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Abstract

The incidence of hepatocellular carcinoma (HCC), the most common primary liver cancer, is

increasing in the US and tripled during the past two decades. The reasons for such phenom-

enon remain poorly understood. Texas is among continental states with the highest inci-

dence of liver cancer with an annual increment of 5.7%. Established risk factors for HCC

include Hepatitis B and C (HBV, HCV) viral infection, alcohol, tobacco and suspected risk

factors include obesity and diabetes. While distribution of these risk factors in the state of

Texas is similar to the national data and homogeneous, the incidence of HCC in this state is

exceptionally higher than the national average and appears to be dishomogeneous in vari-

ous areas of the state suggesting that other non-recognized risk factors might play a role.

No population-based studies are currently available investigating the effect of exposure to

Hazardous Air Pollutants (HAPs) as a contributing risk factor for liver cancer. Incidence rate

of liver cancer in Texas by counties for the time period between 2002 and 2012 was

obtained from the Texas Cancer Registry (TCR). Through Principal Component Analysis

(PCA) a subgroup of pollutants, explaining almost all the dataset variability, were identified

and used to cluster Texas counties. The analysis generated 4 clusters showing liver cancer

rate either higher or lower than national average in association with either high or low levels

of HAPs emission in the environment. The study shows that the selected relevant HAPs, 10

among 253 analyzed, produce a significant correlation (P = 0.01–0.05) and some of these

have been previously identified as carcinogens. An association between the increased pro-

duction and consequent exposure to these HAPs and a higher presence of liver cancer in

certain counties is suggested. This study provides a new insight on this complex multifacto-

rial disease suggesting that environmental substances might play a role in the etiology of

this cancer.
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Introduction

Primary liver cancer is the third cause of cancer death in the world and the seventh in the

United States [1]. Approximately 90% of the primary liver cancers in the United States are

hepatocellular carcinoma (HCC) while the remaining 10% are intrahepatic cholangiocarci-

noma [2].

The known etiologic risk factors for HCC are comprised of non-specific cirrhosis (21%),

alcohol induced liver disease (16%), HCV infection (10%) and HBV infection (5%). In addi-

tion, obesity and diabetes mellitus type two are being suspected to increase the risk [3].

Geographically, incidence and mortality rates for HCC are not equally distributed in the

US. In a recent study Altekruse S.F. et al. reported an incidence rate of 5.9 (95% CI; 5.8–5.9)

and mortality rate of 4.3 (95% CI; 4.3–4.3) per 100,000 persons in the US [4]. Texas ranks first

in the US with an incidence rate of 11.7 (almost double the national rate 95% CI) and fifth

with a mortality rate of 8.3 (95% CI) [5]. (Rates are per 100,000 persons and are age-adjusted

to the 2000 U.S. population). Despite HCV is considered one of the major etiologic factors for

HCC in the US, previous studies have shown that the prevalence of HCV in Texas and nation-

ally are similar (1.79% vs. 1.8%) [6]

According to the latest statistics of alcohol consumption per capita in the U.S from the

National Institute on Alcohol Abuse and Alcoholism (NIAAA), the total national amount of

alcohol consumption was 2.26 gallons per capita, while in Texas consumption was reported to

be lower, 2.00–2.24 gallons per capita [7, 8]. Likewise, prevalence of adults smoking cigarettes

in Texas in 2011 was 19.2%, the 14th highest in the nation, with this rate ranging from 11.8 to

29.0% across all states [9–11]. Moreover, Texas is on the 16th place nationwide in terms of obe-

sity with a prevalence of 30.9%, (95% CI; 29.5–32.3) while the national prevalence is 34.9% [12,

13]. Consequently, the distribution and prevalence of these risk factors does not seem to

explain the high incidence of HCC observed in Texas, suggesting the existence of other factors

that might increase the risk of developing this tumor.

However, Texas is home to the American petroleum industry. Subsequently the population

of this state is exposed to the hazardous products related to these industries such as petrochem-

ical derivatives and other environmental pollutants.

The purpose of this study was to analyze the distribution of the HAPs in the attempt to

identify possible clusters of Texan counties that show a similarity in exposure to individual

pollutants. Secondly, to study the distribution of the liver cancer in such clusters of counties to

identify possible correlation between the production, hence exposure to individual HAPs and

the incidence of liver cancer.

Methods

Data source and variables

The variables used in this study were the age-adjusted incidence rate of primary liver cancer

and the levels of emission of HAPs for each county of the state of Texas. Liver cancer incidence

rates per counties were provided by the Texas Cancer Registry (TCR) Cancer Epidemiology

and Surveillance Branch, Texas Department of State Health Services for 2002–2012, which is

the most recent available data to date. The TCR is the 4th largest cancer registry in the United

States. Approximately 240,000 reports of cancer are being sent annually from over 500 hospi-

tals, cancer treatment centers, ambulatory surgery centers, and pathology laboratories located

throughout the state. All rates are described per 100,000. Rates are age-adjusted to the 2000 U.

S. Standard Population. When the number of cases is 0, a value of 0.0 for the rate is reported

while rates per counties are suppressed in the TCR if more than zero but less than 16 cases due
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to the risk of loss of confidentiality (in counties with low population and few cases patients can

be identified).

Air pollutant concentrations for every Texas County were obtained from the 2002 National

Scale Air toxic Assessment (NATA) of U.S. Environmental Protection Agency’s (EPA) in tons

per year (tpy). NATA is EPA’s ongoing comprehensive evaluation of air toxics in the U.S.

NATA assessments generally include a four step process including: Compile a national emis-

sions inventory from outdoor sources, Estimate ambient concentrations of air toxics across

the United States, Estimate population exposures across the United States and Characterize

potential public health risks due to inhalation of air toxics.

Statistical analysis

Pollutants dataset contains 253 pollutants which concentrations are measured. Several HAPs

are emitted only in a few Texan counties while others are emitted in a more ubiquitous distri-

bution but with different concentrations in each county. In order to interpret the variability

structure of this dataset, Principal Component Analysis (PCA) was performed. Through this

multivariate technique it was possible to select a subgroup of pollutants to explain almost all

the dataset variability. Data for primary liver cancer are available for 139 counties. For the

remaining counties data are suppressed because the number of cases was less than 16. Despite

these counties were excluded from the analysis presented herein, these were also analyzed sep-

arately with the assumption than <16 per county (extremely low number of cases) was equiva-

lent to zero. From a methodological point of view, two steps were performed. In the first step,

the pollutants dataset variability was studied to select those with greatest contribution to the

dataset variability. The second step was clustering counties according to the pollutants concen-

tration. To this purpose a Cluster Analysis (CA) was performed. PCA [14] is an unsupervised

method that through the analysis of the correlation structure of a set of original variables (air

pollutants) finds hypothetical new variables—defined principal components (PCs)—account-

ing for the greatest possible variance in a multidimensional data set. PCA finds the most infor-

mative or explanatory features hidden in the data without needing a-priori knowledge. It

accomplishes this purpose by computing a new smaller set of uncorrelated variables (PCs) that

represent the original dataset. The first Principal Component (PC1) is a linear combination of

the original variables that accounts for the maximum amount of variability in a single direc-

tion. The second component (PC2), orthogonal to the first one, accounts for the maximum of

the remaining variance and so on. From a more technical point of view, PCA is based on

Eigen analysis of the covariance or correlation matrix. In the PCA model, each original vari-

able (pollutant) has a loading. The greater the loading the greater contribution of the variable

to a meaningful variation in the data. In the same time, each sample (county) is associated to a

score along each component which reflects the location of the sample in the model. When two

components are enough to represent the great part of data variability, the location of each sam-

ple along the two directions can be shown in a plane PC2-PC1.

Cluster Analysis is a method for identifying homogenous groups of objects called clusters.

At the beginning of the clustering process, variables (air pollutants) are selected for the cluster-

ing process to start. In this study, a hierarchical technique was employed. Clusters are then

consecutively formed from objects starting with each object representing an individual cluster.

According to some similarity measures, these clusters are then merged. There are various mea-

sures to express (dis)similarity between pairs of objects. Here the Euclidian distance was used

considering the distance (between each pairs of objects) and the shortest, the more similar the

objects. The proposed algorithm to combine the most similar objects is the Ward’s method.
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This approach does not combine the two most similar objects successively but those objects

whose merger increases the overall within-cluster variance to the smallest possible degree.

Since hierarchical methods provide only very limited guidance for choosing the number of

clusters, the Elbow method has been used. By plotting the within-cluster sum of squares (a mea-

sure of the compactness of the cluster) by varying the number of clusters according to the

number of clusters, a distinctive break (elbow) can be employed to select the number of clus-

ters [15].

After clustering the Texan counties into homogeneous groups, a Discriminant Analysis

(DA) was also performed. DA [16, 17] among groups aims at predicting which group a new

case belongs to. In most common applications of discriminant analysis, many variables or pre-

dictors are considered in order to determine the ones with a high discrimination power with a

step-by-step procedure. In this study, all the selected variables (pollutants) are used for dis-

crimination purposes. Considering that the same data set was used both for estimating the DA

model and the classification, an over estimation of the Hit Ratio was expected. To avoid this,

the leave one-out cross-validation method was employed. This technique works by omitting

each observation one at a time, recalculating the classification function using the remaining

data, and then classifying the omitted observation.

Results

Two principal components were retained in the PCA for the analysis of pollutants in the

Texan counties. The two components account for the 94.9% of the variation (Fig 1A) in the

original 253 variables.

Almost all the loadings of the original 253 variables were closed to 0. As shown in Fig 1B,

with most pollutants clustered around 0 in the PC2-PC1 plane. However, only 2,2,4-Tri-

methylpentane, Benzene, Ethyl Benzene, Formaldehyde, Hexane, Hydrochloric Acid, Metha-

nol, Methyl Tert-Butyl Ether, Toluene, Xylenes exhibited distinct loadings. HAPs in PCA

analysis have been standardized.

Based on these loadings, the previous group of original variables was selected for further

analyses. The 10 selected pollutants contribute mostly to the scores of the PCA model, while for

Fig 1. (A) Number of principal components and corresponding eigenvalue (%). (B) Loading plot for

pollutants- PC2 vs PC1.

https://doi.org/10.1371/journal.pone.0185610.g001
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those pollutants with loadings closed to 0 the contribution is statistically irrelevant. As shown

in Table 1, the first PC was heavily loaded on 2,2,4-Trimethylpentane, Benzene, Ethyl Benzene,

Formaldehyde, Methanol, Toluene, Xylenes, while the second PC was heavily loaded on Hex-

ane, Hydrochloric Acid, Methyl Tert-Butyl Ether.

The selected pollutants were then employed for the cluster analysis. Counties were grouped

accordingly to their similarity in the content of pollutants (Table 2). To this purpose, as men-

tioned in the methods section, a Euclidean distance as similarity measure and Ward’s method

of linkage were adopted. The Elbow Method was used to determine the number of clusters to

be considered. Four clusters were identified. In particular, 100 counties belong to cluster 1, 13

to cluster 2, 129 to cluster 3 and 4 to cluster 4.

Stability of the results was assessed by changing the order in the dataset and by re-running

the analysis. Results did not change over dataset permutations. Clusters exhibit a high degree

of within-segment homogeneity and between-segment heterogeneity. Cluster 1 and 3 exhibit

the lowest variance, while cluster 4 the highest one. The latter is constituted by counties report-

ing the greatest content of pollutants. In order to understand if the four identified segments

are distinguishable, clustering variables’ average values of all counties (Table 3) belonging to

each cluster were computed and ANOVA was performed. Homoscedasticity and normal dis-

tribution for residuals were verified for each variable (pollutant).

Table 1. PC1 and PC2 loadings for the selected pollutants.

Pollutants PC1 PC2

2,2,4-Trimethylpentane 0,240 0,088

Benzene 0,314 -0,064

Ethyl Benzene 0,114 0,038

Formaldehyde 0,114 -0,084

Hexane 0,247 -0,378

Hydrochloric Acid 0,101 -0,720

Methanol 0,119 -0,051

Methyl Tert-Butyl Ether 0,154 -0,426

Toluene 0,684 0,236

Xylenes 0,464 0,176

https://doi.org/10.1371/journal.pone.0185610.t001

Table 2. Pollutant production (tpy) in each cluster.

MEAN POLLUTANT (tpy) PRODUCTION/CLUSTERS

Pollutants CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4

2.2.4-Trimethylpentane 62.15 253.27 13.98 1150.02

Benzene 89.98 338.88 23.77 1357.42

Ethyl Benzene 33.14 130.23 7.95 568.6

Formaldehyde 59.09 166.11 13.51 733.64

Hexane 52.89 469.51 10.9 1055.55

Hydrochloric Acid 27.84 235.52 1.13 444.51

Methanol 60.06 323.29 10.93 954.83

Methyl Tert-Butyl Ether 21.14 205.64 2.46 2489.3

Toluene 202.63 811.27 47.6 3775.7

Xylenes 146.43 548.15 35.43 2463.04

https://doi.org/10.1371/journal.pone.0185610.t002
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Levene Test used for homoscedasticity was significant only for Hydrochloric Acid. Thus,

for this variable a Welch ANOVA was performed. Residuals were normalized for all the vari-

ables. For each variable differences among groups were significant with a common p-value less

than 0.0001. Post-hoc tests were also performed to know which groups differ. To this purpose

Games-Howell Simultaneous Tests were performed for Hydrochloric Acid and Tukey Simul-

taneous Tests for all the others, For 2.2.4-Trimethylpentane, Benzene, Ethyl Benzene, Toluene,

Xylenes and Methyl Tert-Butyl Ether differences of groups are all significant (p<0.0001). As

for Formaldehyde, Methanol, Hydrochloric Acid and Hexane results are shown in Table 4.

Differences between cluster 2 and 4 are not significant for the concentration of Hydrochlo-

ric Acid, Methanol and Hexane. Clusters are well distinguishable. Results of the discriminant

analysis show that on 246 counties, 220 are correctly classified (89.4%) without cross-valida-

tion while, with cross-validation, the correctly classified are 213 (86.6%).

In Fig 2, the counties score plot (plane PC2-PC1) is shown together with the identified clus-

ters. We observed that the first component score is generally greater than the second.

Table 3. Levene test results for homoscedasticity with four clusters. ANOVA for differences among the four groups.

Pollutants Levene test (p-value) ANOVA (p-value)

2.2.4-Trimethylpentane 0.541 <0.0001

Benzene 0.523 <0.0001

Ethyl Benzene 0.704 <0.0001

Formaldehyde 0.108 <0.0001

Hexane 0.126 <0.0001

Hydrochloric Acid 0.000 <0.0001

Methanol 0.082 <0.0001

Methyl Tert-Butyl Ether 0.468 <0.0001

Toluene 0.615 <0.0001

Xylenes 0.580 <0.0001

https://doi.org/10.1371/journal.pone.0185610.t003

Table 4. Example of post-hoc test for four pollutants in order to show differences for their concentration among clusters.

Formaldeyde Hexane

Difference of Levels P-value Difference of Levels P-value

CL2-CL1 <0.0001 CL2-CL1 <0.0001

CL3-CL1 <0.0001 CL3-CL1 <0.0001

CL4-CL1 <0.0001 CL4-CL1 <0.0001

CL3-CL2 <0.0001 CL3-CL2 <0.0001

CL4-CL2 0.002 CL4-CL2 0.092

CL4-CL3 <0.0001 CL4-CL3 <0.0001

Hydrochloric Acid Methanol

Difference of Levels P-value Difference of Levels P-value

CL2-CL1 <0.0001 CL2-CL1 <0.0001

CL3-CL1 <0.0001 CL3-CL1 <0.0001

CL4-CL1 0.024 CL4-CL1 <0.0001

CL3-CL2 <0.0001 CL3-CL2 <0.0001

CL4-CL2 0.580 CL4-CL2 0.654

CL4-CL3 0.006 CL4-CL3 <0.0001

https://doi.org/10.1371/journal.pone.0185610.t004
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Counties are greater loaded on the PC1 segment of the PCA model where the contribution

of 2.2.4-Trimethylpentane, Benzene, Ethyl Benzene, Formaldehyde, Methanol, Toluene and

Xylenes is prevalent. In particular, all the counties belonging to Cluster 1 have a PC1 score

greater than PC2 (taken in absolute value). The same considerations hold for counties belong-

ing to Cluster 3 and 4. For counties belonging to cluster 2, Grimes County is the only exception

to this general behavior. Actually, for the latter PC2 score is greater than the PC1 one. This

suggests that generally the first component is the direction where more changes can be

observed. To evaluate the prevalence of PC1 scores on PC2 scores, the ratio R between the

average PC1 scores and the average PC2 scores for each cluster were calculated. For cluster 1 R

is 3.9, for cluster 2 it is 3.8, for cluster 3 and cluster 4 it is 3.5 and 6.4, respectively.

Liver cancer incidence rates in the counties clusters

An overall increasing incidence of liver cancer was observed in the last ten years in Texas

(Texan Cancer Registry), as shown in Fig 3. Primary liver cancer rates by county were taken

into account with the aim of detecting a possible “accordance” between the distribution of the

environmental pollutants in the identified clusters and the mean incidences rates of cancer per

cluster.

As stated above, when the number of cases is less than 16, both crude and age-adjusted

rates, are not reported in the Texas cancer registry (suppressed data are indicated with the

symbol ~). Actually, rates are not calculated due to instability in calculations. In such a circum-

stance only the population belonging to a specific county is available, while the number of

cases has been censored if less than 6. This problem is particularly evident for counties belong-

ing to cluster 1 and cluster 3. Actually, in the first group, 18 of the 100 counties register a total

number of liver cancer cases, from 2002 to 2012, less than 16 while, for cluster 3, constituted

by 129 counties, the number of such counties rises up to 89. Cluster 2 and 4 do not show any

suppressed data. Even if the data was suppressed due to the low number of cases observed, it is

relevant that this phenomenon is observed only in the clusters of counties with lower emission

of pollutants (1 and 3). In Fig 4 is represented a map of current Texas counties with boundaries

Fig 2. Score plot PC2 vs PC1 with clustering results.

https://doi.org/10.1371/journal.pone.0185610.g002
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as of January 1, 1990 showing all 4 clusters: Cluster 1—blue; Cluster 2—green; Cluster 3—

orange; Cluster 4 –red.

A rigorous comparison among liver cancer rates per clusters cannot be performed for two

main reasons: 1) for cluster 1 and cluster 3 all data is not available (in particular, for cluster 3,

89 rates over 129 are suppressed); 2) population at risk in each cluster is different. The latter

Fig 4. Map of current Texas counties with boundaries as of January 1, 1990 showing all 4 clusters:

Cluster 1—blue; Cluster 2—green; Cluster 3—orange; Cluster 4 –red.

https://doi.org/10.1371/journal.pone.0185610.g004

Fig 3. Age-adjusted liver cancer incidence rate for Texas State over time.

https://doi.org/10.1371/journal.pone.0185610.g003
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could emphasize the rates where population at risk is not numerous, leading to erroneous con-

clusions. In particular, for each cluster liver cancer rate distributions are determined with the

non-parametric Kernel estimator and considerations supplied.

Cluster 1

In this cluster 18 counties out of 100 are suppressed. The mean population at risk in these

counties in 11 years was 331,509 people, while population at risk for the remaining 82 counties,

in the same period was 6,875,009 with a total number of cases of 5,551. Walker County (mean

population of 65,874) exhibits the highest rate (18.9). The cluster rate is 7.34 in 100,000 people

(Fig 5).

Cluster 2

Cluster 2 is constituted of 13 counties with a mean population of 5,470,124 people in the

period 2002–2012. The incidence rate in this cluster is 7.62 in 100,000 population (Fig 6).

Cluster 3

Cluster 3 is constituted of 129 counties with a mean population of 1,646,974 in the 11 years

period. Among these, 5 counties show a rate of 0.0 while in 89 counties with population at risk

of 678,694, data is suppressed. The total number of cases in the 11 years was 970 and the rate is

Fig 5. (A) Kernel estimator and (B) histogram for liver cancer rate in cluster 1.

https://doi.org/10.1371/journal.pone.0185610.g005

Fig 6. (A) Kernel estimator and (B) histogram for liver cancer rate in cluster 2.

https://doi.org/10.1371/journal.pone.0185610.g006
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9.1 per 100,000. Brooks and Maverick counties present with the highest rates: 19.7% in 7,417

and 18.3% in 51,843 population respectively.

Cluster 4

Cluster 4 is constituted by 4 counties with 9,502,282 population at risk. The total number of

cases in 11 years is 8,752. The rate in 100,000 population is 8.37.

The histogram and the kernel estimator for the cluster liver cancer rate (age-adjusted) dis-

tribution shows cluster 3 (the least populated cluster) with the lowest content of pollutants. On

the other hand, cluster 4 is more polluted and the most populated (Figs 7 and 8). Actually the

39.9% of the entire population of Texas lives in the four counties belonging to this last cluster.

Conclusions drawn on the basis of the observable data could lead to selection bias. In order

to evaluate the impact of missing data on study results, Inverse Probability Weighting (IPW)

Fig 7. (A) Kernel estimator and (B) histogram for liver cancer rate in cluster 3.

https://doi.org/10.1371/journal.pone.0185610.g007

Fig 8. Histogram for liver cancer rate in cluster 4.

https://doi.org/10.1371/journal.pone.0185610.g008
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was used. For cluster 1, the introduction of 18 missing values changes the cluster mean rate

(per 100,000) from 7.34 to 7.49. Actually, the population at risk in these counties in the exam-

ined time window was 331,509 with respect to the population at risk in the 82 counties that

was 6,875,009. For cluster 3, the mean cluster rate changes from 9.1 to 8.77. Actually the mean

population at risk in these 89 counties in the period 2002–2012 was 678, 694, while the total

mean population in the cluster was 1,646,974 as reported in Table 5.

In Table 6 counties with the highest age-adjusted rate belonging to the different clusters are

shown. In the last two columns the amplitude of the 95% CI on the mean age-adjusted rate

and the mean population are reported for 2002–2012.

Future developments

In this study, Texas counties were divided into four groups according to the selection, through

a Principal Component analysis model, of ten pollutants that account for the 94.9% of the vari-

ation in the original 253 pollutants dataset. Therefore, the subsequent discussion on the inci-

dence rate distributions of primary liver cancer over the identified clusters was exclusively

focused on the prioritized pollutants. This approach could hide a possible contribution of

chemicals having a low-moderate variability on HCC. To overcome this limitation, a first step/

result of a future research study is presented. Actually, through a stepwise Poisson regression

Table 5. Mean population for each cluster in the period 2002–2012.

Cluster Mean population per year

1 7,206,517

2 5,470,124

3 1,646,974

4 9,502,282

https://doi.org/10.1371/journal.pone.0185610.t005

Table 6. Counties with the highest rate belonging to the four different clusters.

COUNTY(Cluster) Rate age-adjusted Amplitude of 95% CI Mean Population

Brooks (3) 19.7 18.9 7417

Zavala (3) 15.4 15.2 11665

Jim Wells (3) 14.7 7.3 40599

Val Verde (1) 11.4 6.2 47610

Maverick (3) 18.3 8.2 51843

Starr (3) 12.5 6.3 59217

Walker (1) 18.9 6.6 65874

San Patricio (1) 12.6 5.4 66142

Webb (1) 13.5 3.6 234108

Jefferson (2) 9.7 2.3 249868

Galveston (2) 11.1 2.4 281674

Nueces (2) 11.9 2.3 331237

Cameron (2) 11.2 2.2 385833

El Paso (2) 10.8 1.5 759550

Bexar (4) 13 1.1 1612364

Dallas (4) 9.8 0.8 2314093

Harris (4) 9.4 0.7 3874433

STATE 8.5 0.3 23818182

https://doi.org/10.1371/journal.pone.0185610.t006
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model, other pollutants with a low variability have been identified. Results shows that Benzo

[b]Fluoranthene, Benzo[b+k]Fluoranthene, 15-PAH, 2,4-Dichlorophenoxy Acetic Acid and

Bis(2-Ethylhexyl)Phthalate constitute a set of significant regressors (p-value<0,0000) in the

model with the ten prioritized ones. Table 7 shows the mean concentration of these pollutants

in the four clusters. Even if the latters were identified only on the basis of the first set of the ten

selected pollutants, it is interesting to show how their concentration is low (in tpy) with respect

to the first ones (see Table 2). In Discussion their cancerogenic nature and use is presented.

Discussion

In our study, only 2,2,4-Trimethylpentane, Benzene, Ethyl Benzene, Formaldehyde, Hexane,

Hydrochloric Acid, Methanol, Methyl Tert-Butyl Ether, Toluene, and Xylenes exhibited distinct

loadings among all air pollutants studied. They contribute mostly to the scores of the PCA

model, while for those pollutants with loadings close to 0 their contribution was statistically

irrelevant. As shown in Table 1, the first PC was heavily loaded on 2,2,4-Trimethylpentane, Ben-

zene, Ethyl Benzene, Formaldehyde, Methanol, Toluene, and Xylenes, while the second PC was

heavily loaded on Hexane, Hydrochloric Acid, and Methyl Tert-Butyl Ether. The purpose of this

study is to detect a possible “accordance” between the distribution of air environmental pollut-

ants in the identified clusters and the mean incidences rates of liver cancer per cluster. The anal-

ysis does not intend to identify a cause-effect relationship between environmental pollutants

and cancer rates. In fact liver cancer is a multifactorial disease and other possible causes were

not considered in this study, however, the goal of this study is to identify possible tuning between

the distribution of environmental pollutants in the 4 clusters and the cancer rates. Some of the

pollutants selected are known carcinogens and others are not, in particular 2,2,4-Trimethylpen-

tane is not recognized as liver carcinogenic compounds due to inadequate information even

though it was observed in animal models to affect the action in hepatocytes metabolism with

effect on liver weight [18] and mitogenic effects on hepatocytes [19–21]. Benzene and Ethyl Ben-

zene have carcinogenic effects in the liver as was observed in mice experiments [22–24]. Ethyl

benzene modulated enzymes and increased foci considered precursors of HCC neoplasia, [23,

25–28] but despite some evidence, it is not classified as a human carcinogen.

Formaldehyde (FA) is related with key events associated with tumorigenesis such as DNA

reactivity, gene mutation, chromosomal breakages, aneuploidy, epigenetic effects, glutathione

depletion, oxidative stress and cytotoxicity induced cellular proliferation [29, 30]. In a study

[31], inhaled FA was found to cause DNA single-strand breaks in the liver of male rats. Evi-

dence has shown that FA forms crosslinks in DNA and cellular proliferation increases consid-

erably at concentrations > 6 ppm and amplifies the genotoxic effects of FA [32]. DNA damage

was significantly induced in livers of rats by increasing FA concentration [31]. EPA considers

FA to be a probable human carcinogen (cancer-causing agent) and has ranked it in EPA’s

Group B1.

Table 7. Mean pollutant concentration with low variability.

MEAN POLLUTANT (tpy) PRODUCTION/CLUSTERS

Pollutants CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4

Benzo[b]Fluoranthene 0,011502 0,011645 0,011562 0,011715

Benzo[b+k]Fluoranthene 1,985E-06 2,155E-06 2,010E-06 2,138E-06

15-PAH 0,193089 0,189423 0,191636 0,195213

2,4-Dichlorophenoxy Acetic Acid 0,075084 0,075859 0,075091 0,076234

Bis(2-Ethylhexyl)Phthalate 0,071885 0,080124 0,037863 0,040240

https://doi.org/10.1371/journal.pone.0185610.t007
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No information is available on the carcinogenic effects of hexane in humans or animals and

the EPA has classified hexane as a group D which is not classifiable as to human carcinogenic-

ity, based on a lack of data concerning carcinogenicity in humans and animals [33, 34]. No rel-

evant information is available on the carcinogenic effects of methanol and hydrochloric acid

in humans or animals and the EPA has not classified methanol or hydrochloric acid with

respect to carcinogenicity [35–37]. Methyl Tert-Butyl Ether (MTBE) showed its carcinogenic

effects in mice liver but with conflicting results [38–40]. No recent information is available on

the carcinogenic effects of MTBE in humans. Prolonged exposure to Toluene compounds may

represent a risk factor for liver cancer [41]. The EPA states that workers exposed to toluene

have reported limited or no evidence of the carcinogenicity potential of toluene. A limited

amount of epidemiological studies have also failed to demonstrate increased risk of cancer

from the inhalation of toluene. Finally, chronic inhalation in rats did not produce an increased

incidence of treatment-related neoplastic lesions [42, 43].

Xylene is widely used in industry as a solvent and can be found in petroleum products. In a

2-year hospital-based case-control study conducted in northern Italy, it was found that xylene

and toluene could have played a role in the development of liver cancer [41]. Both the Interna-

tional Agency for Research on Cancer (IARC) and EPA have found that there is insufficient

information to determine whether or not xylene is carcinogenic and consider xylene not classi-

fiable as to its human carcinogenicity.

Polycyclic aromatic hydrocarbons as 15-PAH, Benzo[b]Fluoranthene and Benzo[b+k]

Fluoranthene are classified by the International Agency for Research on Cancer (IARC). In

particular Benzo[b]Fluoranthene, Benzo[b+k]Fluoranthene and 2,4-Dichlorophenoxy Ace-

tic Acid) and Bis(2-Ethylhexyl)Phthalate are in group 2B (possibly carcinogenic in human)

[44–45].

In conclusion, in our study, we showed that selected relevant air pollutants produce a signif-

icant clustering of the Texan counties with respect to their concentration and discussed about

the incidence rate distributions of liver cancer over the identified clusters.

A sort of association between the increased exposure to these pollutants and a higher pres-

ence of liver cancer in certain counties is suggested. However, considering the multifactorial

nature of liver cancer, this study provides a new insight on this complex disease suggesting

that environmental substances might play a role in the etiology of this cancer.
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