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Abstract SARS-associated coronavirus was identified as the eti-
ological agent of severe acute respiratory syndrome and a large
virus pool was identified in wild animals. Virus generates drug
resistance through fast mutagenesis and escapes antiviral treat-
ment. siRNAs targeting different genes would be an alternative
for overcoming drug resistance. Here, we report effective siRNAs
targeting structural genes (i.e., spike, envelope, membrane, and
nucleocapsid) and their antiviral kinetics. We also showed the
synergistic effects of two siRNAs targeting different functional
genes at a very low dose. Our findings may pave a way to develop
cost effective siRNA agents for antiviral therapy in the future.
� 2006 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Severe acute respiratory syndrome (SARS) spread to over

thirty countries and infected over 8400 individuals and killed

813 lives around the world in 2003 (www.who.int/csr/sars/

en). Isolated SARS cases were reported in Taiwan late 2003

and China early 2004. A novel coronavirus (SARS-associated

coronavirus, SCoV) was identified as the agent of SARS [1–6].

SCoV can produce a similar type of pneumonia in monkeys

and other animals [7–10]. There is a ScoV-like viral pool in a

large number of wild animals, and it is likely that SCoV was

originated from these wild animals and later transmitted to hu-

mans [8–16]. SARS can be transmitted through the airway or

nasal passage, through urine, water, or domestic pets

[2,9,10,17–19]. The identification of SCoV-like virus from

beasts and bats indicates further outbreaks of this disease are

difficult to be ruled out. No vaccine or specific effective antivi-

ral method has yet been developed to treat this disease.
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SCoV is a large, enveloped, positive-stranded RNA virus

and its genome is composed of 30-kb nucleotides [19,20].

The organization of the genome is typical of the coronaviruses,

following the characteristic gene order 5 0-replicase (rep), spike

(S), envelope (E), membrane (M), and nucleocapsid (N)-3 0

(Fig. 1). The non-structural rep gene comprises 21-kb of the

genome encoding two polyproteins (encoded by ORF1a and

ORF1b) that undergo cotranslational proteolytic processing.

The rep gene products are translated from genomic RNA,

and play key roles in viral replication and viral gene transcrip-

tion [19,20]. These structural proteins are translated from

subgenomic mRNA, which are synthesized through a discon-

tinuous transcription process [21–25]. The spike glycoprotein

has been shown to be a viral ligand, which plays a critical role

in virus binding to its receptor ACE2 or CD209L for viral en-

try into the host cells [26,27]. Based on the peptide protection

study, we showed that spike protein is a good target for pre-

vention of viral infection [28,29]. The nucleocapsid protein

has been shown to play a role in viral genome package, tran-

scriptional regulation of viral genes, and intracellular signaling

[30]. The envelope protein and membrane protein are involved

in viral package, viral secretion and virus–cell interactions.

Small interfering RNA (siRNA) and short hairpin RNA

(shRNA) are potent agents for silencing gene expression, viral

infection and replication in a sequence-specific manner [31–35].

Replicase has long been the favorite target for antiviral drug

development. We were the first group to demonstrate that siR-

NAs targeted on the rep gene potently inhibited SCoV infec-

tion and replication [36]. However, recent studies revealed

that viruses could easily escape siRNA targeting through fast

mutagenesis [37,38]. Therefore, identification of multiple effec-

tive siRNAs targeting different sites or functional genes of

ScoV would be an alternative for the treatment of possible

SARS outbreak in the future.
2. Materials and methods

2.1. siRNA design, synthesis, and screening
siRNAs were rationally designed according to new strategies as de-

scribed recently [31,35]. The candidate siRNAs scored to six or more
were selected and subjected to a BLAST search against GenBank to en-
sure that they are unique to SCoV genome sequences only. Three siR-
ation of European Biochemical Societies.
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Fig. 1. The diagram of the effective siRNA’s targeting sites. SCoV genomic RNA is composed of 30-kb nucleotides. The replicase gene, which
comprises about 60% of the genome, encodes two polyproteins that undergo cotranslational proteolytic processing. The downstream sequence of the
replicase gene encodes four structural proteins (spike, envelope, membrane, and nucleocapsid) and multiple potential nonstructure proteins (not
shown). The SCoV replicase gene products are directly translated from genomic RNA, while the remaining viral proteins are translated from
subgenomic transcripts. The target sites of the effective siRNAs are shown by arrows. Si- = SARSi-.
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NAs targeting each gene were designed and chemically synthesized by
Proligo BioTech Ltd. (Paris, France). Their antiviral effects were detec-
ted by cytopathic effects (CPE) assay and those siRNAs markedly inhib-
ited CPEs were chosen for this study. The sense-strand sequences of these
siRNAs are CACUGAUUCCGUUCGAGAUC (SARSi-S); CGUUU-
CGGAAGAAACAGGUAC (SARSi-E); CAAGCCUCUUCUCG-
CUCCUC (SARSi-N); UGCUUGCUGCUGUCUACAG (SARSi-M1);
and GUGGCUUAGCUACUUCGUUG (SARSi-M2). The sequences
are corresponding to nucleotide 23150–23169, 26113–26133, 28648–
28667, 26576–26594, and 26652–26671 of GZ50 stain (Accession num-
ber AY304495), respectively (Fig. 1). SARSi-R, the most potent siRNA
targeting rep gene (GCACUUGUCUACCUUGAUG, Ref. [36]), was
used as positive control in this study. A siRNA targeting luciferase
mRNA [33], was used as a SARS-unrelated siRNA control. All the siR-
NAs were labeled with fluorescence at 5 0-end of the sense strands.
2.2. Cell culture, transfection and SCoV infection
Fetal rhesus kidney (FRhk-4) cells were cultured and maintained in

MEM medium with 10% fetal bovine serum (FBS, Invitrogene).
Around 5000 cells were set in each well of a 96-well dish for viral infec-
tion and replication assay. The cells were transfected either without
(negative control) or with siRNA at standard concentration
(200 nM) using OligoFectmine (Invitrogen, CA), in accordance with
the manufacturer’s instructions. Six hours after transfection, the cul-
ture medium was removed and the cells were washed twice with PBS
before SCoV infection. One hundred microliters of SARS-associated
coronavirus (GZ50) diluted in MEM with 1% FBS was added to the
transfected cells (multiplicity of infection 0.05). The cytopathic effects
(CPE) were observed and recorded under phase-contrast microscope
36 h post-infection [28,36,40]. The experiments were performed in trip-
licate and repeated at least three times.
2.3. Quantitative RT-PCR
Total intracellular RNA was isolated using RNeasy Mini kit (Qia-

gene, Germany) in accordance with the manufacturer’s instructions.
The reverse-transcription experiments were performed using Thermo-
Script RT-PCR systems (Invitrogen, CA). Real-time PCR was then
performed using the forward primer 5 0-GAAGGACCTACTA-
CATGTGGGTACCTA-30 (GZ50 strain, nt 1303–1329), the reverse
primer 5 0-AACACTATGCTCAGGTCCAATCTCT-3 0 (nt 1401–
1377) and the fluorescent probe 5 0-(FAM)-CTAATGCTGTAGT-
GAAAATGCCATGTCCTGC-(TRMA)-3 0 (nt 1334–1364). The prim-
ers and probe bind the 5 0-region of replicase 1 A that permit us to
measure the viral genomic RNA copies. Two microliters of the RT
product (template) was used for each reaction. Forward and reverse
primers (final concentration 900 nM) and the fluorescent probe (final
concentration 250 nM) were mixed with Master Mix (ABI, USA)
and real-time quantification was carried out using an ABI7900 Se-
quence Detection System. The PCR conditions were: 50 �C for
5 min, 95 �C for 10 min, then 40 cycles of 95 �C for 15 sec and 61 �C
for 1 min [28,41].

2.4. Titration of viral titers
The conditioned medium from infected cells was diluted at 10-fold

serial in MEM with 1% FBS and used for infecting cells according
to the standard protocol. Briefly, cells were set in 96-well dishes sixteen
hours before infection. Seventy-two hours post-infection, CPE was ob-
served and recorded under phase-contrast microscopy 72 h post-infec-
tion, and infectious viral titer was calculated [28,36,40,41].
3. Results

3.1. Protection of cytopathic effects (CPE) caused by SCoV

infection and replication

Virus would easily escape antiviral treatment with a drug

targeting a single site or gene via fast mutagenesis [37,38]. As

there is a large SCoV-like virus pool in a number of wild ani-

mals [8–16], it would be useful to develop multiple cost-effec-

tive and specific agents for clinical use in the future.

Apparently, development of siRNAs against multiple genes
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Fig. 3. Reduction of intracellular viral genomic RNA copies by
siRNA. The cellular RNA was isolated and quantitative RT-PCR
experiments were conducted 24 h post-infection. The experiments were
performed in triplicate and repeated at least three times. Detection
revealed that these siRNAs reduced viral replication effectively
(student’s t test, P < 0.01). The values (mean ± S.E.) were shown in a
typical experiment. The values are: GL2i, 1.69 · 106 ± 4.7 · 103;
SARSi-R, 1.2 · 105 ± 5.5 · 102; SARSi-S, 2.5 · 105 ± 1.0 · 105; SAR-
Si-E, 4.4 · 105 ± 1.0 · 105; SARSi-M1, 3.8 · 105 ± 2.2 · 105; SARSi-
M2, 3.1 · 105 ± 1.2 · 105; and SARSi-N, 5.7 · 105 ± 1.5 · 105.

2416 M.-L. He et al. / FEBS Letters 580 (2006) 2414–2420
would be an alternative. Based on newly developed rational

design protocols [35,39], we systematically designed and syn-

thesized multiple siRNAs targeting each structural gene (S,

E, M, and N). Then we detected their antiviral activities by

CPE assay (described below) and selected the most effective

siRNAs for this study (Fig. 1).

Monkey kidney FRhk-4 cells were used for SCoV infection

and replication assay. Cells were set in 96-well dishes and

transfected with or without siRNAs. The transfection effi-

ciency was monitored under fluorescent microscopy. It ap-

peared almost all the cells were transfected. The cells were

infected with SCoV 6 h after transfection, and CPE was mon-

itored under phase-contrast microscopy. We recorded CPE at

36 h post-infection using phase-contrast microscopy [28,36].

The non-infected cells were healthy, and showed clear round

shapes (Fig. 2, panel I), while the infected cells displayed long-

er shapes, and some cells even floated away (Fig. 2, panel II).

No toxicity or CPE was discovered when cells were transfected

with a siRNA (GL2i) targeting unrelated luciferase mRNA

(Fig. 2, panel III) or SCoV RNA without virus infection (data

not shown). Cytopathic effects appeared when cells were trans-

fected without or with GL2i and infected with SCoV (Fig. 2,

panels II and IV). As effective siRNA targeting replicase

(Fig. 2, panel V), cells transfected with effective siRNA target-

ing structural genes (SARSi-S, SARSi-E, SARSi-M1, SARSi-

M2 and SARSi-N, Fig. 2, panels VI–X) protected from CPE.

3.2. Reduction of viral genomic RNA copies

We further characterized their antiviral effects of individual

effective siRNA by determination of the copy numbers of

intracellular viral genomic RNA using real-time RT-PCR as-

says. We transfected the cells with siRNAs, and infected them

with SCoV 6 hours after transfection. We then isolated the to-

tal cellular RNA from the infected cells 24 h post-infection and

quantified the viral genomic copies by real-time PCR. We

found that the intracellular viral RNA level was reduced by
Fig. 2. Inhibition of CPE by siRNAs. Cytopathic effects: FRhk-4 cells were
infected with SCoV (II and IV–VIII). The photos were taken under phase-co
cells.
67.3–83.3% (83.3% by SARSi-S, 74.0% by SARSi-E, 77.5%

by SARSi-M1, 81.7% by SARSi-M2, and 67.3 % by SARSi-

N) compared with the GL2i control at standard concentration

(200 nM) (Fig. 3). These results indicate that siRNAs potently

inhibited SCoV RNA replication.

3.3. Kinetics of intracellular viral genomic RNA

It is very interesting for us to understand viral kinetics of

siRNA targeting SCoV. To our knowledge, no one has been

addressed viral kinetic of any effective siRNA against SCoV.

The intracellular RNA level is of course a key parameter for

monitoring the kinetics of viral replication. Therefore, we car-

ried out quantitative RT-PCR experiments to determine SCoV

genomic RNA copies in the infected cells at different time

points. The infected cells became sever sick 24 h post-infection,

therefore, we measured the intracellular viral RNA copies at
transfected with (III–VIII, 200 nM) or without (I and II) siRNAs and
ntrast microscope at 36 h post-infection. The arrows show cytopathic
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Fig. 4. The kinetics of viral genomic RNA. FRhk-4 cells were
transfected with siRNAs and infected with SCoV. At 1 h post-
infection the medium containing viruses was removed. The cells were
then washed twice with PBS containing 5 mM EDTA, and cultured in
MEM medium containing 1% FBS. Total RNA was isolated, and viral
genomic copies were quantified by real-time RT-PCR.
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time point 1, 6, 12, 18, and 24 h. At time point 1 h, we isolated

total RNA from infected cells and measured the viral genomic

RNA copies by quantitative RT-PCR. We found that the

intracellular viral RNA copies were almost same regardless

of transfection with or without siRNAs, indicating that trans-

fected siRNA did not prevent virus entry. Therefore, we define

the relative copy number as 1. In the control samples, the

intracellular viral genomic RNA copies increased over 200

times within 5 h, and increased another 25 times in the follow-

ing 6 h, as a result, the viral genomic RNA copies were ampli-

fied over 5000-fold in FRhk-4 cells in the first 12 h. However,

the viral genomic RNA copies were only increased 2 fold either

from time point 12 to 18 h or from time point 18 to 24 h (Table

1). These results suggested that the viral reproduction dis-

played two phases in FRhk-4 cells, i.e., fast replication phase

(1–12 h) and viral package and secretion phase (12–24 h).

In the following 5 h, the viral genomic RNA level was only re-

duced by 2–3-folds by all the tested siRNAs (Table 1). In the next

6 h (6–12 h), the RNA copies were significantly reduced over 57-

folds by SARSi-R. This strong inhibition was maintained until

18 h and the viral genomic RNA copies were almost unchanged

(24 h post-transfection). Eighteen hours post-infection, the viral

genomic RNA copies increased rapidly, and the inhibition was

dropped to 13-folds at time point 24 h (Table 1). For siRNA tar-

geting S gene (SARSi-S), about fivefold inhibition was observed

at time point 12 and 18 h, but only about 3-fold inhibition was

observed at time point 24 h. For siRNAs targeting other struc-

tural genes, the viral genomic RNA copies were only reduced

by 2–3-folds at all time points (Fig. 4).

3.4. Inhibition of viral reproduction in a dose-dependent manner

It remained to be determined whether the reduced RNA lev-

els by siRNAs targeted on different regions had similar impacts

on infectious viral titers, i.e., viral reproduction. The living

SARS-associated coronavirus contains intact viral genomic

RNA and functional viral proteins. The factors such as the effi-

ciency and correction of viral RNA replication, viral package

and secretion determine the infectious viral titers.

To elucidate the effects of siRNAs on viral titers, we per-

formed virus infectivity assay experiments. At 1 h post-infec-

tion we removed the media and washed the cells twice with

PBS containing 10 mM EDTA. Fresh MEM medium contain-

ing 1% FBS was then added to the cells, which were incubated

for 24 h. The viral titers in the conditioned media were mea-

sured by TCID50 assay. We found 200 nM of siRNAs mark-

edly reduced infectious viruses which were secreted and

accumulated in the culture media (data not shown).

To determine whether SCoV was inhibited by siRNAs in a

dose-dependent manner, different amounts of SCoV-specific

siRNAs were transfected into FRhk-4 cells before viral infec-
Table 1
Relative intracellular viral genomic RNA copy numbers (mean ± S.D.) at di

6 h 12 h

Control 228.4 ± 3.9 5838.1 ± 414.1
SARSi-R 86.1 ± 10.9 124.2 ± 5.1
SARSi-S 78.4 ± 10.2 1196.4 ± 56.1
SARSi-E 84.2 ± 16.8 2084.5 ± 128.3
SARSi-M1 95.4 ± 32.8 2256.9 ± 551.8
SARSi-M2 104.6 ± 5.1 2110.8 ± 222.3
SARSi-N 110.8 ± 10.9 2163.9 ± 487.3

Note. The viral genomic RNA copy numbers at 1 h post-infection was defin
tion. In these experiments, 0, 1, 5, 20, 80, and 200 nM of SCoV

specific siRNAs were used in the transfection reaction mix-

tures. GL2i was used as a carrier, to normalize transfection

efficiency. The same dosage of total siRNAs (200 nM) was

maintained in each transfection. The viral titers in the media

were measured by TCID50 assay 24 h post-infection. At doses

of 1, 5, 20, 80, or 200 nM of SARSi-R in the transfection mix-

tures, the viral titer was reduced by 4.8, 16.6, 22.2, 25.4, and

33.4-folds, respectively (Fig. 5). Similarly, viral titers were re-

duced 3.1, 5.3, 10.5, 15.7 and 23.4-folds at doses of 1, 5, 20,

80, and 200 nM of SARSi-S, respectively. Similar results were

obtained from SARSi-E, SARSi-M1 and SARSi-M2. SARSi-

N showed lower relative activities at different dosages (Fig. 5).

3.5. Synergistic inhibitory effects of siRNAs combinations at low

dose

It has been shown that there is a saturated siRNA concen-

tration and combinations of siRNAs against the same gene

would not increase the antiviral activities [32,36]. An interest-

ing question was that whether synergistic antiviral effects

would be achieved with combined siRNAs targeting different

genes at lower doses. If so, it would offer an opportunity to de-

velop cost-effective and specific agents to combat SARS out-

break and drug resistance in the future.

To answer this question, we first reduced the concentration

of siRNA from 200 to 50 nM in the transfection mixtures with-

out carrier siRNA and observed their antiviral effects by

TCID50 assays. Lower inhibitory effects were observed (data

not shown). When the concentration was further decreased
fferent time points

18 h 24 h

10680 ± 782.3 29709.3 ± 1628
186.4 ± 27.3 2159.8 ± 88.9
1903 ± 372.2 12152.2 ± 2060.8
3012 ± 65.3 12482.8 ± 612.7

3024.3 ± 124.7 11337.6 ± 834.5
4263.5 ± 243.1 8916.0 ± 91.1
5618.4 ± 144.9 14477.9 ± 877.7

ed as 1.
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Fig. 5. Dose-dependent inhibition of SCoV reproduction by siRNAs. Different amounts of siRNAs targeting SCoV and unrelated siRNA GL2i (for
normalization of transfection efficiency) were transfected into FRhk-4 cells. At 24 h post-transfection the viral titers in the conditioned media were
measured by back-titration. The value of control (GL2i only) was defined as 100. The values (means ± S.D.) represent the average from the three
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to 10 nM, the viral titer was reduced only about 5-folds

by SASRi-R, 8-folds by SARSi-E, 2-folds by SARSi-S, -M1

or -M2, respectively (Fig. 6).
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Fig. 6. The effects of combined siRNAs. A single siRNA (10 nM), two
combined siRNAs (5 nM each siRNA) were transfected into FRhk-4
cells. At 6 h post-transfection the medium was removed and the cells
were infected with SCoV suspended in DMEM for 1 h. Then the
medium was replaced with DMEM with 1% of FBS. At 24 h post-
infection the viral titers in the conditioned medium were determined by
virus infectivity assay. The viral titer of GL2i samples was defined as
100. The values (means ±S.D.) represent the average from three
independent experiments.
It was intriguing whether anti-SCoV effects could be restored

with two siRNAs targeting different genes at lower doses, be-

cause it would overcome the major cost barrier for clinic set-

tings. To test this possibility, we transfected either a single

siRNA or two siRNAs into FRhk-4 cells, and investigated

their anti-SARS activities. In these experiments, the same total

dosage of siRNAs (10 nM) was used for the transfection

regardless of one or two siRNAs. We measured the viral titers

in the conditioned media by TCID50 assay 24 h post-infection.

In experiments using a combination of two siRNAs, inhibition

was significantly increased. Compared with the control, the

viral titers were reduced over 50-fold for SARSi-R/-S and

SARSi-S/-E combinations, about 18-fold for SARSi-R/-M1

and SARSi-S/-M2 combinations, and over 30-fold for SAR-

Si-R4/-E combinations, respectively.
4. Discussion

The SARS-associated coronavirus is a novel identified RNA

virus, which poses a severe threat to human health as there is a

large SCoV-like virus pool in a number of animal species [1–

18]. Currently, the knowledge on SCoV is limited. In this pa-

per, we report the anti-viral effects and genomic RNA kinetics

of effective siRNAs targeting different functional genes, and
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synergistic antiviral effects at very low dose when two siRNAs

against different genes were used in combination. These find-

ings may combat SCoV resistance to a single siRNA via fast

mutagenesis and pave a way for the development of cost-effec-

tive siRNA agents for anti-SARS treatment.

Specific siRNAs targeted SCoV genomic RNA would lead

to viral RNA cleavage in the host cells. We previously identi-

fied effective siRNAs targeting rep gene which markedly re-

duced intracellular viral genomic RNA level [36]. In this

study, we showed that siRNAs targeting S/E/M structural

genes also inhibited viral RNA accumulation in host cells with

lower efficiency (Fig. 4) while exhibited almost the same inhib-

itory activities for viral reproductions (Fig. 5). There may be

several reasons for this phenomenon. First, viral genomic

RNA will be immediately translated into viral proteins and

undergo a fast RNA replication phase (as measured by time-

point experiments) when it enters the cells. Replicase is en-

coded by viral genomic RNA and directly responsible for viral

RNA synthesis. Therefore, siRNA targeting the replicase re-

gion will directly reduce replicase. Secondly, the 3 0-region of

viral genomic RNA encodes several subgenomic mRNAs.

The subgenomic mRNAs are abundant in the host cells [21–

25], which may reduce target efficiency or prolongs the time

to cleavage of viral genomic RNA. Finally, active transcription

and/or translation in the 3 0-region of viral genomic RNA may

block the siRNA target sites. However, the structural gene

products directly contribute to impact viral package and infec-

tious activities. The accumulated infectious viruses rely on

both replication, and correct and effective package. Therefore,

SARSi-S/-E/-M1/-M2 could display similar inhibitory activi-

ties for production of infectious virions to SARSi-R at a satu-

rate concentration in the media.

Kinetics studies showed that RNA replication took place in

two phases: a rapid replication phase (1–12 h), and a slow rep-

lication phase (12–24 h). In the first 12 h, the viral genomic

RNA increased near 6000-fold. However, viral genomic

RNA increased only 4–6-fold in the next 12 h (Table 1). Viral

genomic RNA replication was not potently inhibited in the

first six hours post-infection in cells transfected with specific

siRNAs targeting any of functional genes, for unknown rea-

sons (Fig. 4). Viral RNA accumulation was almost completely

inhibited in cells transfected with SARSi-R until 18 h post-

infection. Viral RNA copies were also increasingly multiplied

in cells transfected with other specific siRNA (2–5-fold) from

6 to 12 h and from 12 to 18 h post-infection. The copies of viral

genomic RNA increased faster in cells between 18 and 24 h

post-infection in some cases (SARSi-R, and -S). These results

suggested that the transfected siRNAs in FRhk-4 cells had a

relatively short half-life. Therefore, a sustained expression of

shRNA via viral vectors, e.g. adenovirus-based short-term

expression vectors, would offer an alternative for anti-SARS

therapy.

Various combinations of siRNAs targeting different genes

may produce synergistic anti-SCoV effects, as different genes

play distinguishing functions in viral life cycles. We did not ob-

serve obvious synergistic anti-SCoV effects when two or three

effective siRNAs targeted on the replicase region [32]. In this

study, we showed that specific siRNAs at low concentrations

with highly concentrated carrier siRNA (total siRNAs main-

tained as 200 nM, Fig. 5) exhibited potent anti-SCoV activity.

As we know, DNA or RNA carrier reagents would increase

transfection efficiency and extend the life of transfected
DNA or RNA in the cells. Therefore, we first investigated

whether siRNAs would display similar antiviral activities at

lower doses without carrier siRNA. We found that a single

siRNA at a low concentration (10 nM) without carrier siRNA

significantly reduced antiviral activities while combination of

two siRNAs targeting different functional genes displayed syn-

ergistic antiviral activities (Fig. 6). Considering that SARSi-R,

-S, -M1 and -M2 could only repress viral reproduction about

2–5-fold at 10 nM concentration, and combined siRNAs

against two different genes exhibited over 18–50-fold reduc-

tion, these combinations are very effective. These results sug-

gested that combinations of effective siRNAs targeting

different genes could be used in clinical applications with re-

duced toxicity at a lower cost.

Our results demonstrated that siRNAs targeting function-

distinguishing structural genes achieved varying degrees of suc-

cess in inhibiting viral genomic RNA accumulation in host

cells but reducing viral titers almost to a same level as effective

siRNA targeting replicase gene. In addition, we also showed

that siRNAs targeting rep, S, E, and M genes at very low con-

centration displayed synergistic activities that restored even

displayed better antiviral activities than a single siRNA alone

at saturated concentration. Our previous study showed that

spike protein would be a good target for anti-SARS drug

development and siRNA exhibited synergistic antiviral effects

with chemical drugs [28,35]. Taking together, we suggest that

replicase, spike protein, envelope protein and membrane pro-

tein would be served as targets for siRNAs/shRNAs delivered

with vectors (e.g., adenoviral vectors) for inhibition of viral

replication and infections.
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