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Abstract

The hallmarks of many haematological malignancies and solid tumours are chromosomal translocations, which may lead to
gene fusions. Recently, next-generation sequencing techniques at the transcriptome level (RNA-Seq) have been used
to verify known and discover novel transcribed gene fusions. We present FusionFinder, a Perl-based software designed to
automate the discovery of candidate gene fusion partners from single-end (SE) or paired-end (PE) RNA-Seq read data.
FusionFinder was applied to data from a previously published analysis of the K562 chronic myeloid leukaemia (CML) cell
line. Using FusionFinder we successfully replicated the findings of this study and detected additional previously unreported
fusion genes in their dataset, which were confirmed experimentally. These included two isoforms of a fusion involving the
genes BRK1 and VHL, whose co-deletion has previously been associated with the prevalence and severity of renal-cell
carcinoma. FusionFinder is made freely available for non-commercial use and can be downloaded from the project website
(http://bioinformatics.childhealthresearch.org.au/software/fusionfinder/).
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Introduction

Translocations are rearrangements of regions of non-homolo-

gous chromosomes that can result in gene fusions as well as

amplifications, deletions and inversions. The critical role of

chromosomal abnormalities was recognised in the 1960s when

Nowell and Hungerford identified the Philadelphia chromosome

in CML [1]. This abnormality was later revealed to arise from a

translocation between chromosomes 9 and 22, resulting in the

BCR-ABL fusion gene [2,3]. Typically associated with haemato-

logical malignancies, gene fusions have more recently been linked

to solid tumours, including prostate, breast and lung cancers.

According to the May 2012 release (v59) of the Catalogue Of

Somatic Mutations In Cancer there are currently 7,732 fusions

known to be associated with benign and malignant tumours [4]

and many have been shown to play key roles in cancer initiation.

Gene fusions can also be linked to clinical outcome, for example,

the presence of the BCR-ABL1 fusion is a powerful predictor of

clinical outcome in paediatric acute lymphoblastic leukaemia.

Furthermore, gene fusions provide ideal therapeutic targets since

they create unique proteins not present in normal cells.

Systematic identification of gene fusions across cancer types is a

major undertaking. Historically, the focus has been on molecular

cytogenetic approaches, however, next-generation sequencing

(NGS) technologies are increasingly being used, as they are

considerably higher throughput and produce results at a much

higher resolution than techniques such as fluorescence in-situ

hybridization (FISH).

Transcriptome or RNA sequencing (RNA-Seq) [5] allows the

analysis of several aspects of genome transcription, providing

sequence data as well as the ability to detect alternative splicing

events and quantify gene expression levels. Since genetic

alterations identified by transcriptome sequencing are actively

expressed there is greater confidence that they may directly

contribute to the oncogenic phenotype rather than the many

mutations identified from genome sequencing for which transcrip-

tional status is not established. Further, as the transcriptome is

considerably smaller than the genome, the fold-coverage from a

typical sequencing run is much greater than for the whole genome

providing a greater opportunity to identify mutations expressed

even at very low levels. To date, transcriptome sequencing has

been used to comprehensively characterise gene fusions in

prostate, brain and breast cancer using both single-end (SE)

[6,7,8] and paired-end (PE) [9] variants of the RNA-Seq

technology.

A chromosomal breakpoint most commonly occurs within

intronic or intergenic regions but can on rare occasions occur

within exons [10,11]. In either case, when performing RNA-Seq

analysis, fusion transcript reads produced from sequencing

translocation events will contain exonic sequence from two

distinct genes. However, other biological mechanisms have been

reported in the literature that cloud this simple concept, namely
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read-through transcription and trans-splicing. Read-through

transcription occurs when the RNA-polymerase continues

beyond the normal termination sequence and into an adjacent

gene, usually within 20 kb [12]. Novel fusion transcripts are then

generated by RNA-splicing from this larger pre-mRNA molecule.

Trans-splicing is a process whereby exons from two indepen-

dently processed transcripts from different locations in the

genome (even from different chromosomes) become spliced

together at the RNA level [13]. Complicating RNA-Seq analysis

further, random chimeric transcripts can also occur at the RNA

library preparation stage [14] when fragments of highly

expressed transcripts become randomly attached to fragments

from other genes. When RNA sequencing is performed, the

resultant reads from any of these phenomena can appear to

come from translocation-generated fusion transcripts as they too

contain exonic sequence from two distinct genes.

There is some debate regarding the suitability of SE versus PE

RNA-Seq approaches for the discovery of gene fusions. This is

because, while more costly, PE sequencing can provide a greater

depth of evidence for a gene fusion. With PE sequencing, reads are

usually mapped separately to a normal transcriptome or genome

reference to find pairs aligning to different genes, whilst with SE

data, only those reads that directly span a fusion boundary are

informative. However, recent advances in NGS platforms has

resulted in vast increases in coverage and read length meaning that

gene fusion boundaries are now adequately represented by SE

reads even at low levels of expression. A number of studies have

recently reported that the performance of SE sequencing is equal

to [8,15] and in some cases better than [16] PE, making SE

sequencing a more cost effective approach to the discovery of gene

fusions.

Previous work by Levin and colleagues [6] focussed on the

discovery of fusion transcripts using ‘‘targeted RNA-Seq’’, a

technique involving a combination of SE RNA-Seq and hybrid-

ization capture methods. Using this method they enriched their

initial sequencing data for 467 cancer-related genes in the CML

cell line K562. Following mapping of sequencing reads to a

reference transcriptome, candidate fusions were identified when

the first 30 bases of the read matched a different gene to the last 30

bases.

In this project we have extended and fully automated this type

of approach to develop the software FusionFinder. We applied our

software to the SE Illumina data arising from the work by Levin

and colleagues and, in addition to successfully replicating their

findings, we have identified and experimentally confirmed novel

fusion candidates expressed in K562 that may have functional

relevance for the disease.

Results

FusionFinder analyses FASTQ read data (of at least 50

nucleotides) to identify gene fusion candidates. This is achieved

by performing the following integrated analysis and filtering steps,

which are outlined in Box S1 and Figure 1. By default, all filters

described are enabled but some can be disabled with command

line options.

Step 1. Alignment of Full Length Reads Against a Normal
Coding Reference Transcriptome

The first step of the process (see Box S1) is to align the full length

reads (e.g. 100 nucleotide reads in the case of Illumina HiSeq data)

against a reference transcriptome containing only coding tran-

scripts to identify those reads that fail to match to a normal

dataset. We use Bowtie [17], to align the read data against this

reference transcriptome and produce Sequence Alignment/Map

(SAM) format [18] output, comprising one row per read where

each read has either a single transcript hit or fails to match

anything in the reference. The latter could be due to one of three

main reasons: (i) the normal reference transcriptome is not

comprehensive enough and does not contain the transcript to

which this read should match (i.e. a completely novel but genuine

non-fusion transcript or an expressed non-coding transcript); (ii)

the read is of poor quality and the alignment software could not

align it to any transcripts in the reference; (iii) the read overlaps the

exon-exon junction of a fusion transcript, the sequence for which is

understandably not in the reference transcriptome. It is these latter

sequences that are the target for FusionFinder.

A reference coding transcriptome that is compatible with our

analysis pipeline, can be obtained from our website [19,20]. The

references comprise all coding transcripts of all annotated genes

within recent versions of Ensembl [21].

Step 2. Creation of Pseudo Paired-end Reads
The next part of the process is to split each read with no

matching hits from Step 1 into two smaller sections, so we can

attempt to find sequences from different genes that match to each

section (see Box S1 and Figure 1). From all full length reads having

no hits in the reference transcriptome (i.e. reads that may

potentially match a fusion gene, see Figure 1A), a pair of FASTQ

‘‘pseudo PE reads’’ are derived with each pair comprising the first

n bases and the last n bases of the sequence of the full length read,

where n represents a proportion (0.4 by default but no greater than

0.5) of the length of the full length read (Figure 1A). It is important

to note that these pseudo PE reads retain the read ID of the parent

full length read and are simply appended with ‘/1’ or ‘/2’ to

distinguish each member of the pair (similar to PE reads), allowing

them to be later reunited. In addition, a line graph of the overall

quality of all full length reads is produced in this step.

Step 3. Alignment of Pseudo PE Reads against the
Coding Reference Transcriptome

The next step (see Box S1) is to align the pseudo PE reads

against the reference transcriptome to establish which, if any,

transcripts they align to. As in Step 1, we use Bowtie to align the

pseudo PE reads independently against the coding reference

transcriptome (Fig 1B). In Bowtie’s default mode, hits are

determined based on 100% identity between a read and a

transcript in the normal reference transcriptome over the first 28

bases of a read, while allowing for a 2 base mis-match. This acts as

a quality control step for the data, filtering out poor quality reads.

Step 4. Analysis and False-positive Filtering of the Pseudo
PE Read Results

The next steps of the process perform several stages of analysis

and filtering to narrow down the most likely candidate fusion

transcripts using the available evidence (see Box S1). Initially each

of the pseudo read pairs are reunited (based on their common ID)

and examined for which, if any, transcripts they hit. The first two

filters (Steps 4A & 4B) then discard data where the read pairs both

match the same gene or where either read of the pair does not

match anything in the reference transcriptome. If the read pairs hit

different genes, which we’ve termed a G1:G2 (i.e. Gene 1:Gene 2)

pair, the read pairs are stored in order to build up a body of

evidence for the existence of this G1:G2 pair (example provided in

Figure 1B). A G1:G2 pair can be regarded as a fusion candidate.

The third and fourth filters (Steps 4C & 4D) remove false positive

G1:G2 pairs where any read pairs hit either paralogous genes, or

FusionFinder: Finding Gene Fusions in RNA-Seq Data
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antisense transcripts that the alignment algorithm is unable to

distinguish. These filters can be disabled using command line

options if required. In the next filter (Step 4E) the read pairs are

mapped back to the genome based on the coordinates where they

aligned to G1 and G2 respectively. By default, Bowtie reports a

single hit for a single read to a single transcript. Since transcript

coordinates cannot be directly compared (due to differential exon

usage between transcripts) all transcript/read alignment positions

are transposed to genomic coordinates, which are then compara-

ble. Using the canonical boundaries of each G1 or G2 exon, an

assessment is made of whether the mapped positions are realistic

given the size of the insert that should exist between them if the

two exons were indeed fused in a transcript. For example two

aligned 30mer pairs derived from a parent full length 76mer

should have 16 bases between them when their respective mapped

exon positions are assessed. Those read pairs mapping outside

these constraints are filtered. The implementation of this last filter

is responsible for eliminating many of the false positives including

those arising from the existence of potential chimeric fusion

artefacts in the RNA-Seq data. Finally (Step 4F) all pseudo PE

reads evidencing all G1:G2 fusions are again realigned using

Bowtie, firstly to the coding transcriptome reference and secondly

to a reference containing only non-coding transcripts. In these

alignment steps Bowtie is configured to allow all possible matches

in each reference. G1:G2 pairs are filtered if their pseudo PE reads

separately map to transcripts of the same gene in either reference.

This step removes false positives arising as the result of genes

sharing common exonic sequences. For example, the long

intergenic non-coding (Linc) RNA SUZ12P is comprised of exons

also found in both LPHN1 and SUZ12. Similarly, many unrelated

coding transcripts (some novel or un-annotated) contain common

exons (e.g. CCDC144A and USP32). Without a multi-mapping read

filter many of these examples would be incorrectly reported as

being transcript fusions. The multi-mapping step is performed at

this stage within FusionFinder (i.e. post-filtering, as opposed to

during the initial alignments in Step 1) since the required

computation time is significantly reduced with the smaller number

of candidate reads.

Step 5. Block Filtering and Identification of Fused Exons
and Isoforms from Candidate Fusion Transcripts

This stage combines the remaining read evidence for each

G1:G2 pair from Step 4 to identify the exons involved in the fusion

(see Box S1). Firstly (Step 5A) the genomic coordinates of each

mapped read are combined to construct ‘‘alignment blocks’’

comprising multiple overlapping reads that map to the same area

on G1 or G2 (see also Figure 1B). Each combination of blocks on

G1 and G2 are then searched for overlapping repeat elements as

indicated by RepeatMasker [22]. If the block on G1 overlaps the

same repeat element class as the block on G2, the block

combination is filtered out, as such reads are likely to represent

false positives. This filter (Step 5B) is optional and can be disabled

if required.

Figure 1. FusionFinder rationale. A) RNA-Seq produces millions of short reads, some of which will span the exon boundaries of hypothetical
fusion transcripts between Gene 1 and Gene 2. Two different fusion isoforms involving different exons are shown, left and right, along with a single
read that spans each breakpoint. Reads are split into smaller pseudo PE reads which can be aligned independently to a reference transcriptome. B)
Alignment of pseudo PE reads against the reference transcriptome. One of each pair aligns to an exon on Gene 1 and the other aligns to an exon on
Gene 2. Repeating this process for all other RNA-Seq reads creates ‘‘alignment blocks’’ from overlapping groups of aligned 59 and 39 pseudo PE reads
and their genomic coordinates. Multiple alignment blocks on either gene (as for Gene 1 in the example) provide evidence for the existence of
different isoforms of the fusion.
doi:10.1371/journal.pone.0039987.g001
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The genomic location of the extremities of ‘‘alignment blocks’’

are then used to retrieve the Ensembl exon closest to this location

(Step 5C). As depicted in Figure 1B, these discrete blocks represent

the exons involved in the fusion. A single block on each of G1 and

G2 indicates a single isoform for this fusion. Multiple blocks

indicate multiple exon involvement and the existence of different

fusion isoforms consisting of different combinations of blocks from

G1 and G2.

Next, the number of pseudo PE reads providing evidence for

each G1:G2 pair following filtering is determined (Step 5D).

Here the user can opt to filter G1:G2 pairs that are not

evidenced by at least a minimum number of pseudo PE reads.

Restricting results to higher numbers of reads reduces the

likelihood of false positives, while the acceptance of smaller read

numbers will capture those fusion transcripts expressed at lower

levels.

Finally (Step 5E), categories are assigned to each G1:G2 pair

based on the given evidence as follows:

1. Intrachromosomal - Genes originate from the same chromo-

some

2. Interchromosomal - Genes originate from different chromo-

somes

3. Potential Readthrough - Genes on the same chromosome and

strand and , = 20 kb apart

4. Inversion - Genes on the same chromosome but different

strands

Output Files
Four main output files are produced. The first is a summary

file, which contains a ranked list of fusion candidates based on

their evidence strength (total number of sequence reads). The file

provides the Ensembl and HUGO (Human Genome Organiza-

tion) Gene Nomenclature Committee (HGNC) common name

identifiers for G1 and G2, the number of blocks on each gene,

an indication of how many isoforms exist for each G1:G2 pair

and the category of fusion indicated by the pair. The second file

gives the full details for each isoform of G1 and G2 and includes

the genomic coordinates of the alignment blocks on G1 and G2,

and their respective corresponding Ensembl exon IDs. For each

isoform of a candidate fusion, the remaining two files provide (i)

the sequences of the pseudo PE reads and the corresponding full

length parent read and (ii) a forward three-frame translation of

the fused nucleotide sequence of the two exons implicated in the

candidate fusion. While FusionFinder is running, the software

outputs all filtered read data to a separate file that contains a flag

denoting the stage at which each read was filtered. In addition,

statistics are produced detailing the raw numbers of reads that

have been filtered at various stages of the algorithm and those

remaining that provide the evidence for the fusion candidates

contained in the summary file.

Further Investigation of Fusion Candidates
Using the common names of a G1:G2 pair of interest one can

use FusionFinder to generate alignments to assist in the

experimental confirmation of the candidate by RT-PCR. These

alignments detail a) where the pseudo PE reads align to G1 and

G2 and b) the exact location of the transcript breakpoint on the

aligned parent reads (an example of this alignment is given in

Figure 2).

Software Implementation
FusionFinder has been tested on various versions of Perl from

5.10 onwards and makes extensive use of the BioPerl [23] and

Ensembl API [21] libraries, which are required to be installed

locally with the software. Several other Perl libraries are also

required (standard libraries available in the Comprehensive Perl

Archive Network) that are detailed further in the software manual

available from the project website [19,20]. We have comprehen-

sively tested FusionFinder on 64-bit Linux, but it can be run on

both Windows and MacOS platforms provided Perl and the

aforementioned dependencies are installed. FusionFinder requires

access to an Ensembl database (ideally a locally installed) to

perform some sections of the identification process.

The commands to run FusionFinder are described in the online

user manual available from the project website [19,20]. The

source code for FusionFinder is made freely available from our

website under the GNU General Public License (GPL).

Application of FusionFinder to a Published RNA-Seq
Dataset

We applied FusionFinder to data arising from work by Levin

and colleagues [6] who performed a targeted RNA-Seq analysis of

the K562 CML cell line. They generated sequencing data both

pre- and post-enrichment for 467 cancer-related genes. We used

the dataset representing the sequencing produced post-enrich-

ment, which consisted of 14 million 76mer SE reads in FASTQ

Figure 2. Identification of the transcript breakpoint in each PRIM1:NACA isoform. Alignments of the full length 76mer reads providing
evidence for the two isoforms of PRIM1:NACA (i.e. as originally identified by Levin et al, top, and the novel isoform identified by FusionFinder, bottom)
against the last 30 bases of the implicated PRIM1 (G1) exon and the first 30 bases of the NACA (G2) exon. The transcript breakpoint can be clearly seen
where the PRIM1 exon ends and the NACA exon begins. Also displayed is an in-frame translation of the G1 exon from wild type PRIM1, running into
the fused NACA exon. Both isoforms retain an open reading frame despite different exon usage.
doi:10.1371/journal.pone.0039987.g002

FusionFinder: Finding Gene Fusions in RNA-Seq Data
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format. We refer to this dataset hereon as ‘‘the Levin dataset’’. We

generated 30mer pseudo PE reads and searched for candidates

that were evidenced by $4 pseudo PE reads. We used a coding

transcriptome reference containing only those Ensembl transcripts

with a known translation and source data from a local installation

of Ensembl (release 62 - April 2011). All read alignments were

performed with Bowtie (version 0.12.7), allowing for a 2 base

mismatch.

Our analysis produced a final list of 9 fusion candidates. Table 1

gives the details of these candidates as presented in the

FusionFinder summary file. Table 2 shows the details found in

the FusionFinder isoforms file for each of the fusion candidates

from Table 1 that were previously reported by Levin et al.

Replication of the Levin Results
Using a similar (but not fully automated) technique to that

presented here, Levin and colleagues confirmed the findings of

Maher et al [9], who also analysed the K562 cell line using a PE

sequencing approach and observed the fusions BCR:ABL1 and

NUP214:XKR3, fusions 1 and 2 in Table 1. In addition to these,

when analysing the enriched dataset, Levin et al. reported the

previously unobserved fusion transcripts listed at 3, 4, 5 and 7 in

Table 1. Overall they reported four isoforms of the NUP214:XKR3

fusion (involving specific combinations of exons 29 and 27 of

NUP214 and exons 2, 3 and 4 of XKR3) and four isoforms of the

RCC1:PICALM fusion.

Within our candidates, we observed all six fusion events

reported by Levin and colleagues (highlighted in Table 1). These

included the three isoforms of NUP214:XKR3 involving exon 29 of

NUP214 and all four isoforms of RCC1:PICALM. The fourth

isoform of NUP214:XKR3 involving exon 27 of NUP214 was found

in a separate analysis using a value of 0.2 when generating the 3’

pseudo PE reads (data not shown). Importantly, FusionFinder also

reported that due to their genomic proximity, candidates listed as

3, 5 and 7 in Table 1 are potential read-through transcripts as

described elsewhere [16].

Additional Findings
In addition to those fusions found by Levin et al., FusionFinder

generated evidence for three other gene fusions expressed in the

K562 cell line (Table 1, non-shaded) as well as a second isoform of

the PRIM1:NACA fusion (see Table 2). These new candidates are

ACCS:EXT2, C3orf10:VHL and CEP170:RAD51L1 the first two

each having multiple associated isoforms (Table 1).

Figure 2 shows the alignment for both identified isoforms of

PRIM1:NACA (i.e. the original isoform identified by Levin et al.,

and the novel isoform identified by FusionFinder) and an in-frame

translation for the region 30 bases upstream and downstream of

the transcript breakpoint. In wild type PRIM1, a stop codon lies

within the exon downstream of the implicated transcript break-

point. However, in both fusion isoforms an open reading frame is

retained through the fused NACA exon, therefore generating a

sequence coding for a novel fusion peptide.

Experimental Confirmation of Novel Fusions
Using RT-PCR and Sanger sequencing we experimentally

confirmed the existence of two of the three novel fusions (8 and 9

in Table 1) as well as the novel isoform of PRIM1:NACA using

RNA extracted from the commercially available K562 cell line

(Figure 3). In addition we confirmed that the sequence at the

transcript breakpoints of the previously identified fusions

BCR:ABL1 and SLC29A1:HSP90AB1 were correctly predicted by

FusionFinder. At least one predicted isoform of each confirmed

novel fusion was detectable in our particular K562 cell line.
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Failure to detect every isoform of each predicted gene fusion is

attributable to fact that we did not employ the targeted-

enrichment protocol used by Levin et al prior to experimental

confirmation, which would dramatically increase the representa-

tion of these transcripts within the RNA pool.

Comparison to Existing Software on Real and
Simulated Data

Recently published software for the analysis of RNA-Seq data

for gene fusions include FusionMap [16], FusionSeq [24],

FusionHunter [25], deFuse [26] and Tophat-Fusion [15]. Of

these, both FusionMap and Tophat-Fusion can process SE read

data. FusionMap uses a similar strategy to FusionFinder by

splitting reads into smaller sections and finding fusion candidates

where sections align to different genes on an annotated genomic

reference prior to filtering. Tophat-Fusion uses to a two stage

process of firstly aligning reads with a modified version of the

spliced alignment software Tophat [27] to a genomic reference

before secondly performing a post processing step to overlay

annotation and perform filtering.

To compare the performance of FusionFinder with FusionMap

and Tophat-Fusion we have run a full analysis with all three tools

using the Levin dataset. For this dataset, comprising 14 million

76mer reads, a complete analysis with FusionFinder took

approximately 3.1 hours on a single 2.4 GHz core of a multi-

core AMD server with a peak memory usage of 1.8GB and using

data from a local Ensembl (release 62) mirror. FusionMap (version

2012-03-03) with comparable parameters (a= 25, b= 1, G = 2)

and preloaded reference data running the same analysis using

Mono (version 2.10.8) under 64-bit linux, again on a single

2.4 GHz core, took 2.1 hours to complete and at its peak

consumed 7.2 GB memory. Tophat-Fusion with comparable

parameters (alignment phase: –fusion-min-dist 10000 and post-

processing: –num-fusion-reads 4–num-fusion-pairs 0–num-fusion-

both 4) and reference data on the same platform took 15 hours to

complete and consumed 9.6 GB memory at its peak during the

post-processing step. Although the run time for FusionFinder is

slightly slower than FusionMap on a single core both are

considerably faster than Tophat-Fusion. In addition FusionFinder

consumes far less memory under a Linux operating system than

both FusionMap and Tophat-Fusion. It should be noted that both

FusionMap and Tophat-Fusion can be run on multiple CPU cores

and with the same dataset and parameters but with 5 CPU cores,

the analysis took 0.8 hours and 4.5 hours respectively. Similarly

Bowtie can be run on multiple CPU cores and using 5 cores for the

alignment steps in the FusionFinder protocol improves the total

analysis time to 2.4 hours. We are currently working on a fully

multithreaded version of FusionFinder. These data are summa-

rised in Table 3 and a detailed breakdown of resources used by

FusionFinder at each step of the protocol can be found in Table

S4.

In line with previous reports [16] our analysis of the Levin

dataset with FusionMap confirmed the findings of Levin et al. and

reported an additional 57 candidates in this dataset. In compar-

ison, Tophat-Fusion reported 12 candidate fusions but did not

successfully identify all those reported by Levin et al or the

additional candidates reported by FusionFinder, even when we

allowed for the detection of the read-through transcripts we

observed. Tophat-Fusion only reported two of the three isoforms

of NUP214:XKR3 reported by FusionFinder and did not report

CEP170:RAD51L1 but did report an additional isoform of

BCR:ABL1 which was not reported by FusionFinder or Fusion-

Map. The results of these analyses are presented in Table S1 a

and b.

To further compare the performance of each software we

generated a simulated dataset of approximately 13.5 million SE 75

nucleotide reads (see Methods). The dataset contained normal

background reads and ‘‘fusion reads’’ representing the transcript

breakpoint of 55 fusion transcripts generated at random (see Table

S2a). The dataset simulated fusions designed to represent both

high and low levels of expression with read numbers per fusion

transcript ranging from 1 – 295. We ran FusionFinder, FusionMap

and Tophat-Fusion against this dataset. FusionFinder was run with

default parameters, generating 30mer pseudo PE reads. Fusion-

Map was run with comparable parameters (a= 30, b= 1, G = 2,

MinimalHit = 1), though we note that in order for FusionMap to

Figure 3. RT-PCR validation of the fusion candidates. Primers were designed around the individual fusion breakpoints and cDNA was
synthesised using gene-specific primers. Products were successfully amplified for the following fusion isoforms; BCR:ABL (380 bp, lane 1), PRIM1:NACA
isoform 1 (400 bp, lane 2), PRIM1:NACA isoform 2 (340 bp, lane 3), C3orf10:VHL isoform 2 (340 bp, lane 6), ACCS:EXT2 isoform 3 (230 bp, lane 9) and
SLC29A1:HSP90AB1 (340 bp, lane 10). No product could be amplified from CEP170:RAD51L1 (lane 4), C3orf10:VHL isoform 1 (lane 5), ACCS:EXT2 isoform
1 or ACCS:EXT isoform 2 (lanes 7 and 8). The corresponding negative controls for each reaction are in the lanes proceeding each reaction. All detected
fusion products were validated by Sanger sequencing.
doi:10.1371/journal.pone.0039987.g003
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detect any simulated fusions it was necessary to alter the

MinimalRescuedReadNumber parameter to 0. Tophat-Fusion

was also run using comparable parameters for the post-processing

step of the protocol (–num-fusion-reads 1–num-fusion-pairs 0–

num-fusion-both 1). Sensitivity and Positive Predictive Values

(PPV) were then calculated for the simulated dataset to assess the

ability of each software to accurately detect simulated fusion genes

(see Methods). Table 4 summarises the overall results of this

analysis whilst a plot of these data is shown in Figure 4. The raw

results from each software can be found in Tables S2 b, c and d.

The performance measures were calculated on subgroups of fusion

genes where subgroups were selected based on the number of

reads (i) evidencing the fusion genes predicted by each software.

For example, the point marked at 100 on the x axis of Figure 4

shows performance measures for all predicted fusion genes that

were found to be evidenced by 100 or more reads.

Among the fusion gene predictions made by each software are

what we have termed ‘‘synonymous fusions’’. These are where at

least one of the identified gene partners has been inaccurately

predicted because it shares high sequence similarity with the

expected partner gene, possibly because it is a member of the same

gene family (for example, an S100A3:SULT1A4 fusion may be

detected as an S100A3:SULT1A3 fusion). Although the informed

researcher would frequently be able to distinguish these fusions by

visual comparison with other candidates in the output files, in our

assessment of sensitivity and PPV such synonymous fusions were

considered to be false positives to provide the most stringent

assessment of each software.

It can be seen from Figure 4 and Table 4 that FusionFinder

shows greater sensitivity and generally greater PPV than

FusionMap in the detection of our simulated fusion genes.

Figure 4 also shows that FusionFinder compares favourably

against Tophat-Fusion with an overall greater sensitivity and a

comparable PPV. With regard to the overall sensitivity in Table 4,

FusionFinder detected 87% of the 55 simulated fusion genes,

FusionMap reported 58% and Tophat-Fusion reported 64%.

Importantly, FusionFinder and Tophat-Fusion only detected 15

and 5 false positives respectively (some of which were synonymous

fusions - see Table S2 b, c and d) giving them a comparable PPV.

In contrast FusionMap reported 582 false positives, which

represents 95% of the returned results respectively (Table 4). This

has a considerable effect on the PPV in Figure 4 at low read levels

with FusionMap remaining significantly lower than both Fusion-

Finder and Tophat-Fusion. Consequently, in the case of

FusionMap the user is returned a large list of potential fusion

genes consisting primarily of false positives. In contrast, the

candidates reported by FusionFinder will be more robust and

more likely to be confirmed experimentally.

For two of the fifty-five simulated fusions, the partner genes

contained repeats of the same class at the transcript breakpoint.

These gene fusions were detected by FusionFinder but due to the

RepeatMask filter, were subsequently filtered. However, both of

these appeared in the FusionMap results, suggesting that

FusionMap does not take the presence of repeats in to account.

This could explain the occurrence of so many false positives in

FusionMap’s results. Both of these simulated fusions were also

filtered by Tophat-Fusion.

It should be noted that when both FusionMap and Tophat-

Fusion detected a simulated fusion gene they consistently detected

all simulated fusion reads, however although FusionFinder

detected more simulated fusion genes it did not consistently detect

all fusion reads. This is because, FusionFinder analyses data from

an alignment using Bowtie’s default parameters which does not

provide results for multi-mapping reads. This means that given

two genes from the same family, sharing high sequence identity, a

read has an equal chance of hitting either of these genes. As a

result, the expected fusion reads are distributed between all

synonymous fusions. We are working on a method to analyse

alignments of multi-mapping reads, which will significantly

increase the numbers of reads detected.

Table 3. Performance comparison of FusionFinder, FusionMap and Tophat-Fusion in an analysis of the Levin dataset.

FusionFinder FusionMap Tophat-Fusion

Total time taken - single core (hrs) 3.1 2.1 15.0

Total time taken - 5 cores (hrs) 2.4 0.8 4.5

Peak Memory - single core (GB) 1.8 7.2 9.6

Data based on the analysis of the Levin dataset comprising 14 million 76 mer reads, using either a single 2.4 GHz core or 5 cores of a 64-bit linux machine with multiple
AMD Opteron 8431 CPUs and 32GB memory. The parameters used for each analysis are in the main text and the raw results for each analysis can be found in Table 1
and Tables S1 a and b.
doi:10.1371/journal.pone.0039987.t003

Table 4. Summary of the overall comparative performance of FusionFinder, FusionMap and Tophat-Fusion on a simulated dataset.

Sensitivity PPV
True positive
fusions

True positive
reads

False positive
fusions False positive reads

FusionFinder 0.87 0.76 48 2937 15 433

FusionMap 0.58 0.05 32 2065 582 7045

Tophat-Fusion 0.64 0.88 35 3120 5 446

A total of 55 fusion genes were simulated. Sensitivity and PPV measures were compiled from predicted fusion genes evidenced by 1 read or more (i.e. all data). True
positive fusions/reads relate to the accurate prediction of simulated fusions whereas false positive fusions/reads relate to all other predictions including synonymous
fusions. For FusionFinder, all false positive genes and consequently all false positive reads were from synonymous fusions (see Table S2b). FusionFinder detects more
simulated fusions and significantly fewer false positives than FusionMap with consistently greater sensitivity and PPV. FusionFinder showed a higher sensitivity and
comparable PPV to Tophat-Fusion.
doi:10.1371/journal.pone.0039987.t004
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Application of FusionFinder to a PE Dataset
While FusionFinder is more suited to the analysis of SE data, it

can also be used to analyse PE data, by considering each PE reads

file as a separate SE reads file. We applied FusionFinder to PE

RNA-Seq data from the MCF-7 breast cancer cell line as

previously described [28] and also analysed by the authors of

Tophat-Fusion [15]. This dataset comprises approximately 17

million 50 bp PE reads. Table 5 shows the results of an analysis of

this data with FusionFinder using default parameters but creating

25 bp pseudo PE reads and searching for candidates with at least

two reads evidencing them. We found seven fusions, six of which

have been previously reported [28,29]. Only three of these fusions

were found by Tophat-Fusion [15].

Discussion

FusionFinder is a Perl based software suite designed for the

discovery of fusion transcripts and their isoforms. We have

demonstrated the use of FusionFinder by applying it to publicly

available SE (the Levin dataset) and PE (MCF-7) data. In the case

of the Levin dataset we successfully replicated previously published

findings (including the discovery of an additional isoform of the

previously reported PRIM1:NACA fusion, Figure 2) and revealed

three other candidates for further study. In total there were 9

fusion candidates passing all filters. The Levin dataset represents a

targeted RNA-Seq approach wherein 467 cancer-related genes

were representationally enriched. As expected, at least one or both

of the genes implicated in each of our fusion candidates were

enriched for by Levin et al. Aside from the six fusion transcripts

reported by Levin et al., the three additional fusions we have

identified with FusionFinder are also of biological interest:

C3orf10:VHL or BRK1:VHL (Table 1, #8) - VHL is a tumour

suppressor gene deleted in von Hippel Lindau disease, an

autosomal dominant familial cancer syndrome that can give rise

to pheochromocytoma and tumours of the kidney, central nervous

system, pancreas, retina and epididymis. The BRK1 gene (BRICK1,

C3orf10 or HSPC300) lies upstream of VHL on chromsome 17 and

is involved in the branched nucleation of actin fibres. Although no

fusions of the two genes have to date been reported, co-deletion of

BRK1 has been shown to alter the prevalence and severity of renal-

cell carcinoma in patients with VHL deletion [30,31]. Such co-

deletion has been attributed to Alu-mediated recombination since

the genes lie in a region of high Alu density [30] and it is likely that

gene fusion could occur by a similar mechanism with deletion of

the intergenic region. This is consistent with the transcript

breakpoint in isoform 2, which appears to involve an intra-exonic

break in the C3orf10 gene (sequences available in File S1), arguing

against an RNA-splicing mechanism. The oncogenic effect of a

fusion between these genes is not known but their co-operating

role in the development of renal cell carcinoma suggests that the

existence of this fusion transcript in the K562 CML cell line is

likely to be functionally relevant. The expression of one of the

isoforms of this fusion was confirmed by RT-PCR in our K562 cell

line.

ACCS:EXT2 (Table 1, #9) - EXT2 is a tumour supressor gene

implicated in multiple osteochondroma [32], with the gene being

affected by a wide-range of mutations including frameshift and

splice-site mutations. The proximity of the ACCS and EXT2 genes

suggests that this potential fusion may result from read-through

Figure 4. Comparison of sensitivity and PPV for FusionFinder, FusionMap and Tophat-Fusion. To compare the sensitivity and PPV of
FusionFinder, FusionMap and Tophat-Fusion to detect fusion genes, each software was used to analyse a randomly generated dataset simulating
normal genes and 55 fusion genes. Calculations of sensitivity and PPV were made for subgroups of the results based on the number of reads
evidencing the fusion genes predicted by each software. FusionFinder shows consistently higher sensitivity than both FusionMap and Tophat-Fusion
and shows a generally higher PPV than FusionMap and similar PPV to Tophat-Fusion.
doi:10.1371/journal.pone.0039987.g004
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transcription and subsequent RNA splicing, similar to the situation

with PRIM1:NACA (Table 1, #4) and a number of others from

Table 1. Again, expression of this gene fusion was confirmed by

RT-PCR in our K562 cell line.

CEP170:RAD51L1 (Table 1, #6) – RAD51L1 is a DNA repair

gene, and is a known translocation partner in a series of benign

solid tumours [33]. Although this fusion was not confirmed

experimentally in our K562 cell line, this is likely due to the fact

that we did not perform the enrichment protocol employed by

Levin and colleagues prior to experimental confirmation.

The results of our software comparison clearly demonstrate the

utility of FusionFinder versus two other existing methods. As well

as more consistently predicting gene fusions, FusionFinder

provides more detailed sequence based output to assist in the

experimental confirmation of fusion candidates. Using the three

frame translation of the area around the predicted transcript

breakpoint one can quickly establish whether an open reading

frame exists across the fused exons. Furthermore, the alignments

produced by FusionFinder provide a more detailed picture of the

context of the fusion, which is valuable information when seeking

experimental confirmation. In addition to demonstrating that

FusionFinder can detect gene fusions in enriched SE data (Levin

dataset) and simulated SE data we have also shown the detection

of gene fusions in publicly available PE data (MCF-7). Further-

more we have applied FusionFinder to our own in-house RNA-

Seq data and have characterised a novel fusion transcript

expressed in a rare paediatric carcinoma (manuscript under

review).

A few assumptions exist that must be considered when using

FusionFinder, although these would apply to most software of this

nature aimed at analysing RNA-Seq data. Firstly, FusionFinder

will only detect transcribed gene fusions because RNA-Seq only

sequences at the transcript level. Secondly, RNA-Seq is a

quantitative technology and transcripts that are more highly

expressed are sequenced at higher coverage, meaning that

transcripts expressed at lower levels will be harder to detect.

Despite this caveat, those that are represented at low levels, even

down to a single read, will be pulled out of the sea of false positives

by the extensive logical filtering within FusionFinder. Thirdly,

FusionFinder cannot distinguish between a physical fusion, RNA

trans-splicing or read-through transcription. Fourthly, FusionFin-

der is designed to detect fusions occurring at canonical exon

junctions. Therefore it will not typically detect fusions involving

intra-exon breakpoints, which are relatively rare [10,11]. However

it should be noted that FusionFinder was able to detect the

experimentally confirmed C3orf10:VHL (isoform 2) fusion, align-

ments for which implicate an intra-exon break. An explanation for

this particular case can be found in File S1. Finally, it is essential

that the transcriptome reference library is comprehensive enough

to reliably capture all known transcripts. The reference libraries

we provide comprise annotated transcripts contained within

Ensembl and are updated in line with new builds of Ensembl.

Using reference data from Ensembl has an additional advantage in

that when a new Ensembl build is released it is a very straight

forward process for the user to download a new reference dataset

from our website [19,20], update their Ensembl API and point to

the new build. In doing so the user always has access to the most

current reference annotation.

The candidates identified by FusionFinder are predictions based

on sequence evidence and laboratory confirmation is required to

determine whether or not a transcribed fusion gene will be

functional. The alignments generated by FusionFinder assist in this

process by providing the sequence of the fusion candidate at the

point of the transcript breakpoint and also provide details
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regarding whether or not this sequence retains an open reading

frame. Once the sequence of the fused exons is known, it is

possible to generate predicted models of the full fusion transcript

and subsequently assess expression levels using the algorithms

provided within software such as Cufflinks [34] and EdgeR [35].

Whilst FusionFinder identifies any expressed fusion transcripts

from the sample under investigation, researchers must of course

consider cellular heterogeneity in their interpretation of the data,

and the possibility that signals may arise from multiple clones (or

different cell types) within the specimen.

As next-generation sequencing technologies become more

affordable, so the number of studies using this technology to

discover fusion transcripts will increase. There is a great need for

adequate analysis software that can rapidly interrogate such large

amounts of data to reveal the patterns therein. FusionFinder

provides a logical and flexible software solution to this end that will

facilitate the automated discovery of fusion transcripts in RNA-

Seq data. FusionFinder has not only validated the fusion

transcripts previously reported for the K562 CML cell line but

has also identified novel candidate fusions. Of these, BRK1:VHL

represents the fusion of two genes that have previously been shown

to co-operate in the development of renal cell carcinoma. This is

the first description of a potential direct fusion between these two

genes.

Materials and Methods

Experimental Confirmation
The validation of ten isoforms from six of the fusion genes

identified by FusionFinder was performed by Sanger sequencing of

RT-PCR products. Total RNA from K562 ([36] a gift from Prof.

GR Shellam, University of Western Australia) was reverse

transcribed using gene specific primers (individual details for

successful primers can be found in Table S3) and Omniscript RT

(Qiagen) according to the manufacturer’s instructions. RT-PCR

products were then amplified using GoTaqH Flexi DNA

polymerase (Promega). The amplification conditions were as

follows: initial denaturation at 95uC for 2 minutes, followed by 35

cycles of 30 seconds at 95uC, 30 seconds at 60uC and 45 seconds at

72uC, with a final extension step of 72uC for 5 minutes. PCR

products were gel extracted and purified using a QIAquick Gel

Extraction Kit (Qiagen) and were then subject to Sanger

Sequencing using BigDyeH Terminator V3.1 (Applied Biosystems

- ABI). The sequencing amplification conditions were as follows:

initial denaturation at 96uC for 1 min, followed by 35 cycles of 10

seconds at 96uC, 5 seconds at 50uC and 4 minutes at 70uC.

Samples were purified and then sequenced on an ABI 3130 xl

machine. Sequences were aligned to the original fusion transcript

sequences for validation.

Generation of Simulated Datasets
To produce a simulated dataset that was representative of a real

SE RNA-Seq run, we firstly examined an in house RNA-Seq

dataset to establish what typical proportion of all possible Ensembl

genes and transcripts were represented and the distribution of

reads representing them. Using these parameters we then wrote a

Perl script that randomly selected transcripts from Ensembl and

through sampling from our known read distribution, a random

number of reads were then generated across the full length of each

selected transcript. During this process, pairs of transcripts from

different genes were selected at random to be used as fusion

transcripts. The sequences of a single exon from each fusion

transcript were then combined and a random number of reads

were generated across the simulated fusion breakpoint, ensuring

that each read contained at least 30 bases of either exon. All

normal and fusion reads were generated in the forward orientation

with a random number being reversed and complemented to

represent the fact either strand of a cDNA fragment may be

sequenced. In addition to the normal and fusion reads, 10,000

random sequence reads were generated to represent reads of poor

quality sequence.

Calculation of Performance Measures
For our comparison of software performance, sensitivity was

defined as the proportion of correctly identified fusion genes and

PPV as the proportion of identified fusion genes that are true

simulated fusion genes. These performance measures are defined

as follows:

Sensitivityi~
TP

TPzFN
Positive Predictive Valuei~

TP

TPzFP
where TP (True Positive) is the number of correctly identified

fusion genes, FN (False Negative) is the number of fusion genes

that are not correctly identified and FP (False Positive) is the

number of genes incorrectly identified as fusion genes. The

number of reads evidencing the fusion genes is denoted by i and in

our simulations ranged from 1 to 295.

Supporting Information

Table S1 The raw FusionMap (a) and Tophat-Fusion (b) output
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(XLS)

Table S2 The sensitivity measurements for each of the 55

simulated fusion genes (a) and the raw FusionFinder (b),

FusionMap (c) and Tophat-Fusion (d) output.

(XLS)

Table S3 Primers used for gene-specific cDNA synthesis, PCR
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