscillations can be content specific, enabling them to carry informa-

tion about currently processed tasks. Beta rhythm can reflect

scalar magnitudes (Spitzer & Haegens, 2017; Spitzer, Wacker, &

Blankenburg, 2010), the speed of movement (Parkes, Bastiaansen, &

Norris, 2006), and also be correlated with electromyogram activity

during movement (Demandt et al., 2012; Kilavik et al., 2013; Parkes

et al., 2006). Interestingly, content-specific synchronisation in beta-

band has been observed not only within but also across the brain

areas (Spitzer & Haegens, 2017). Our results show that while beta

power changes are correlated with the magnitude of sensory attenua-

tion, beta connectivity originating from motor area might indicate the

transfer of movement-related information. However, this needs to be

tested in further studies. Movement-specific information, however, is

needed to accurately predict sensory consequences of any movement

and reduce the prediction error. This also accords with previous

observations which showed that the efference copy (motor command

copy) conveys the details of auditory properties in inner speech sce-

nario (Whitford et al., 2017). Similarly, it has been shown that beta

oscillations before a movement contain information about future

movement (Pape & Siegel, 2016; Tan et al., 2013). For instance, Pape

and Siegel reported that beta modulation can predict the sensorimo-

tor decision of the next movement (Pape & Siegel, 2016).

Further supporting evidence regarding the functional role of beta

oscillations in the context of motor-sensory interactions comes from

computational models. Dynamic causal modelling of simulations

(Brown, Adams, Parees, Edwards, & Friston, 2013) and MEG data

(Bhatt et al., 2016) employ predictive coding theory to suggest that

the suppression of beta oscillations is an index of reduced precision of

sensory evidence associated with a movement.

Finally, investigations on the neurological disorders associated

with the abnormal beta activity in cortico-basal ganglia loop such as

Parkinson's disease indicated the absence of sensory attenuation

(Oswal, Brown, & Litvak, 2013; Wolpe et al., 2018). Our findings

together with the previous studies support the major role of beta

oscillation in transferring movement information from the motor cor-

tex to the auditory areas in order to cancel the sensory consequences

of a self-generated movement.

Interestingly, animal studies report that these motor-sensory

interactions can indeed cause the type of sensory attenuation

observed in our studies (Schneider & Mooney, 2018). Movement-

related neuronal activity in motor cortex was found to lead to a sup-

pression of neuronal activity in auditory cortex (Nelson et al., 2013;

Schneider, Nelson, & Mooney, 2014). Moreover, Schneider et al. also

suggested that auditory interneurons are capable of integrating audi-

tory inputs and motor signals and form a dynamic sensory filter that

can suppress brain responses to the predictable auditory inputs

(Schneider et al., 2018). This finding together with our correlation and

connectivity results can support the hypothesis that motor cortex

interacts with auditory areas during sensory attenuation.

Our results also demonstrate functional connectivity from motor to

auditory cortex in alpha range before the stimulus onset for active con-

dition. This result extends previous observations that prestimulus

changes in alpha oscillations in auditory cortex during movement prepa-

ration (Cao, Thut, & Gross, 2017; Cao, Veniero, et al., 2017; Müller,

Leske, Hartmann, Szebényi, & Weisz, 2015; Stenner, Bauer, Haggard,

Heinze, & Dolan, 2014) shape the processing of incoming sensory

stimuli. In fact, Granger causality from motor to LAC (Figure 4) suggests

a spectral connectivity pattern that shifts from alpha frequencies before

tone onset to beta frequencies just after tone onset. While further work

is needed to corroborate this finding, it might indicate different stages

of motor–auditory interactions. Prestimulus motor–auditory alpha con-

nectivity could represent an unspecific downregulations of auditory

excitability (consistent with the prestimulus alpha increase observed in

Cao, Thut, and Gross (2017) and Cao, Veniero, et al. (2017)) followed

by motor–auditory beta connectivity that could represent more specific

information based on the motor efference copy.

5 | CONCLUSION

Our finding of functional connectivity between motor and auditory

areas shows the important role of motor commands in sensory atten-

uation. We hypothesise that the neural interactions between these

two areas reflect the working of the internal forward model related to

the prediction of the sensory consequences of one's own action. Our

findings support the hypothesis that temporally coupled movement

and auditory inputs form a sensory filter that involves movement

information via motor cortical inputs to the auditory cortices that

suppress auditory cortical responses to self-generated sounds.
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