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MeCP2 and the enigmatic organization of
brain chromatin. Implications for
depression and cocaine addiction

Juan Ausió
Abstract

Methyl CpG binding protein 2 (MeCP2) is a highly abundant chromosomal protein within the brain. It is hence not
surprising that perturbations in its genome-wide distribution, and at particular loci within this tissue, can result in
widespread neurological disorders that transcend the early implications of this protein in Rett syndrome (RTT). Yet,
the details of its role and involvement in chromatin organization are still poorly understood. This paper focuses on
what is known to date about all of this with special emphasis on the relation to different epigenetic modifications
(DNA methylation, histone acetylation/ubiquitination, MeCP2 phosphorylation and miRNA). We showcase all of the
above in two particular important neurological functional alterations in the brain: depression (major depressive
disorder [MDD]) and cocaine addiction, both of which affect the MeCP2 homeostasis and result in significant
changes in the overall levels of these epigenetic marks.
“Au temps déjà lointain où, étudiant de la sublime
Science, nous nous penchions sur le mystère tout
rempli de lourdes énigmes…”

Fulcanelli (1925), Le mystère des cathédrales [1]
Background
It was not until 1999, when it was realized that muta-
tions in MeCP2 may result in RTT (an autistic type of
neurodevelopmental disorder) [2], that the scientific
community began to pay a great deal of attention to this
protein. A significantly large amount of research has
been carried out since that time, and what was initially
thought to be a relatively simple, unique repressor pro-
tein [3], developed into a fascinating transcriptional
regulator [4, 5]. Part of its functional multiplicity is due
to the intrinsically disordered conformation of MeCP2
[4, 6], which makes it amenable to interaction with
multiple interacting protein partners, as well as to its la-
belling with various post-translational modifications
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(PTMs), such as phosphorylation, acetylation and
ubiquitination [4]. Such PTMs further modulate the
interaction of MeCP2 with chromatin [7].
In the brain, where MeCP2 is highly abundant [8, 9],

it can bind to both DNA methylated and non-
methylated regions of chromatin [10]. Yet, the chroma-
tin organization resulting from these interactions is still
unclear, and the molecular details involved are not
completely understood. The large occurrence of MeCP2
in neurons has led to the realization in recent years that
alterations in the homeostatic levels of the protein can
have important functional consequences for several
neurodevelopmental and neurodegenerative diseases that
highly transcend RTT [4]. In this regard, a significantly
large amount of research and information has been re-
cently gathered about two types of brain alterations,
which have important societal implications: depression
[11] and cocaine addiction [12]. Both have a strong
epigenetic component that involves changes in MeCP2
levels and alterations of the histone PTMs (such as
acetylation and phosphorylation). The molecular details
regarding the involvement of MeCP2 in these brain dis-
orders has brought about a significant amount of excit-
ing functional information, relevant not only for the
particular mechanisms involved in each of them, but
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more importantly, for the overall molecular biology of
MeCP2 in the brain.

A brief history of MeCP2: Cancer, Rett syndrome,
MDD and cocaine addiction
In 1989, the search for a protein “reader” that specifically
binds to regions of methylated CpG in the mammalian gen-
ome [13] led to the identification of a protein known as
MeCP-1 [14], a protein that binds in vitro to DNA se-
quences containing at least 12 symmetrically methylated
CpGs [15]. Three years later, an additional methylated CpG
binding protein was identified called MeCP2 [16, 17]. Due
to its 5-methyl cytosine (5mC) binding activity, the protein
was initially assigned a repressive role, supposedly acting at
the methylated regions of transcriptionally repressed genes
[3]. However, more recently, the protein has been shown to
additionally bind to 5-hydroxy-methylated cytosines
(5hmC) at the elongation regions of transcriptionally active
genes [18]. It has also been shown to bind to both repres-
sive and activating co-factors [19, 20]. Therefore, MeCP2
should be viewed as a transcriptional regulator [4]. By
virtue of its ability to bind to methylated DNA and
to chromatin modifying complexes, such as HDACs
and CREB, MeCP2 can be considered both an epigen-
etic ‘reader’ and a ‘writer’.
The initially identified form of MeCP2 turned out to

be what is today known as the MeCP2-E2 isoform. It
was not until 2004 that the MeCP2-E1 isoform (initially
called MeCP2 B) was discovered [21]. MeCP2-E1 is the
major form of MeCP2 [22] and the one that is most
abundant in the brain, corresponding to approximately
A

B

Fig. 1 a Gene organization of MeCP2. Two isoforms E1 and E2 result from
transcription. The domain organization of the resulting protein isoforms is
methyl-binding domain; NTD; N-terminal domain; TRD: transcriptional repre
first described
90 % of the total MeCP2 in this tissue [23]. Of note, the
predicted half-life of the two isoforms is very different,
with that of the E1 isoform (4 hours) being significantly
different from that of E2 (100 hours) [4].
The gene organization and schematic representation

of the protein structure of these two MeCP2 isoforms
are shown in Fig. 1a. The MeCP2 gene is negatively reg-
ulated by the high mobility group nucleosome binding
(HMGN) of non-histone chromosomal proteins [24],
and positively regulated by the transcription factor myo-
cyte enhancer factor 2C (MEF2C) [25]. MicroRNAs,
such as miR-132 [26], miR-7b development [27], miR-
483-5p [28], miR-155/miR-802 [29] and miR-181 [30]
also play a very important role in the regulation of the
expression of the gene.
At the protein level, the common methyl binding do-

main (MBD) (Fig. 1a) is the only region of these proteins
that shows a well-characterized tertiary structure [31]
within what it is one of the best examples of an in-
trinsically disordered protein [4]. As such, the protein
is subject to numerous PTMs [4], of which the phos-
phorylation of serine residues at position 80 (S80 of
human E2 isoform) [32] and 421 (S421of mouse E1
isoform) [33], commonly referred to as S80 and S421
[34], have been the most extensively characterized.
Importantly, the levels of MeCP2 and its homeostasis
in the brain (where the protein is more abundant)
appear to be critical to its proper developmental
function [35], although normal physiologically-relevant
fluctuations can occur in a circadian-regulated man-
ner [36].
alternative splicing. The red arrows indicate the starting sites of
also shown. CTD; C-terminal domain; ID: intervening domain; MBD:
ssion domain. b Number of publications since MeCP2 was
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Fig. 2 The involvement of MeCP2 in Rett syndrome
neurodevelopmental disease represents just the tip of the iceberg.
The high abundance of MeCP2 in the brain [8, 9] has implications
for many other neuropathological disorders [4]
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It took seven years since the discovery of MeCP2 for
the number of publications on this protein (Fig. 1b) and
the general interest of the scientific community to pick
up on Huda Zoghbi’s team demonstration at the Baylor
College of medicine, which demonstrated that RTT, for
the most part, is due to mutations in MeCP2 [2]. Rett
syndrome is an X-chromosome-linked neurodevelop-
mental disease predominantly affecting girls. It is related
to autism and is characterized by intellectual disability
and developmental regression [37]. Studies published
previous to the knowledge of the connection of MeCP2
with RTT included the characterization of the inter-
action of MeCP2 with histone de-acetylases (HDACs)
[38]. Together with the interaction of MeCP2 with CpG
methylated DNA, this finding reinforced the notion of a
transcriptionally repressive role initially associated with
this protein [39], while establishing the first link between
MeCP2 and histone acetylation. This concept fits well
with that of DNA CpG hypermethylation, which is usu-
ally found at the promoters of tumor-suppressor genes
in many cancers [40–43] where MBD proteins, including
MeCP2, play an important role [44]. A paper appeared
during the interim period of time that preceded the
RTT-MeCP2 association, which involved MeCP2 in the
repression of the retinoblastoma gene [45], and it paved
the way in terms of MeCP2’s involvement in cancer. In-
deed, MeCP2 has been recently recognized as playing
the role of a bona fide oncogene [46].
Although the presence of MeCP2 in the brain is ex-

ceedingly larger than in any other tissue [9], the last sen-
tence of the prior paragraph should serve as a reminder
that the protein plays additional important roles in many
other tissues and physiological aspects of the body. An
underscoring example of this can be drawn from a re-
cent observation describing a decrease in both the levels
of mRNA and of MeCP2 itself during chronic heart fail-
ure [47]. The same holds equally true for the brain and,
in this case, it is the massive presence of MeCP2 in this
organ that is responsible for many other neurodevelop-
mental and neurodegenerative processes (Fig. 2) [4] far
beyond RTT. As will be discussed later, alterations in the
levels of MeCP2 have been described, for both major de-
pressive disorder (MDD) and cocaine addiction [48], two
brain affections which pervade our modern society and
are an important public health concern [49–51].

Chromatin, the variance of the histones and
chromatin epigenetics
Chromatin is the name given to the nucleoprotein com-
plex that results from the association of DNA and his-
tones. Histones are basic proteins, rich in both Lysine
and Arginine residues. They have been broadly classified
into two structurally different major groups [52]: core
and linker histones. Core histones (H2A, H2B, H3 and
H4) form an octameric protein complex consisting of 2
H2A-H2B dimers and an H3-H4 tetramer that serves as
a protein core, around which 145-147 bp DNA is
wrapped in approximately one and three quarters of left-
handed super-helical turns to form the nucleosome core
particle (NCP). In the chromatin fiber, NCPs are con-
nected to each other by shorter linker DNA regions of
variable nucleotide length. The average distance in nu-
cleotides between the centers of two adjacent nucleo-
somes is known as the nucleosome repeat length (NRL),
which may vary between different tissues, with neurons
exhibiting an unusually short one (160 bp) in metazoan
tissues [53]. Linker histones (of the histone H1 family)
bind to the NCP close to its dyad axis, at the entry and
exit sites of the linker DNA connecting adjacent nucleo-
somes [52, 54]. The former have been further classified
into canonical replication-dependent histones and
replication-independent replacement histone variants
(i.e. H2A.Z, H2A.X, H2A.B, macro H2A, H3.3) [55].
However, what we have over the years referred to as

histone variants [56] due to their lower abundance in
metazoans may have been the primordial canonical
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histones, while what we are currently calling replication-
dependent canonical histones may actually represent the
real variants. As a matter of fact, most protein-encoding
eukaryotic genes, in contrast to the replication-
dependent histone genes, contain introns and are poly-
adenylated, as compared to the replication histone
genes, which are intron-less and are poly A- [57]. Of
note, yeast H2A is H2A.X and H3 is H3.3 [58]. More-
over, H2A.X in metazoans is encoded by both poly A+
and poly A- mRNAs [59]. It appears that as genomes
became increasingly larger, there was a need for
specialization in the histone genes to adapt to the syn-
thesis demands that ensure the fast and efficient cover-
age of the genomic DNA during DNA replication. This
was achieved by a completely different regulation of the
expression of these genes, as well as the loss of their in-
trons and poly-adenylation [57]. Indeed, some of these
replication-dependent histones are actively expressed in
differentiating and aging retinal neurons at a time when
replication has already ceased [60].
Regardless of their ancestry or origin, replication-

independent histone variants play an important role in
brain development [61, 62]. A few examples have been
recently brought to the forefront. Histone H2A.Z has
been shown to play a critical role in recent and remote
memory consolidation [63], and histone H3.3 has been
shown to play an essential role in neuronal plasticity and
cognition [64].
In addition to the histone variation, histones in gen-

eral, regardless of their replication dependent or inde-
pendent nature, can be post-translationally modified
(PTM) at specific amino acid sites in their sequence.
These chemical modifications (i.e. acetylation, methyla-
tion, phosphorylation and ribosylation, to name just a
few [65]) set the molecular basis for the proposal of the
histone code fifteen years ago [66]. From then on, chro-
matin went from being considered a passive structural
template that sustained the DNA metabolic functions to
acquiring an epigenetic role of its own, in which the
histones play a crucial role. As a matter of fact, histone
variants and histone PTMs provide the molecular basis
for their epigenetic involvement [55, 67, 68].
The histone code involves a complex network of pro-

tein ‘writers’, ‘erasers’ and ‘readers’ responsible for the
downstream functional implications of the histone
PTMs. However, not all histone variants and PTMs have
an exclusive epigenetic function. For instance, in
addition to its epigenetic involvement, global histone
acetylation of pan-acetylated H3/H4/H2A.Z can alter
the structural organization of chromatin on their own
[69], as is also the case in H4 K16 acetylation [70].
In addition to histone variants and their PTMs

[71], other chromatin trans-acting factors, such as
MeCP2, by virtue of binding to methylated [72] and
hydroxymethylated [18] DNA could also have an im-
portant involvement, thus connecting epigenetics and
neuronal function [73]. How MeCP2 and histone epigen-
etic baggage affect neuronal chromatin organization is still
one of the many remaining enigmas that will be analyzed
in the next two sections.
MeCP2 and the chromatin organization of
neurons
As we and others have experimentally shown, MeCP2 is
a very abundant chromosomal protein within the brain,
with approximately one MeCP2 mole for every nucleo-
some in the neurons of an adult brain [8, 9]. The ques-
tion then arises as to how this high MeCP2 prevalence is
accommodated within the histone crowded chromatin
ensemble. Moreover, the levels of MeCP2 in neurons in-
crease during brain development, and are accompanied
by a decrease in the NRL from approximately 200 bp at
the early embryonic stages to 160 bp in the adult brain
[74]. In addition, it has long been known, and recently
corroborated, that the levels of linker histones (histones
of the H1 family) in the brain are approximately 50 % of
what would be present in other somatic tissues [8, 75]. It
was initially shown that MeCP2 is able to displace his-
tone H1 in vitro in a DNA methylation-dependent man-
ner [76]. When all this information is considered
together, the question arises as to whether MeCP2 is
present in a quasi-even alternating nucleosome arrange-
ment, or clustered in regions that are highly enriched,
others in which H1 prevails, or a mixture of the two.
With regards to the potential role of MeCP2 in the

organization of chromatin, and neuronal chromatin in
particular, one of the most puzzling and yet unexplained
observations is that of its early release during micrococ-
cal nuclease digestion [9]. Using a relatively simple
chromatin fractionation method (Fig. 3a), it was demon-
strated that a large amount of MeCP2—more than 50
percent—is released into a supernatant S1, which is defi-
cient in histones (particularly H1) (Fig. 3b) and which
consists of mono-nucleosomes (Fig 3c) along with small
oligonucleotides that are released during nuclease diges-
tion and contain a higher level of methylated cytosine
(Fig. 3d) [9]. Thus, a significant amount of MeCP2 ap-
pears to be bound to chromatin regions that are highly
accessible to micrococcal nuclease. Such an observation
is highly enigmatic and appears to be in contrast with
the initial repressive role associated with the protein [3],
as well as with the highly compacted nucleoprotein com-
plexes it forms in vitro upon interaction with nucleso-
some arrays [77]. Interestingly, as shown in Fig. 3c,
during the early stages of digestion, most of the MeCP2
present in S1 appears to arise from the highly compact
“insoluble” structures present in fraction P.
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Fig. 3 a After micrococcal nuclease (MNase) digestion of cellular nuclei, small-sized nucleosomes chromatin (nI) (see Fig. 4) that leak through the
nuclear membrane pores can be recovered in the supernatant (SI) after centrifugation. The nuclear pellet can next be hypotonically lysed in the
presence of 0.25 mM EDTA and centrifuged once more to yield a supernatant (SE) fraction and an insoluble pellet (P). b Protein composition of
the SI, SE and P fractions as analysed by polyacrylamide gel electrophoresis (PAGE) in the presence of SDS detergent. Histones H1, H2A, H2B, H3
and H4 are indicated, as well as myelin (M). c Analysis of the SI, SE and P fractions during a time-course Mnase digestion of rat whole brain nuclei.
The upper part of the Figure shows a Western blot analysis using MeCP2 and H4 antibodies. The lower part shows a native PAGE analysis of the
DNA composition of the fractions obtained at different time of digestion. CE: chicken erythrocyte histones used as a control; M: pBR322-Cfo
I–digested DNA used as a marker. The numbers on the right had side of the native PAGE indicate the DNA fragment sizes in base pairs (bp).
The red lines highlight the shift in the center of the mononucleosome DNA (nI) distribution in SE and P. d Relative meC/C percentile composition
of the SI, Se and P fractions at limit Mnase digestion. (Section c was reproduced from Fig. 2A from [9], with permission)
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Equally intriguing is the difference in NRL observed
between chromatin in the P fraction (approx. 200 bp)
and that of the SE fraction (centered at approx. 174 bp).
This difference is reminiscent of the transition in NRL
observed during neuronal development (from 200 bp at
the onset of development to 160-170 bp in mature neu-
rons [74]) in a way that is independent of the chromatin
H1 content [53]) and for which there is yet no explan-
ation. Interestingly, the NRL change is dependent on de-
velopmental factors of the brain, such as thyroid
hormone [78], and follows the transition of the neuronal
nucleus from a small heterochromatic to a larger eu-
chromatic nucleus [79, 80]. Whether all these transitions
are dependent on MeCP2 remains to be determined.
Based on these results, we would like to put forward a

hypothetical model (Fig. 4) that still requires further ex-
perimental testing but which is different than that we
had proposed earlier [9]. In this model, an important
amount of MeCP2 is concentrated at the chromocenters
and the nucleolus periphery, and therefore, while at-
tached to these ‘insoluble’ chromatin domains, it should
be highly accessible to digestion by nucleases. Indeed,
immuno-gold labelling using electron microscopy ini-
tially demonstrated a preferential localization of MeCP2
at the periphery of highly dense chromatin structures
[9]. This is in agreement with earlier observations of its
co-localisation with DAPI-positive, heterochromatic re-
gions that surround the nucleolus [81]. Of note, most of
the transcriptional dynamics in neurons occur in the nu-
cleolus and at different euchromatin sites [82]. More-
over, in neurons, MeCP2 has been shown to bind to the
methylated CA sites of exceptionally long genes and,
more importantly, disruption of MeCP2 alters the levels
of rRNA [72].
The presence of two MeCP2 isoforms with putative,

disparately different half-time lives may impinge in the
dynamics of neuronal chromatin, giving it a very fluid
organization. Although highly speculative, one could en-
vision an organization in which MeCP2 that already
binds highly dynamically to chromatin as determined
by FRAP [83, 84] could utilize its E1 and E2 iso-
forms to differentially alter its association with differ-
ent chromatin domains in a quick response to rapid
changes in the environment (such as in response to
the circadian cycle [36], or in the short-term re-
sponse to drugs, such as cocaine [85]). It is likely
that the PEST sequences common to both isoforms
play an additional important role in such turnover
[86]. PEST sequences consist of at least 12 amino
acids residues in length and typically signal the pro-
tein containing them for rapid proteolytic degrad-
ation by the 26S ubiquitin proteasome system (UPS)
through phosphorylated serine-mediated ubiquitina-
tion at a contiguous lysine residue within the PEST
domain [87, 88]. In this regard, although experimen-
tal evidence involving these domains is still missing,
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a ubiquitin ligase (RNF4) [89] has recently been
identified that may be involved in the process, and
serine 80 and lysine 82 (nomenclature referred to the
E2 isoform) within the PEST 1 sequence in mice
have been shown to be phosphorylated [32] and ubi-
quitinated [90] respectively.
The regulation of MeCP2 homeostasis and additional

brain epigenetic markers, to be summarized in the fol-
lowing section, provide an extra layer of complexity to
this chromatin organization and ultimately are respon-
sible for the chromatin alterations that affect its function
in the brain.

Critical brain epigenetic markers
Four main epigenetic contributors deserve special atten-
tion when it comes to the physiologically relevant as-
pects of MeCP2 and neuronal chromatin in normal and
altered functional states of the brain: DNA methyla-
tion, MeCP2 phosphorylation, histone acetylation and
microRNAs.

DNA methylation
MeCP2 is a methylated cytosine ‘reader’ and any
changes in DNA methylation are going to have imme-
diate downstream effects on the MeCP2-dependent
organization of chromatin. Contrary to what was earl-
ier believed, DNA methylation in neurons is highly
dynamic and may change quite rapidly to alter the
MeCP2 distribution and their connections or synap-
ses. The process involves a group of enzymes called
Tet (ten eleven translocation), which initially oxidize
5mC to 5hmC [91] and subsequently lead to active DNA
de-methylation [92] in conjunction with the base-excision
repair (BER) pathway. Tet 3 has recently been shown to
regulate synaptic transmission and homeostatic plasticity
through this mechanism [93]. DNA methylation is then
restored by Dnmt1 and Dnmt3a DNA methyl-transferases
[94] that close the cycle, and thus contribute to the
process of synapsis function. Interestingly, as was
mentioned previously, MeCP2 binds very tightly to
5hmC [72], and in doing so it plays a very important
role in active transcription [18] within mature neu-
rons. Furthermore, the histone variant H2A.X, which
increases during neuronal development [61], has been
shown to be associated with BER [95, 96] and was
the only histone variant found to co-immuno precipi-
tate with MeP2-containing nucleosomes [9].
MeCP2 phosphorylation
MeCP2 phosphorylation is by far the most studied PTM
of this protein. MeCP2 has been reported to be phos-
phorylated at various serine residues, such as S13, S80,
S149, S164, S229, S274, S401 and S421 [32, 90].
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Among these MeCP2 serine residues, phosphorylation
at residues S80 and S421 have been proposed to have
opposite effects on neuronal activity [32, 34, 97]. In neu-
rons at rest, MeCP2 is tightly associated with Bdnf
promoter III, acting as a repressor. Upon neuron
depolarization, and following calcium influx, MeCP2
S421 becomes phosphorylated by a Camk2/4-dependent
mechanism [33] and is released from the Bdnf promoter
III, allowing for its activity-dependent transcription.
Phosphorylation at S421 has also been shown to be
associated with accurate synapse development and be-
haviour [33]. In an opposite mode, MeCP2 S80 be-
comes dephosphorylated upon neuronal depolarization,
allowing for the dissociation of MeCP2 from chroma-
tin. Conversely, MeCP2 is phosphorylated at S80 by
homeodomain-interacting protein kinase 2 (HIPK2)
and contributes to induction of apoptosis [98]. This op-
posite regulation of MeCP2 by neuronal activity sug-
gests that S421 phosphorylation plays an important
role in active neurons, while S80p is more important in
resting neurons.
More recently, neuronal depolarization has been

shown to result in the phosphorylation of MeCP2 at
threonine 308 in the transcriptional repressor domain
(TRD) of the protein. Phosphorylation of this residue
blocks the interaction of MeCP2 with the nuclear recep-
tor co-repressor (NCoR) complex. Among other effects,
this elicits Npas4 transcription (a transcription factor
that promotes the development of inhibitory synapses
on excitatory neurons) and the ensuing activation of
Bdnf transcription [99].

Histone acetylation
The direct or indirect molecular mechanisms behind the
relation between MeCP2 and histone acetylation are ob-
scure and require further analysis. Knockout mice in
which MeCP2 expression has been completely ablated
exhibit an almost 3-fold increase in the histone acetyl-
ation in neurons when compared to the wild type [8].
Conversely, treatment of HeLa cells with sodium butyr-
ate (an inhibitor of histone de-acetylases) decreases the
levels of MeCP2 by almost 3-fold (Thambirajah and Ng,
unpublished results). While it can be argued that the
former is the result of the well-documented interaction
of MeCP2 with repressive chromatin remodelling com-
plexes containing HDACs, the latter has no straightfor-
ward explanation.
Global histone pan-acetylation results in a highly labile

nucleosome [100] and affects the folding of the chroma-
tin fiber in the absence of linker histones [101]. It also
decreases the inter-fiber chromatin interactions [102].
MeCP2 has been shown to interact with chromatin in a
way reminiscent of the interaction between linker his-
tones and chromatin [4]. Indeed, MeCP2 was shown
early on to compete with histone H1 in a DNA-
methylation-dependent way [76]. Although treatment of
cells with sodium butyrate does not significantly affect
the levels of histone H1 [102], histone acetylation has
been known to impair the binding of histone H1 to the
nucleosome [103]. However, a role of histone acetylation
in facilitating MeCP2 binding could not be demon-
strated [104].
MicroRNAs
MicroRNAs represent one of the most recently identi-
fied epigenetic constituents. MicroRNAs (miRNAs) are
non-coding RNA transcripts that control gene expres-
sion by binding to complementary sequences (miRNA
response elements; MRE) in the 3'-UTR of target
mRNAs, thus controlling their degradation and transla-
tion [105]. Furthermore, DNA methylation has been
found to be crucial in miRNA biogenesis [106], and
MeCP2 long 3'UTR contains conserved MREs for sev-
eral miRNAs that modulate its expression [107].
As was mentioned earlier, MeCP2 homeostasis plays

an important role in the proper functional outcome of
this protein. MicroRNA miR-132 has been found to play
a crucial role in this regard. Blocking miR-132 in cul-
tured rat neurons results in an increase of MeCP2 ex-
pression. This, in turn, increases the expression of Bdnf
that induces miR-132 and represses MeCP2 translation.
Taken together, these findings suggest a feedback loop
involved in MeCP2 homeostasis [26].
Another regulatory microRNA, miR-7b, is expressed

in various regions of the adult mouse brain, and also
targets MeCP2 at the 3'-UTR. Two CpG islands have
been identified at the 5'-flanking region of the gene
encoding for miR-7b. An increase in the methylation
of these CpG islands during postnatal neuron matur-
ation increases the recruitment of MeCP2 to these re-
gions. This inhibits miR-7b gene expression and its
repressive effect on MeCP2. Overall, miR-7b acts as a
negative regulator of MeCP2 gene expression and is
at the same time a down-stream target of MeCP2,
forming a bi-directional feedback that may also be
important for MeCP2 homeostasis during brain devel-
opment [27].
In humans, the intragenic miR-483-5p, derived from

the gene Igf2 (insulin-like growth factor – 2), has been
found to regulate MeCP2 levels. This miRNA binds to
the MREs in MeCP2 3'-UTR and inhibits MeCP2 gene
expression. miR-483-5p is enriched in the fetal brain and
is down-regulated after birth, thus controlling MeCP2
expression during human brain development [28].
The miR-155 and miR-802 also target MeCP2 and

have recently shown to play an important role in Down
syndrome pathology [29].
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The miR-181 family is expressed in astrocytes and has
been shown to be involved in their neuro-inflammatory
response. Despite the current lack of information,
MeCP2 has been found to be a target for miR-181 [30].

MeCP2 in depression and cocaine abuse
One of the more fascinating aspects of chromatin’s epi-
genetic involvement is, in our opinion, the connection
between chromatin alterations in response to environ-
mental cues, such as early life stress (ELS), and the result-
ing behavioral output. It has now been fully demonstrated
in rodents that maternal/parental care can affect gene
expression [26, 28] and epigenetically affect the offspring
in a trans-generational way [108]. More importantly, pre-
clinical studies suggest that early life stressors, such as in-
consistent and harsh parental discipline on their children
[109], can result in increased stress responses leading to
depressive disorders later on in adulthood [110]. At the
molecular level, as will be discussed in the next para-
graphs, an important part of the connection regards alter-
ations in the function of the brain-derived neurothrophic
factor (Bdnf) gene [111] that encodes for a member of the
neurtrophin family of growth factors and its involvement
in many important brain functions. It is a long gene with
4 promoters, which transcribe 4 mRNAs containing one
of the four 5′ noncoding exons (I, II, III, or IV) spliced to
the common 3′ coding exon [112], and is regulated by
MeCP2. In addition to Bdnf, MeCP2 regulates the expres-
sion of many other similarly long genes that encode for
proteins such as the calcium/calmodulin-dependent
Camk2d kinase and those involved in axon guidance and
synapsis formation [72]. Hence, as we have previously
mentioned, is not surprising that MeCP2 in conjunction
with epigenetic neuronal chromatin modifications are
involved in many alterations of brain function that result
in a plethora of neurological and psychiatric disorders
[4, 113–120] (Fig. 2). The integration of environmental ef-
fects, such as stress, and the genetic and epigenetic modi-
fications underlie what is currently known as synaptic and
behavioral megaplasticity [121, 122]. In this section, I
focus on two of them that have broad important social
connotations in our current era: major depressive disorder
(MDD), which has been quite extensively studied in recent
years, and addiction (focusing on cocaine), for which a
large number of studies are also available.
Whilst the genetic risk factors of both depression [123,

124] and addiction [125] are being established, the bio-
chemical details and molecular mechanisms involved in
the epigenetic counterpart are further ahead in their elu-
cidation. At the chromatin level in a general mechanism,
neuronal stimulation results in a Ca2+ influx that triggers
the action of neuronal kinases (such as Camk2d) that
phosphorylate different substrates, including MeCP2,
CREB (cAMP response element-binding protein) and
histone H3S10, amongst others [126]. Phosphorylation
of MeCP2 weakens its interaction with chromatin, and
phosphorylation of CREB allows it to bind to CBP
(CREB-binding protein a histone acetyl transferase)
[127], which acetylates histones and leads to a further
chromatin relaxation, as was described in the previous
section. All these modifications are conducive to a more
open chromatin conformation, which enhances the ac-
cessibility of transcriptional co-activators to cis acting
regulatory elements, like MEF2C, which results in gene
activation (such as that of Bdnf ) [126, 128].
One of the first molecular connections between ELS

and depression was established through the arginine
vasopressin gene (Avp). It was discovered that ELS was
able to control the DNA methylation dynamics in post-
meiotic neurons (see previous section), to result in stable
persistent hypo-methylation of Avp expression that
triggers the neuroendocrine and behavioral changes
often observed in depression [129]. Early Avp derepres-
sion is driven by neuronal activity that results in the
Ca2 + - Camk2d dependent MeCP2 phosphorylation and
chromatin dissociation described in the previous para-
graph, followed by DNA hypo-metylation. A vicious cycle
is thus established in which MeCP2 occupancy uncouples
from the original stimulus, leading to the ELS hard-coding
at the level of DNA methylation [130]. The situation is by
far more complex, and in addition to Avp, MeCP2 also
regulates the ELS-dependent programming of other genes,
such as Crh (corticotropin releasing hormone) and Pomc
(Proopiomelanocortin) [131], all of which enhance the
hypothalamic-pituitary-adrenal (HPA) axis which drives
the ELS response, and are driven initially by MeCP2 S421
phosohorylation [48].
Whilst Avp, Crh, and Pomc, explain the connection be-

tween ELS and depression, Bdnf, as expected for any
neuronal disturbance, also plays a very important role in
depression [111], and its expression is decreased in
stress and depression [132]. With the use of antidepres-
sants, it has been shown that H3K27 methylation and
histone deacetylation increase at the Bdnf III and IV
promoters, a process that can be reverted with the use
of histone methylation and HDAC5 inhibitors in mice
[133]. It has been shown that the antidepressant citalo-
pram decreases the levels of H3K27me3 at promoter IV
of Bdnf in humans [134]. The histone PTM involvement
in the stress-mediated neuronal response goes far
beyond those briefly described here, and the reader is
referred to [135] for a more comprehensive description.
MicroRNAs are also involved in depression. An in-

crease was observed in the levels of miR-132 in the
hippocampus of a rat model of stress-induced depres-
sion, and also in peripheral blood samples of patients
with MDD. As expected from its role in MeCP2 homeo-
stasis, a negative correlation between the expression
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levels of miR-132 and those of MeCP2 and BDNF was
observed in these studies [11]. Also, high levels of miR-
144-5p were detected in the plasma of MDD patients
when compared to healthy controls, suggesting that miR-
144-5p can be used as a biomarker for the disease [136].
Cocaine abuse and MDD share some similarities, let

alone the fact that ELS is often a common risk factor for
addiction [137, 138], which is considered a brain disorder
of experience-dependent neuroplasticity [139]. Like ELS,
cocaine affects the DNA methylation dynamics [140, 141]
and in particular, within the nucleus acumbens (NAc)
[142], a reward-related central region of the brain, both
for 5mC and 5hmC [143]. Hence, it also affects MeCP2
[12, 144] and bdnf expression [145, 146].
The role of MeCP2 in cocaine addiction involves differ-

ent aspects of the protein metabolism and its gene regula-
tion and, in particular, the calcium-dependent MeCP2
S421 phosphorylation, one of its important PTMs that
plays a crucial role [97, 147, 148]. The neuronal-activity
mediated phosphorylation of MeCP2 S421 has been
shown to have important transient and permanent effects
in drug abuse and ELS respectively [129].
Of particular interest to this review is the interplay at

the chromatin level between the induced levels of MeCP2
expression observed during cocaine intake [149] and the
changes in histone acetylation [150]. After repeated
(chronic) exposure to cocaine, the global levels of histone
acetylation in the cocaine-targeted GABAergic neurons
were observed to decrease in general agreement with the
HDAC-mediated MeCP2 repressive activity [144]. How-
ever, the situation appears to be not that simple. In what
could be considered a seminal paper on this topic, it was
shown that an increase in the levels of histone H4 hypera-
cetylation in NAc occurs at the promoters of certain genes
(such as the immediate early gene c-Fos), and is observed
within 30 minutes of a single cocaine injection (acute ex-
posure). However, the effect fades away during chronic ex-
posure. Conversely, the levels of H3 acetylation increased
at promoters of genes such as Bdnf and Cdkl5 [151]. A
genome-wide ChIP-chip analysis using antibodies against
pan-acetylated H3/H4 has, interestingly, revealed that the
increases in acetylation after chronic exposure do not
affect the genome randomly [152], but rather increase the
magnitude of their promoter distribution [150]. They have
also confirmed the lack of overlap between H3 and H4
acetylated promoters [152]. All of this indicates that the
cocaine-induced histone acetylation chromatin remodel-
ling may be different for histones H3 and H4, in agree-
ment with their different structural roles [153, 154].
Along with the shared molecular mechanisms with

MDD, the cocaine-induced increase in MeCP2 re-
presses the transcription of miR-132/miR-212 micro
RNAs, which reduce the miRNA repression of bdnf
through the feedback loop described in the previous
section [139, 155]. Furthermore, it has been shown
that in the dorsal striatum of rats, the expression of
miR-212 is increased in those that show compulsive-
like cocaine-taking behavior [156].
We would like to close this chapter with another intri-

guing aspect, which is that involving gender [157]. As
was mentioned earlier, both depression and drug addic-
tion share genetic and epigenetic contributions. It has
now been well documented that women have a higher
genetic predisposition to depression [158], which in turn
may lead to a potential higher risk of drug abuse, which
also exhibits important differences between both sexes
[159]. Epigenetic studies of the brain have only recently
started grasping this issue, but they have been postulated
to also have a role in risk and resilience to mental health
between the sexes [160]. For instance, 248 genes and loci
associated with synaptic function were identified in
mouse brains, with increased H3K4me3 in females
[161]. Perinatal testosterone exposure resulted in im-
portant alterations of the DNA methylome [162], under-
scoring the contribution of the hormonal component
[163]. Therefore, it is very important that when conduct-
ing future research in any of the areas described in this
work, including those directly related to MeCP2, atten-
tion be paid to the sex differences and the differential in-
volvement of gonadal hormones [164], the epigenetics
new frontier [165].

Conclusions
It has already been twenty-four years since the first de-
scription of MeCP2 [16, 17]. For a long time now we
have been trying to decipher its mysteries. Significant
progress has been made, yet many ‘heavy enigmas’ still
remain. In this review, we have analysed the relevance
and potential implications of this chromosomal protein,
an abundant transcription regulator in neurons, for its
architectural and functional role within the chromatin
context. It is clear that in neuronal nuclei, MeCP2 is
very weakly bound to chromatin, as a highly significant
part of it is easily detached under very low ionic strength
conditions, and it is bound to highly accessible nuclease
domains [9]. We propose a model (Fig. 4) to account for
these observations and their apparent disparity with the
originally repressive role assigned to the protein.
Whether the model is correct will require further experi-
mental evidence. It will be critical at this point to be able
to distinguish between the two MeCP2-E1 and MeCP2-
E2 isoforms.
Finally, and although the broad attention by the

scientific community to MeCP2 was triggered by the
discovery of its massive involvement in RTT [2], a neu-
rodevelopmental disease of autistic characteristics, its
massive presence in the brain, and in neurons in particu-
lar, indicate its potential for a broader group of brain
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pathologies [4]. To underscore this, we have focused
here on a brain disease (MDD) and on the neuronal
disturbances resulting from cocaine abuse, both of which
are highly pervasive issues within our society. A substan-
tially large amount of information about some of the
molecular details involved has been gathered for both of
them. They provide an excellent example of how some
of the critical epigenetic components that operate in the
brain (DNA methylation, MeCP2 phosphorylation, his-
tone acetylation and microRNAs) are intertwined. Simi-
lar mechanisms can be envisioned to participate in many
other neurological disorders, and are currently being
deciphered [4]. It will be important to take into consid-
eration the relevant gender epigenetic differences [165].
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