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Abstract: Treatment of produced water in oil fields has become a tough challenge for oil producers.
Nanofiltration, a promising method for water treatment, has been proposed as a solution. The
phase inversion technique was used for the synthesis of nanofiltration membranes of polyethersul-
fone embedded with graphene oxide nanoparticles and polyethersulfone embedded with titanium
nanoribbons. As a realistic situation, water samples taken from the oil field were filtered using
synthetic membranes at an operating pressure of 0.3 MPa. Physiochemical properties such as water
flux, membrane morphology, flux recovery ratio, pore size and hydrophilicity were investigated.
Additionally, filtration efficiency for removal of constituent ions, oil traces in water removal, and
fouling tendency were evaluated. The constituent ions of produced water act as the scaling agent
which threatens the blocking of the reservoir bores of the disposal wells. Adding graphene oxide
(GO) and titanium nanoribbons (TNR) to polyethersulfone (PES) enhanced filtration efficiency, water
flux, and anti-fouling properties while also boosting hydrophilicity and porosity. The PES-0.7GO
membrane has the best filtering performance, followed by the PES-0.7TNR and pure-PES membranes,
with chloride salt rejection rates of 81%, 78%, and 35%; oil rejection rates of 88%, 85%, and 71%;
and water fluxes of 85, 82, and 42.5 kg/m2 h, respectively. Because of its higher hydrophilicity
and physicochemical qualities, the PES-0.7GO membrane outperformed the PES-0.7TNR membrane.
Nanofiltration membranes embedded with nanomaterial described in this work revealed encouraging
long-term performance for oil-in-water trace separation and scaling agent removal.

Keywords: GO/PES nanofiltration membrane; TNR/PES nanofiltration membrane; scale-forming
ions removal; oil traces removal

1. Introduction

Water scarcity and sustainable water use have long been a global problem, thus indus-
trial wastewater treatment has become a top priority. Produced water, which is a frequent
expression in the oil and gas industry for wastewater generated as a byproduct in the oil
and gas industry, has been a challenge for many years because there is a legal obligation to
dispose of it without harming the environment. The problem is posed by a large amount
of produced water, as American oil fields typically produce ten barrels of water for every
barrel of oil produced, although the global ratio is more commonly 3:1 [1]. Oil fields can
dispose of produced water in a variety of ways, including discharging it in the sea in
the case of offshore sites after treatment to comply with environmental regulations that
are tightening up, while traditional techniques are insufficient to treat produced water to
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comply with the new regulations. As a result of new laws, oil in water must be less than
25 ppm to meet European standards [2]. Re-injecting it into specified water disposal wells
is another option. In this case, treatment of produced wastewater is also an important first
step in reducing scaling agents like calcium, magnesium, strontium, and barium, which are
present in the form of CaSO4 (anhydrite, gypsum), BaSO4 (barite), SrSO4 (celestite), and
CaCO3 (calcium carbonate), to minimize the tendency of scale formation. Scale formation
causes damage to the well’s reservoir by decreasing permeability [3]. When produced
water with varying chemical concentrations of sulfates, calcium, magnesium, strontium,
and barium ions are mixed, or when temperature and pH are altered, scale development
can occur [4], resulting in a decrease in reservoir permeability, which implies the well
can no longer receive more water. Another issue is oil traces that remain suspended in
produced water after the majority of the oil has been separated from the water-oil (w/o)
emulsion in the oil field using methods such as heating, adding chemicals (demulsifier),
and increasing settling time in tanks, but these methods are ineffective in removing oil
traces with droplet sizes smaller than 10 µm [5]. Oil droplets might clump together with
scale and sand in the reservoir’s pores, reducing permeability. Scale development and
greasy water both raise the expense of wells intervention, such as increasing permeability
or drilling a nearby water disposal well. This problem can be solved by using nanofiltra-
tion(NF)to reduce scaling ion concentrations to acceptable levels and remove oil droplets.
Using filtration membranes in produced water treatment has many advantages such as
high permeate quality, lesser space required, ease of operation and no chemicals needed,
while disadvantages of this method are membrane fouling, low flux, and short membrane
lifetime. Polymers such as polysulphone (PS), polyether sulphone (PES), polyacrylonitrile
(PAN), polyvinylidene fluoride (PVDF), and cellulose acetate (CA) are widely used in the
fabrication of nanofiltration and possess high efficiencies of oil removal from produced
water with privileges of low cost and disadvantages of low flux and fouling tendency [6].
Many trials were performed to enhance produced water treatment using nanofiltration, as
Chitosan/Pluronic F108/Polyethersulfone Membrane which hadoil rejection in the range
of 80–90% with water flux 170 (L·m−2h·−1) [7] and polyethersulfone/TiO2 nanomaterial
ultrafiltration membrane had oil rejection with an efficiency of 92% [8].

Nanofiltration (NF) membranes have gone a long way since their discovery in the late
1980s with qualities that fall somewhere between ultrafiltration (UF) and reverse osmosis
(RO)filtration. The pore size of NF membranes ranges from 1 to 10 nm, which correlates to a
molecular weight cut-off of 300–500 Da [9]. Because of the dissociation of surface functional
groups or the adsorption of charged solutes, NF membranes in contact with an aqueous
solution are also mildly charged. Polymeric NF membranes, for example, have ionizable
groups such as carboxylate and sulfonate, which result in a charged surface in the presence
of a feed solution. NF membranes are distinguished by their low rejection of monovalent
ions, a strong rejection of multivalent ions, and increased flux when compared to RO
membranes.NF membranes have high selectivity, high chemical stability, high permeability,
and can work under high pressures, and, in some cases, high temperatures. Because of
their mechanical, thermal, and chemical stability, polysulfone (PS) and polyethersulfone
(PES) are appealing materials for NF membranes, however, their hydrophobic nature
is their main disadvantage that contributes to the membrane fouling [10]. Therefore,
nanomaterials such as GO and TiO2 nanostructures were introduced to improve PES
membrane performance. Quanling et al. studied the effect of adding graphene oxide to PES
to increase salt rejection and water permeability [11]. Nadiret al. studied the antifouling
and self-cleaning properties of GO/PES membranes [12]. Arcadio et al. investigated
PES-TiO2 nanofiltration membranes for enhancing permeability and dye rejection [13].
Guiping et al. studied the design and characterization of PES/TiO2 membranes [14].
Moreover, PES/TiO2 hollow fiber membranes were investigated by Silvia et al. for water
desalination [15]. Abdulaziz et al. used graphene-based nanocomposite membranes for
oil traces removal from produced water with oil rejection of 99.9% and water flux of
91.3 kg m−2 h−1 bar−1 [16]. Mishra et al. used poly(1,4 phenylene ether sulphone) with



Polymers 2022, 14, 2572 3 of 20

PVP and TiO2 to synthesize the UF membrane and employed it for filtration of synthetic
oily feed with94.7% oil rejection, 88% salt rejection and 35 kg m−2 h−1 water flux [17].
Yuliwati et al. had an oil rejection of 98% and water flux of 82.5 kg m−2 h−1 using a
PVDF-TiO2 ultrafiltration membrane [18].

Despite some of the mentioned research utilizing GO or TiO2 in water treatment [10–15],
however, there is no detailed report focused on the use of NF membranes in the filtration of
a realistic produced water sample from an oil field, with a focus on both scale-forming ions
and oil content, as both must be treated before being discharged into the environment or
disposed into injection wells (to maintain permeability without reservoir bores blockage).
Alammar et al. [16] and Mishra et al. [17] employed alternative membrane construction
parameters and synthetic oily water rather than genuine oil field samples. Additionally,
the salt rejection was investigated in terms of TDS (total dissolved salts), but there was no
detailed study of the most significant scale-forming ions (chloride, calcium, magnesium,
and barium), which pose a high danger of clogging reservoir pores in water injection wells.
Therefore, water samples from oil fields must be used to reflect the true composition of
produced water. The produced water includes a variety of compounds such as corrosion in-
hibitors, biocide, scale inhibitors, oxygen scavengers, H2S scavengers, and other chemicals
used during drilling and production operations, dissolved and dispersed oil compounds
(hydrocarbons), corrosion products, and sulfate reduced bacteria (SRB). These chemicals
have the potential to diminish or fail the filtering process and can wreak havoc on filtering
efficiency and fouling results. Therefore, this work aims to introduce a category of low-cost
nanofillers by incorporating titanium nanoribbons (TNR) and graphene oxide (GO) into the
PES membrane to solve for the first time the problem of the contaminated water produced
during the oil production industry and to get rid of the oil traces, calcium, chloride, magne-
sium, and barium ions. This technique can reduce the blocking of the oil reservoir pores
and prevent the decrease of reservoir permeability. Therefore, in this study, TNRs and
GO nanomaterials are fabricated by hydrothermal and modified Hummer methods and
incorporated into PES membranes to increase filtration efficiency and overcome low water
flux and membrane fouling. The results of filtration of produced water samples collected
from oil fields containing calcium, chloride, magnesium and bromide ions with oil traces
are comparatively studied using pure PES, PES-GO, and PES-TNR in terms of filtration
efficiency, water flux, and fouling tendency. In other words, the filtration of realistic water
samples from oil fields has been investigated in this study to prove the usefulness of this
method to be directed to manufacturing and play a role in protecting the environment
and solving the produced water problem in the oil production industry. Moreover, the
advantages of the manufactured membranes become obvious by comparing salt and oil
rejection results with a commercial membrane.

2. Experimental Details
2.1. Materials

PES (polyethersulfone, MW = 58,000 g mol−1) from BASF company (Ludwigshafen,
Germany) and DMF N(N-dimethylformamide) from Sigma-Aldrich (Darmstadt, Germany),
titanium dioxide from LobaChemie (Mumbai, India), graphite powder, O-phosphoric
acid, sulfuric acid, sodium hydroxide, hydrochloric acid from Sigma-Aldrich (Darmstadt,
Germany), and potassium permanganate and hydrogen peroxide were obtained from
PIOCHEM (Cairo, Egypt).

2.2. Preparation of GO Nanostructure

Graphene oxide nanoparticles were fabricated by a modified Hummer’s method by
using 1 g of graphite powder added to a mixture of 120 mL 96%wt H2SO4 and 14 mL
85%wt H3PO4 in an ice bath, 6 g of KMnO4 powder added slowly over 1 h on a magnetic
stirrer, then the solution was left for 1 day at 50 ◦C in a water bath. The combination of
acid and potassium permanganate will result in the intercalation of acid in the graphite
layer and oxidation into graphene oxide flakes. Following that, 800 mL deionized water



Polymers 2022, 14, 2572 4 of 20

and 10 mL H2O2 were added drop by drop alternately in an ice bath to reduce the residual
of the KMnO4, resulting in a lot of air bubbles and a reddish yellow color, and the solution
was left to settle for 24 h before being filtered. Finally, the precipitate is washed with
deionized water till the solution becomes neutral (pH = 7) and then dried at 60 ◦C to obtain
GO powder [19].

2.3. Synthesis of TNRs

Synthesis of titanium nanoribbons was carried out using a hydrothermal technique by
adding 4 g of titanium dioxide to 500 mL sodium hydroxide with a concentration of 10 M,
then, using a magnetic stirrer, the mixture was stirred for half an hour untiled homogenous
solution appeared. Then, the mixture was poured into a 1 L Teflon-lined stainless-steel
autoclave. The autoclave was placed in the oven for 24 h at 170 ◦C and after cooling the
resultant powder was rinsed with 0.1 M hydrochloric acid and distilled water. The obtained
white powders were left to dry at 80 ◦C for 24 h before calcination at 450 ◦C for 2 h [20].

2.4. Synthesis of PES-GO and PES-TNR Membranes

Membranes were synthesized by the phase inversion method [21] by adding nano-
material powder TNR in the case of PES-TNR membranes and GO in the case of PES-GO
membranes to 50 mL DMF gradually. The quantity of nanostructured powder was added
according to the reported weight% in Table 1. The powder was added during the stirring
for ~3 h followed by the addition of DMF to reach a 100 mL mixture. The mixtures were
kept under stirring for over 24 h until they formed a homogenous emulsion. Then 17.5 g
of PES powder was added gradually to the emulsion over an ultrasonic vibrator at 45 ◦C.
Then, stirring was continued for 12 h. After that, the emulsion was cast on a clean glass
plate using a thin-film casting device with 120 µm thickness. Finally, the cast membranes
were immersed in distilled water at 45 ◦C to be hardened then removed and dried in the
air [22].

Table 1. The concentration of nanomaterial in synthesized membranes.

Membrane PES wt% Nanomaterials WT% DMF wt%

PUREPES 17.50 - 82.50
PES/0.1GO 17.50 0.10 82.40
PES/0.3GO 17.50 0.30 82.20
PES/0.5GO 17.50 0.50 82.00
PES/0.7GO 17.50 0.70 81.80

PES/0.1TNR 17.50 0.10 82.40
PES/0.3TNR 17.50 0.30 82.20
PES/0.5TNR 17.50 0.50 82.00
PES/0.7TNR 17.50 0.70 81.80

2.5. Memberane Characterization Techniques
2.5.1. Hydrophilicity and Porosity

Membrane hydrophilicity before and after adding nanomaterials was determined by
measuring the contact angle using the sessile method by contact angle analyzer (KRÜSS,
DSA100, Hamburg, Germany) for the synthesized membranes.

The porosity of the synthesized membranes, which is pores volume divided by total
membrane volume, was determined by immersing the membrane in distilled water. Then,
excess water was removed using filter paper and the weight (W1) of the membrane was
measured. Then, the membrane was left to dry for 4 h at 85 ◦C and the weight of the
dry membrane (W2) was measured [22]. The membrane porosity can be estimated by
Equation (1):

εm =
(w1 − w2)/ρw
w1−w2

ρw
+ w2/ρp

(1)
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where εm is porosity (%), W1 and W2 are the weight of the wet and dry membranes(in
grams), ρw is the density of pure water (0.999 g cm−3) and ρp is the density of PES
(1.37 g cm−3).

The mean pore radius was then determined using the filtration velocity method
according to the Guerout-Elford-Ferry Equation (2):

rm =

√
8(2.9 − 1.75εm)ηQl

εm A∆P
(2)

where η is the water viscosity (8.9 × 10−4 Pas), Q is the volume of the permeate pure water
per unit time (m−3·s), l is the membrane thickness (m) and ∆P is the operation pressure
0.3 MPa.

2.5.2. Morphologies and Structures

Field emission-scanning electron microscopy (FE-SEM, Model quanta 250 field emis-
sion gun, FEI, Shinagawa, Japan) and a transmission electron microscope (TEM JEOL,
Model 2010, Tokyo, Japan) were used for the characterization of membrane morphologies.
The TNR’s and GO’s crystallographic structures were investigated using X-ray diffraction
(Philips X’Pert Pro MRD, Malvern Panalytical Ltd., Malvern, UK) by an EMPYREAN
diffractometer with Cu Kα radiation operated at 30 mA and 40 kV in the 2θ range 5–80◦.

2.6. Membrane Performance
2.6.1. Filtration Process

The filtration procedure was carried out using a pressurized system as shown in
Figure S1 (Supplementary data) that included a pressurizing pump that sucked the pro-
duced water sample and pumped it to the membrane cell at a discharge pressure of 0.3 MPa.
Many bench-scale experiments of filtration membranes with variable applied pressure have
employed a pressurizing pump [8,23–25]. For dye and salt separation, Fang et al. employed
a peristaltic pump with a low-pressure feed of 0.2 MPa for nanofiltration employing the
PES-iron ion complex [26]. For water treatment, Hudaib et al. employed a ceramic TiO2
nanofiltration membrane with a feed pressure of 0.2 MPa [27]. For wastewater treatment,
Amin et al. utilized 0.27 MPa on PES/GO nanoribbons and PES/GO nanosheets [28].
Filtration was performed three times using a circular flat sheet specimen with a surface
area of 28.2 cm2 and a feed pressure of 0.3 MPa. The filtration system has a three-opening
flat sheet membrane module for feeding, concentrating, and permeating [29]. Using a
high-pressure pump, the feed was continually delivered to the membrane module from a
closed feeding tank (50 L). The permeated water was then collected from the membrane
modules downstream. The findings of manufactured membranes were compared to those
of a commercial nanofiltration membrane, NTR-7450. Nitto-Denko of Switzerland pro-
vided the NTR-7450 membrane. The top layer of the NTR-7450 membrane is sulfonated
polyethersulfone (SPES), which is covered with an ultrathin polymeric composition layer,
according to the manufacturer. The top barrier’s semi-permeability is determined by its
properties (solvent flux and solute rejection). SPES contains aromatic rings, oxygen, and
sulfonic groups [30].

2.6.2. Water Flux

The water flux of the synthesized pure-PES, PES-TNR and PES-GO membranes was
investigated by using deionized water as feed water and observing the quantity of per-
meate every 5 min, where there was a decline in permeate quantity for the first hour,
then the permeability rate increased and remained constant. The quantity of water was
measured when the rate became constant [31]. Water flux (Jw) was determined using the
following equation.

Jw =
M

A·∆t
(3)
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where Jw is pure water flux (kg/m2 h), M is mass of permeate (kg), A is the effective area of
membrane (m2) and ∆t is the filtration time (h).

2.6.3. Filtration Efficiency

Filtration was performed on a sample of produced water taken from an oil field in the
West Bakr Company in Egypt’s western desert, with chemical concentrations as listed in
Table 2.

Table 2. Produced water constitutes concentrations.

Constitute Ions Concentration (ppm)

Chloride 10,220
Calcium 1391

Magnesium 273
Barium 70

Oil in water 120

Filtration efficiencies of produced water from its constituent ions were investigated by
comparing the concentration of chloride, calcium, magnesium, and barium before and after
filtration. After one hour of commencing the filtering process, permeate water samples were
taken when the water flux became steady. Ion concentrations were determined according to
ASTM D-4327 for chloride anions and ASTM D-6919 for calcium, magnesium, and barium
cations, respectively, using ion chromatography. The Dionex ICS 1100 was used, which
was outfitted with high-capacity columns (AS9 and CS12) for anions and cations [32–34].
The efficiency of produced water filtration from oil in water content was investigated
by measuring oil in water content using the Eracheck analyzer device according to the
ASTM D-7678 standard method [35]. Analyses were carried out by adding 5 cyclohexane
to 45 mL of tested sample and aggressively shaking the mixture, then allowing it to rest
until two phases of water at the bottom and the hydrocarbon-Cyclohexane mixture at the
top were separated. The top layer was then withdrawn with a syringe and combined
with 0.1 g sodium sulfate as a drying agent to remove any water traces. Finally, the
extracted hydrocarbon portion was submitted to an infrared device with wave number
1370–1380 cm−1 and multiplied results with the concentration factor. The concentration
factor is determined by dividing the sample volume by the solvent volume (concentration
Factor = 9). Salt and oil rejection (R%) is determined using the following equation:

R% =
Co − C

Co
× 100 (4)

where Co is feed ion concentration or oil content (as indicated in Table 2), and C is ion
concentration or oil content in the permeate.

2.6.4. Fouling Tendency

Fouling tendencies of produced water were investigated by a dynamic method using
produced water with the same composition and oil in water concentration as a fouling agent.
The first filtration using synthesized membranes using deionized water was performed
for one hour at a discharge pressure of 0.3 MPa and water flux was recorded (Jw1), then
produced water was used to perform filtration at the same parameters of time and pressure.
The membranes were then washed with 1 M NaOH at 0.3 MPa and water for 30 min. The
cleaning chemical NaOH was chosen because of its quick cleaning outcomes and overall
cleaning effectiveness [36]. Filtration used pure water while recording related water flux
(JW2), the flux recovery ratio (FRR) [37] was calculated using the following equation:

FRR% = Jw2/Jw1 × 100 (5)
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2.6.5. Alkaline Resistance and Evaluation of Successive Filtration

To evaluate the alkaline resistance of the membranes, PES-0.7 GO and PES-0.7 TNR
membranes were immersed in 1 M NaOH for three days, and water flux and salt rejection
were compared to previous results.

Double successive filtrations were carried out to see if it could result in increased
filtration efficiency. In a comparative study, the salt rejection and oil rejection for single
filtration and double-successive filtration were assessed.

3. Results and Discussion
3.1. Hydrophilicity of Synthesized Membranes

The sessile drop method [38] is applied to determine the contact angles of the synthe-
sized membranes by measuring the angle between a deionized water droplet and a dry
membrane surface immediately after dropping the droplet with a ‘I’-shaped needle on the
membrane surface. The process is repeated five times and the average of the readings is
reported [39]. Figure 1A shows that increasing the nanomaterial percentage in the mem-
brane results in lower contact angle readings, indicating that increasing the nanomaterial
percentage increases hydrophilicity [40,41]. Pure-PES membranes have the largest con-
tact angle and are the least hydrophilic. The hydrophilic nature of the TNR [42] and GO
nanomaterial is primarily responsible for this considerable shift. The hydrophilicity of GO
results from the presence of C=O, C-O-C, and C-OH functional groups [43]. During the
NIPS (Non-solvent induced phase separation) process, nanomaterial spontaneously moves
to the polymer/water interface to reduce the interface energy. After the membranes have
been fully formed, the majority of the nanomaterial particles migrate to the membrane
surface and stabilize, enhancing hydrophilicity.

Figure 1B shows that increasing the ratio of nanomaterial increases the porosity of the
membranes. The microstructure of generated membranes is influenced by the thermody-
namic and kinetic components of the phase inversion process. Nanomaterial was used to
increase porosity. The thermodynamic effect of adding nanomaterial resulted in uniform
dispersion and the hydrophilic character of the added nanomaterial increased hydrophilic-
ity and accelerated non-solvent adsorption, increasing the polymer film’s thermodynamic
instability. During the phase inversion process, quick demixing resulted in the production
of membranes with a larger porosity. During non-solvent induced phase separation (NIPS),
the high affinity of the solvent to cover embedded nanomaterial compared to polymer
chains results in the creation of membranes with a larger porosity [44]. The membrane pore
size is affected by the phase transition velocity of water–solvent during phase inversion.
The mean pore size is estimated using Equation (2) and presented in Figure 1B for all
studied membranes. The mean pore size of PES-GO and PES-TNR membranes increased
as the amount of GO and TNR added increased, as shown in Figure 2B, which is due to the
hydrophilicity properties of GO and TNR, which is compatible with the contact angle and
porosity results. This is also consistent with the findings of Nurul et al. [45], who found that
additive loadings increased the hydrophilicity and surface porosity of membranes. The PES-
GO and PES-TNR membranes developed in this work had a reduced contact angle, higher
porosity, and larger mean pore size, which resulted in superior hydrophilic characteristics.



Polymers 2022, 14, 2572 8 of 20Polymers 2022, 14, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 1. (A) Contact angle and (B) porosity and mean pore radius of the synthesized membranes. Figure 1. (A) Contact angle and (B) porosity and mean pore radius of the synthesized membranes.



Polymers 2022, 14, 2572 9 of 20Polymers 2022, 14, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 2. Cross-sectional SEM micrographs for (A–C) pure PES, (D–F) PES-0.7GO, and (G–I) PES-
0.7TNR membranes. 

3.2. Membrane Morphology 
Figure 2A–C shows a cross-sectional and top view SEM image of the pure-PES mem-

brane matrix with micro pits of near-identical sizes spread throughout. These SEM images 
illustrate the spongy-like structure of the pure-PES membrane. The SEM image in Figure 
2C shows an asymmetric membrane with top and bottom porous surfaces. The cross-sec-
tional SEM images in Figure 2D,F for PES-0.7GO indicate a denser and less porous top 
layer of the membrane, although the formation of macro voids was present in the sub-
layer. Macro void lengths ranged from 8 to 14 μm. Figure 2E depicts the top morphology 
of the PES-GO membrane. The number of pores increased, and their diameters decreased 
when GO was introduced [45]. Figure 2G,I shows cross-sectional SEM images for the PES-
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layer of the PES-TNR membrane, whereas some of these pores exhibit coalescence. The 
insertion of TNRs results in the growth of lateral, larger pores at the top layer and macro 
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GO and PES-TNR membranes. 

Figure 2. Cross-sectional SEM micrographs for (A–C) pure PES, (D–F) PES-0.7GO, and (G–I) PES-
0.7TNR membranes.

3.2. Membrane Morphology

Figure 2A–C shows a cross-sectional and top view SEM image of the pure-PES mem-
brane matrix with micro pits of near-identical sizes spread throughout. These SEM images
illustrate the spongy-like structure of the pure-PES membrane. The SEM image in Figure 2C
shows an asymmetric membrane with top and bottom porous surfaces. The cross-sectional
SEM images in Figure 2D,F for PES-0.7GO indicate a denser and less porous top layer
of the membrane, although the formation of macro voids was present in the sub-layer.
Macro void lengths ranged from 8 to 14 µm. Figure 2E depicts the top morphology of the
PES-GO membrane. The number of pores increased, and their diameters decreased when
GO was introduced [45]. Figure 2G,I shows cross-sectional SEM images for the PES-0.7TNR
membrane with macro voids ranging from 12 to 18 µm. Figure 2H shows the top layer of
the PES-TNR membrane, whereas some of these pores exhibit coalescence. The insertion
of TNRs results in the growth of lateral, larger pores at the top layer and macro voids in
the sub-layer [25]. The overall thickness ranges from 80 to 100 µm for both PES-GO and
PES-TNR membranes.
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The hydrophilic character of the added GO and TNR nanomaterial, which promotes
solvent and non-solvent mass transfer rates, is credited with the creation of nanopores
and macro voids [46–48]. According to SEM micrographs, graphene oxide nanoparticles
were efficiently dispersed in the polymer matrix and did not show significant aggregation
on the membrane surface, which may be attributed to the graphene oxide carbon-based
structure [46]. Anna Rabajczyk et al. [47,48] demonstrated that dispersing TNR or GO in
DMF (solvent) while stirring prevents nanoparticle agglomeration.

Transmission electron microscopy (TEM) has long been recognized as a helpful method
for describing the morphology of GO and TNR. TEM images, Figure 3A,B, of the calcinated
TNR illustrate the influence of the calcination temperature on the surface of the produced
nanoribbons. The conversion of hydrogen titanate to TiO2-B NRs resulted in the formation
of pores with diameters ranging from 2 to 10 nm [49]. These pores are formed because the
interlayered OH groups escape the structure [50,51]. Figure 3C illustrates the graphene
oxide plates as flat surfaces. The effective synthesizing of the GO nanostructure is confirmed
by the TEM image in Figure 3C. By oxidizing graphene extensively, the graphitic stack’s
flakes were chemically exfoliated into mono- and multilayer sheets [52,53].
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Figure 3. TEM image of (A,B) TNR and (C) GO nanomaterials.

3.3. Structural Properties

Figure 4 illustrates the XRD charts of TiO2 nanoribbons and GO nanoparticles. For
TiO2 nanoribbons, Figure 4A, monoclinic NaTiO2 and cubic TiO2 crystalline phases are
observed from XRD charts. The peaks of TiO2 are detected at 2theta of 18.3◦, 27.6◦, 29.2◦,
and 45.8◦ indicating the presence of a cubic TiO2 phase along the (062), (248), (484), and
(−403) orientations (card No. 96-413-0133) [54]. The peaks of NaTiO2 are detected at 2theta
of 31.9◦, 34.2◦, 35.4◦, 40.2◦, 46.3◦, 47.7◦, 52.7◦, 55.7◦, 56.8◦, 66.2◦, and 75.4◦indicating the
presence of a monoclinic NaTiO2 phase along the (−211), (301), (−302), (004), (401), (020),
(−314), (214), (015), (420), and (520) orientations (card No. 96-231-0332) [55]. However,
for TiO2, the (−403) peak is the most intense, while for NaTiO2, the (−211) peak is the
most intense.
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Figure 4B shows the tetragonal GO crystalline phase in GO nanoparticles as seen on
the XRD chart. The presence of a tetragonal GO phase along the (001), (220), (221), and
(322) orientations is indicated by the presence of a GO peak at 2theta of 10.5◦, 21◦, 26.7◦,
and 42.3◦ (card No. 96-590-0025) [56], the (10.5◦) peak is the most intense. This could
be attributed to the fluctuation of equilibrium surface concentration in the direction of
minimizing surface energy or setting the segregation energy near zero.

Using values of W (full width at half maximum) for XRD peaks, the average crystallite
size of TiO2, NaTiO2, and GO is estimated using Scherrer’s equation:

Ds =
0.94λ

Wcos θ
(6)

where Ds, θ, and λ are the crystallite size, Bragg’s angle, and X-ray wavelength, respec-
tively [57,58]. Texture coefficients (TCs) and dislocation densities [59] are also calculated.
Table 3 shows the structural parameters that were computed. The average Ds values are
65.6, 66.5, and 23.6 nm for TiO2, NaTiO2, and GO, respectively. In general, the smaller
crystallite size can be attributed to the formation of additional nucleating centers as the
nucleation energy barrier is reduced [60]. The highest texture coefficient (TC) values were
1.42, 4.56, and 3.66, indicating that TiO2, NaTiO2, and GO grew best along (484), (−211), and
(001), respectively. Moreover, the smallest density of crystal defects, particularly dislocation
density, is detected for TiO2, NaTiO2 and GO, respectively, along (062), (−211), and (221),
with values of 0.12 × 10−3, 0.24 × 10−3, and 0.61 × 10−3 dis/nm2.

Table 3. The structural parameters of TiO2, NaTiO2, and GO.

Compound Name Peaks TiO2 NaTiO2 GO
Crystal System Cubic Monoclinic Tetragonal

XRD peak position(2θ◦)
(a) 18.3 31.9 10.5
(b) 27.6 34 21.1
(c) 29.2 45.6 26.7

Miller indices (hkl)
(a) (062) (−211) (001)
(b) (248) (−302) (220)
(c) (484) (020) (221)

Relative integrated intensity (I/Io) %
(a) 9.3 100 212
(b) 9 57.5 18
(c) 16.6 23 5.6

Mean crystallites size (D (nm))
(a) 91.8 64.7 23.1
(b) 40.6 65 19.5
(c) 64.3 25.2 40.5

Texture coefficient (TC)
(a) 0.80 4.56 3.66
(b) 0.77 1.05 0.11
(c) 1.42 2.62 0.18

Dislocation density
(dis/nm2) × 10−3

(a) 0.12 0.24 1.87
(b) 0.61 0.24 2.63
(c) 0.24 1.57 0.61

3.4. Membrane Performance
3.4.1. Evaluation of Filtration Efficiency

For this investigation, ion concentration at feed and permeate water were measured.
The permeated water was subsequently tested by ion chromatography in the same way,
yielding the findings shown in Table 4. Figure 5 shows the salt rejection of the various
membranes with close values, with the maximum efficiency forPES-0.7GO, followed by
PES-0.7TNR, and the lowest efficiency for pure PES. PES with a higher nanomaterial
ratio has a higher salt rejection, which can be interpreted as higher hydrophilicity. This
finding is in line with that of Zylla et al., who discovered that decreasing nanofiltration
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membrane contact angles enhanced salt rejection [61]. Sulfonic and ether groups were
commonly found in the PES layer on top of the NF membrane. In addition, the skin
layer has mean radius pores of 6.5–11 nm. As a result, a complicated process including
electrostatic contact and steric hindrance was responsible for the separation of solutes by NF
membranes. When comparing findings to commercial NTR-7450 membrane salt rejection,
it seems that the NTR-7450 membrane has somewhat higher salt rejection than pure PES
and slightly lower salt rejection than PES-TNR and PES-GO. The hydrophobic character of
the commercial membrane can be linked to the reduction in salt rejection at NTR-7450 [54].
The commercial membrane is covered with an ultrathin polymeric layer, which results
in the membrane being hydrophobic despite the presence of sulfonic acid groups. The
results show that membranes may be used at high concentrations of generated water.
GO-toluidine/PES membranes yielded encouraging findings for Zhongzhen et al. [62].
Increased hydrophilicity causes the diffusion rate of water molecules to rise, whereas salt
ions are trapped in pores.

Table 4. Permeate concentration after filtration using synthesized membranes and related filtration ef-
ficiencies.

Chloride Calcium Magnesium Barium

Feed Conc. (mg/L) 10,220 1391 273 70
Permeate Conc. pure-PES membrane (mg/L) 6643 668 104 21

Salt rejection 35% 52% 62% 70%
Permeate Conc. PES-0.5TNR membrane(mg/L) 3884 348 52 8

Salt rejection 62% 75% 81% 88%
Permeate Conc. PES-0.7TNR membrane (mg/L) 2248 223 35 5

Salt rejection 78% 84% 87% 93%
Permeate Conc. PES-0.5GO membrane (mg/L) 3066 320 52 13

Salt rejection 70% 77% 81% 81%
Permeate Conc. PES-0.7GO membrane (mg/L) 1942 181 63 4

Salt rejection 81% 87% 77% 95%
NTR-7450 membrane 5928 598 96 15

Salt rejection 42% 57% 65% 78%
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3.4.2. Efficiency of Oil Removal

Table 5 shows the removal of oil from water utilizing synthesized membranes. The
concentration of oil in water at feed water was 120 ppm. The oil rejection increased from
71% to 88% by increasing the ratio of GO content from 0% to 0.7% and increased to 85% by
increasing the TNR to 0.7%, i.e., the highest oil in water rejection (88%) was reported for PES-
0.7 GO versus 85% for PES-0.7 TNR and71%for the pure PES, which is considered the lowest
reported value for our prepared membranes. This behavior is reversely correlated to the
values of the contact angle. This suggests that the difference in filtering effectiveness is due
to membrane hydrophilicity, which produces repulsion between hydrophilic membrane
surfaces and hydrophobic oil droplets, allowing more water to enter the pores [63]. As
observed in SEM images in Figure 2, the integration of 0.7% GO or 0.7%TNR in the PES
membrane also increases pore density and porosity, which can contribute to the increase in
oil rejection. Furthermore, as demonstrated in Table 5, our optimized membranes have a
higher oil rejection than the commercial NTR-4750 membrane, which has 40% oil rejection.
This is due to the commercial membrane’s hydrophobic nature.

Table 5. Oil in water removal efficiency using synthesized membranes.

Oil in Water at Feed Water 120 ppm Oil Rejection

PurePES 35 ppm 71% ± 3

PES-0.1GO 33 ppm 73% ± 2

PES-0.3GO 29 ppm 76% ± 3

PES-0.5GO 25 ppm 79% ± 4

PES-0.7GO 15 ppm 88% ± 3

PES-0.1TNR 40 ppm 67% ± 2

PES-0.3TNR 30 ppm 75% ± 2

PES-0.5TNR 28 ppm 77% ± 3

PES-0.7TNR 18 ppm 85% ± 4

NTR7450 72 ppm 40% ± 2

3.4.3. Water Flux and Flux Recovery Ratio

Water flux of the synthesized membrane was evaluated by observing the permeate
volume per unit time at a discharge pressure of 0.3 MPa. Figure 6 demonstrates that the
PES-0.7GO membrane had a higher water flux than the PES-0.7TNR membrane, while
the pure-PES membrane had the lowest water flux. This is owing to the PES-0.7GO
membrane’s higher hydrophilicity than the PES-0.7TNR membrane, while pure PES has
the lowest hydrophilicity [40,64]. The ability of water molecules to permeate across the
selective layer of the membrane is increased by increasing the hydrophilicity. It might
also be attributed to the inclusion of nanostructures, which results in the creation of macro
voids and an increase in porosity and mean pore radius. The increase in porosity and mean
pore radius after introducing nanomaterial is consistent with the results of water flux [65].
The findings of employing GO as a nanofiller material for nanofiltration membranes are
consistent with the reported data by Hao et al. [25] and Amin et al. [61]. TiO2 nanomaterial,
which is utilized in nanofiltration, also improves the water flux [66–68].

The fouling tendency of produced water was explored utilizing a flux recovery ratio
(FRR) based on pure water flux before (Jw1) and after (Jw2) using synthesized membranes
in produced water filtration. The higher FRR value indicates a higher antifouling tendency
to get lower fouling. When comparing the antifouling tendency of pure-PES, PES-TNR, and
PES-GO membranes, PES-0.7GO outperforms PES-0.7TNR, while pure PES has the lowest
antifouling tendency. The hydrophilic interactions between the membrane surface and feed
solution constituents increase electrostatic forces, resulting in improved antifouling. One of
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the most common methods for developing antifouling membrane surfaces is to increase the
surface hydrophilicity, for example, by adding hydrophilic monomers or nanoparticles [66].
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3.4.4. Alkaline Resistance of Membranes

Only a few commercially available NF membranes, notably PES-based membranes,
can tolerate high caustic conditions. The salt rejection and water flux stabilities in an
alkaline environment were used to estimate the membranes’ alkaline resistance [69,70].
Both PES–0.7-GO and PES–0.7TNR demonstrated consistent salt rejection and water flux
after three days of immersion in 1 M NaOH solution, as illustrated in Figure 7A,B. Both
PES–0.7GO and PES–0.7TNR may be used as alkali-resistant NF membranes with increased
filtering performance, according to this discovery. Due to the presence of aromatic groups,
alternating sulphonyl (SO2) groups, and ether (-O-) linkages, PES has great thermal stability,
a high glass transition temperature, and strong structural and chemical stability [71,72].
These findings are in line with those of Mehwish et al., who discovered that TiO2 NP
can improve the chemical stability of PES membranes [66]. Yeh et al. have shown the
remarkable stability of GO membranes in water [67]. The successful use of 1 M NaOH
as a cleaning agent with a high FRR demonstrates membrane resilience to cleaning. The
chemical stability of PES, which is attributable to the sulfonyl and ether groups, contributes
to cleaning resistance.
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3.4.5. Evaluation of Successive Filtration

The antifouling capabilities of PES-GO and PES-NR membranes, as well as the possi-
bility of enhancing salt and oil rejection, were investigated further using a dynamic cyclic
filtering experiment for generated water samples. Figure 8A demonstrates that in the
second filtering cycle, the total rejection of ions and oil increased. Figure 8B shows how
the fouling impact of produced water lowers water flux from 78 to 70 kg·m−2 h−1 for
PES-0.7GO and 74 to 69 kg·m−2·h−1 for PES-0.7TNR during the second filtering cycle. The
high flux recovery ratios of PES-0.7GO (89.7%) and PES-0.7TNR (93.2%) are demonstrated
by the minor decrease in water flux. The limited decrease in water flux, salt rejection,
and oil rejection refers to a very limited leaching effect for the used nanomaterials. The
findings are in line with those of Li et al., who discovered that nanomaterial leaching from
PES-TiO2 membranes was low for the first five hours, then stopped, whereas leaching was
only strong at PES membranes substantially laden with nanomaterial [73]. Additionally,
Cheng et al. observed that employing a GO-PES membrane grafted with polyampholyte
hydrogel results in very low graphene oxide leaching, with less than 2% graphene oxide
leached from the membrane [74]. This finding encourages businesses to use membranes to
treat generated water in oil fields in order to comply with environmental regulations.
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4. Conclusions

Nanofiltration membranes made of PES, PES-GO, and PES-TNR were created using
the phase inversion approach. Membranes were used to filter generated water samples
taken from an oil field in order to create a realistic atmosphere. The addition of nanoma-
terials increased membrane performance in several ways. Membranes’ physiochemical
characteristics were studied. The addition of TNR or GO to the PES matrix causes macro
voids to form on the bottom surface of the membrane in both PES-TNR and PES-GO. When
the weight of the embedded nanostructure is increased, the contact angle decreases from
81◦for pure PES to 40◦ and 42◦ for PES-0.7GOand PES-0.7 TNR, respectively. Porosity
rose from 17% for pure PES to 44% for PES-0.7TNR and 42% for PES-0.7GO, respectively,
while water flux increased from 42.5 kg/m2 h to 85 and 82 kg/m2 h. By increasing the
weight percent of integrated nanomaterial, chloride, calcium, magnesium, and barium
concentrations were reduced while water flux was increased. The PES-0.7GO membrane
has the highest filtering efficiency, followed by the PES-0.7TNR and pure-PES membrane,
with chloride salt rejection of 81%, 78%, and 35%, respectively. Furthermore, increased hy-
drophilicity is the main cause of increased oil rejection using the membranes of PES-0.7TNR
(88%) and PES-0.7GO (85%) over the pure-PES membrane (71%) and commercial NTR-7450
(40%) due to repulsion forces between hydrophobic oil traces and the hydrophilic nature
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of nanostructure-incorporated membrane surfaces. Fouling tendency decreased with the
addition of nanomaterial, with the lowest fouling tendency at the PES-0.7GO membrane,
followed by the PES-0.7TNR membrane, and the greatest fouling tendency at the pure-PES
membrane, which may be ascribed to fouling mitigation through enhanced hydrophilicity.
Cleaning membranes with NaOH was tried before measuring flux recovery ratio, and the
FRR was found to be quite high. Membrane resistance to alkali after three immersions
demonstrated the membrane’s great resistance to alkaline media. Overall, the findings
support the use of membranes in the oilfield to treat generated water.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14132572/s1, Figure S1. Schematic of filtration system.
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Three-Step Approach. J. Phys. Chem. 2014, 118, 21250–21257. [CrossRef]

49. Bittencourt, C.; Rutar, M.; Umek, P.; Mrzel, A.; Vozel, K.; Arčon, D.; Henzler, K.; Krüger, P.; Guttmann, P. Molecular Nitrogen in
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