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Abstract

Angiogenesis plays an essential role in many pathological processes such as tumor growth,

wound healing, and keloid development. Low oxygen level is the main driving stimulus for

angiogenesis. In an animal tissue, the oxygen level is mainly determined by three effects—

the oxygen delivery through blood flow in a refined vessel network, the oxygen diffusion

from blood to tissue, and the oxygen consumption in cells. Evaluation of the oxygen field is

usually the bottleneck in large scale modeling and simulation of angiogenesis and related

physiological processes. In this work, a fast numerical method is developed for the simula-

tion of oxygen supply in tissue with a large-scale complex vessel network. This method

employs an implicit finite-difference scheme to compute the oxygen field. By virtue of an

oxygen source distribution technique from vessel center lines to mesh points and a corre-

sponding post-processing technique that eliminate the local numerical error induced by

source distribution, square mesh with relatively large mesh sizes can be applied while suffi-

cient numerical accuracy is maintained. The new method has computational complexity

which is slightly higher than linear with respect to the number of mesh points and has a con-

vergence order which is slightly lower than second order with respect to the mesh size. With

this new method, accurate evaluation of the oxygen field in a fully vascularized tissue on the

scale of centimeter becomes possible.

1 Introduction

Oxygen plays a key role in animal metabolism. Oxygen supply to tissue is mainly achieved by

the circulation system of animals. In particular, the efficiency of oxygen delivery is mainly

determined by the microcirculation structure. In order to improve the efficiency of their

microcirculation structure, animals have developed different physiological processes to modify

the geometry and topology of vessel networks, including blood vessel adaptation and angio-

genesis [1–3]. In these physiological processes, the oxygen level is the key driving stimulus. For

example, poor microcirculation structure results in local tissue hypoxia (low concentration of

oxygen), which leads to the production of growth factors for angiogenesis, such as vascular

endothelial growth factor (VEGF) [4, 5]. Angiogenesis plays a critical role in many pathologi-

cal processes, such as wound healing [6], and keloid development [7], and tumor growth
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[8, 9]. Modeling studies of angiogenesis are important in understanding the progression of

tumor [10] and its therapy [11–13]. Accurate evaluation of oxygen supply is also important in

generating artificial vascular networks [14, 15] and non-invasively investigating the impact of

diseases and therapeutic procedures on the vascular bed [16].

There have been a few techniques for measurement of oxygen level, such as two-photon

phosphorescence lifetime microscopy that can be applied to measure oxygen level in vivo [17].

However, existing techniques can hardly offer a complete spatial-temporal picture of oxygen

field on microscopic scales. Therefore, theoretic modeling [18–20] and numerical simulation

[21–26] is widely utilized in evaluating oxygen level and studying angiogenesis.

The classical Krogh cylinder model roughly describes the oxygen transport from blood ves-

sels to tissues [18, 27]. In this model, evenly spaced capillaries are assumed to be parallel and

supply oxygen to a cylindrical tissue domain. Following Krogh’s model, more detailed oxygen

consumption mechanisms are taken into account [28]. Coupled models for oxygen delivery

including a reasonable oxygen consumption mechanism, a relatively complex vessel network

structure, and detailed blood flow in the vessel network are also proposed in later works

[19, 29].

Experimental results have indicated disordered spatial distribution of blood vessels [30]. In

retinal vascular network, the arterioles and venules reach out from the center to the periphery,

forming a roughly radial skeleton, while capillaries form a vessel network that links the arteri-

oles and venules [31]. It is also observed that the microcirculation in tumor tissue presents a

chaotic geometry [32]. Therefore, in most real applications, it is important to incorporate the

complex vessel network structures into the model and numerical algorithms to evaluate the

oxygen field in tissue.

The chaotic vessel geometry brings great challenges in designing effective numerical algo-

rithms. Although existing simulations based on finite difference method and rectangular grids

can provide useful insight for tissue oxygen supply, they introduce unrealistic requirement for

the geometry of blood vessel networks [2, 22]. A finite element method is also introduced for

more general vessel network topology and geometry [28]. This method requires a particular

local processing near blood vessels. Meanwhile, the mesh grid is generated according to the

vessel geometry. As a result, the corresponding computational cost is huge for tissue with

large-scale complex vessel network structure. In more realistic applications, Secomb and Hsu

developed a numerical method based on Green’s function, in which each vessel is regarded as

a line source of oxygen [26, 32]. Their numerical method can be used to deal with complex ves-

sel geometry. However, their method suffers from the high computational cost due to the all-

to-all interaction between all elements. In order to handle large-scale simulations, Welter et al.

introduced a fast numerical method based on finite element method [33]. With a uniform

grid, they achieved the simulation in a fully vascularized tissue with a domain size of about 0.5

cm3, which was used to study the pathological characteristics of a tumor and its surrounding

tissues [34].

In this work, we develop a fast numerical method to evaluate the coupled system for oxygen

delivery in tissue, with particular attention paid to the large-scale complex blood vessel net-

work structures. In our model, the blood vessel is also regarded as a line source for oxygen

field. A source distribution technique is used so that we can solve the oxygen field on a square

mesh. This technique ensures that blood vessels can be freely embedded in the tissue without

the need to fit the grid mesh. A post-processing technique is employed to remove the numeri-

cal error induced by source distribution, which allows us to use a relatively large mesh size for

the square mesh, while sufficient numerical accuracy is maintained. Furthermore, an efficient

iteration method is used to deal with the nonlinearity of the coupled system. The convergence

order of our new method is slightly smaller than second order with respect to the mesh size
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and the computational cost is slightly larger than linear with respect to the total number of

mesh points. Due to the advantages of this new method, we can accurately evaluate the oxygen

field of a three dimensional fully vascularized tissue on the scale of centimeter within 20h.

2 Modeling

The model for oxygen delivery in blood vessels and tissues is well established in previous

works [19, 29]. The model mainly includes a partial differential equation (PDE) for the oxygen

field, a linear system for blood flow and blood pressure, and a system of ordinary differential

equations (ODE) for the blood oxygen.

2.1 Oxygen diffusion in tissue

The oxygen-consuming tissue is a mixture of cells, extracellular matrix and extracellular fluid.

Oxygen transport in tissue depends mostly on diffusion. The diffusion constant and solubility

of oxygen may vary slightly in different tissue. Here we assume a uniform oxygen diffusivity D
and uniform solubility α. Oxygen diffusion in tissue at steady state satisfies the reaction-diffu-

sion equation

Da4 PO ¼ MðPOÞ; ð1Þ

where PO is the partial pressure of oxygen andM(�) is the oxygen-consuming rate in tissue.

The oxygen consumption in cells consists of various biochemical processes, which can be

described by the Michaelis-Menten equation in general

MðPOÞ ¼
M0PO

P0 þ PO
; ð2Þ

whereM0 represents the maximum consumption under infinite oxygen supply and P0 repre-

sents the partial pressure of oxygen at half-maximal consumption.

2.2 Blood flow and blood pressure

The blood flow and blood pressure can be computed with Ohm’s law and Kirchhoff’s circuit

law that form a system of linear equations. For a small blood vessel, which can be regarded as a

cylinder, the blood flow in the vessel can be well approximated by the Poiseuille flow. The con-

ductance of the vessel is

Cij ¼
pR4

ij

8mLij
; ð3Þ

where i and j are indices of the two end nodes of the vessel, μ is the viscosity of the blood, and

Rij and Lij are the radius and length of the vessel, respectively. It is worth noting that, the effec-

tive viscosity μ can be dependent on the vessel radius and blood oxygen level [26, 32]. In this

case, the system becomes a nonlinear system that is coupled to the whole system for oxygen

delivery.

The blood pressure and blood flow rate from node i to node j, Qij, satisfies the Ohm’s law

Qij ¼ � Qji ¼ ðPi � PjÞCij:

The Kirchhoff’s circuit law describes the conservation of mass
X

j

Qij ¼ si; ð4Þ
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where si gives the sources and sinks at the inlets and outlets of the vessel network. In most

cases, fluid exchange between the blood and tissue may only be a small percent of the total

flow (e.g., <0.5% as evaluated from Ref [35]). In this case, we can simply set si = 0 for all inner

nodes including the junction points. When this fluid exchange becomes large, such as in the

kidney or in particular pathological states, the Starling’s law can be used by introducing con-

tinuous flow sinks si along the vessels [35]. In real applications, the boundary conditions at the

inlets and outlets can also be replaced by other conditions, such as fixed pressure condition.

2.3 Oxygen flux in vessels

Oxygen carried by blood includes two parts, the minor of which is directly dissolved in the

plasma while the major of which is associated with hemoglobin. The relation between oxygen

saturation Sa and blood oxygen partial pressure Pb satisfies the Oxygen-hemoglobin dissocia-

tion relation

SaðPbÞ ¼
Pnb

Pnb þ Pn50

; ð5Þ

where n = 2 is used in this work and P50 is the half-saturated oxygen pressure that may depend

on the pH-value of blood. Correspondingly, the oxygen flux f through a cross-section of the

vessel includes two parts

f ðPbÞ ¼ QðabPb þHDC0SaðPbÞÞ: ð6Þ

where Q is the blood flow rate, αb is the oxygen solubility in blood plasma, HD is the discharge

hematocrit, and C0 is the concentration of hemoglobin-bound oxygen in a fully saturated red

blood cell (RBC).

2.4 Oxygen exchange on vessel walls

Let s be the arc-length parameter along the centerline of a vessel and x(s) be the coordinate of

the centerline. Assume the cross-section of the blood vessel is a circle with radius R, then the

total oxygen flux q(s) through the blood vessel wall per unit length is

qðsÞ ¼ � Da
Z 2p

0

@POðr; y; sÞ
@r

jr¼RRdy

¼ � DaR
@

@r
jr¼R

Z 2p

0

POðr; y; s; tÞdy;
ð7Þ

where r is the polar radius and θ is the polar angle on the cross-sectional plane (the pole is at x

(s)). In this work, we assume that the diffusion constant of oxygen in the blood vessel wall is

the same as that in the tissue, in which the vessel wall can be regarded as part of the tissue.

Therefore, the oxygen flux can be evaluated from the average PO gradient on the vessel wall.

The oxygen flux can also be described by the Kedem-Katalchsky’s law [36],

qðsÞ ¼ 2pRLpðPb � PO;wall � sDPÞ ð8Þ

where Lp is the hydraulic permeability of the vessel wall, Pb(s) is the blood oxygen pressure,

PO,wall(s) is the circumferential average oxygen partial pressure on the outer surface of the ves-

sel wall, and σ and ΔP are the osmotic reflection coefficient and the osmotic pressure differ-

ence, respectively. In the Kedem-Katalchsky’s law, precise experimental measurements of

multiple parameters (e.g., the thickness of blood vessel wall and the vascular permeability) are

used to evaluate the conductivity of oxygen through the blood vessel wall.
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Ignoring the oxygen consumption in blood, we obtain the conservation of oxygen

df ðPbÞ

ds
¼ � qðsÞ: ð9Þ

Given the oxygen flux q(s), the above equation becomes a first-order ordinary differential

equation (ODE). A boundary condition is required to solve the equation for each vessel. In

real applications, we may have Pb at the inlet of each vessel: (1) At the inlets of the vessel sys-

tem, Pb is given; (2) At the bifurcation points, Pb at the inlet of the downstream vessels is inher-

ited from the parent vessel; (3) At collecting junctions, Pb at the inlet of the downstream vessel

is obtained from its parent vessels as the mixed value by conservation of oxygen.

2.5 Model simplification

Since the oxygen partial pressure should be continuous in the whole domain, i.e., the tissue

domain and the vessel domain, Pb provides a Dirichlet boundary condition on vessel walls for

PO in Eq (1). However, the disordered structure of blood vessel walls brings great difficulties in

meshing and numerical simulations to solve the above coupled system. In previous studies

[37], the oxygen flux is represented by oxygen sources on the centerlines of vessels. Under this

simplification, the governing equation for oxygen supply is defined in the whole domain. In

this case, the governing equation becomes

� Da4 PO ¼ � MðPOÞ þ SðxÞ; ð10Þ

where S(x) =
R
q(s)δ(x − x(s))ds is the oxygen source supplied by the vessel.

Note that the vessel radius is relatively small (2 * 3μm) compared to the distance between

capillaries (*100μm). Therefore, this simplification can be a good approximation at least for

far field. The oxygen partial pressure may be overestimated near the vessels, which can lead to

a slight overestimate of the oxygen sourceM(PO). Further improvement on such an approxi-

mation has been discussed in the work of Ref. [26, 38]. Instead of concentrated oxygen sources

on the centerlines of blood vessels, distributed sources using smooth kernel functions are also

used in a recent study [39]. This can be effectively used to avoid the weak singularities of the

oxygen field.

Now we have obtained a coupled system for oxygen delivery, which includes a PDE (10) on

the whole domain, a set of nonlinear ODEs (9) on the vessel centerlines, and a system of linear

equations for blood pressures and blood flows in all vessels.

3 Numerical method

In order to develop a fast numerical method to solve the above coupled system, we are left with

two main tasks: (1) find an efficient iteration method to deal with the nonlinearity of the cou-

pled system and (2) develop a fast numerical solver for the PDE (10) with complex sources on

blood vessel centerlines.

3.1 Nonlinear iteration

Mainly due to the nonlinearity of the ODEs (9) and the unusual form of coupling, general iter-

ation methods, such as the full Newton-like iterative methods, are both hard in code imple-

mentation and lack of convergence guarantee for the coupled system. Here we propose an

iterative method by decoupling the system and alternatively updating PO and Pb. In particular,

we introduce pseudo time step in order to reach the steady state solution. The rest of the
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section then explains how each (pseudo) time step is solved, namely with a semi-implicit Euler

method.

Given PnO and Pnb at step n, by assuming that the blood oxygen partial pressure PO = Pb on

vessel walls, Eq (7) allows us to evaluate the flux qn(s) numerically. In the 3-D case, we expand

the Laplacian operator in series near the vessel first, and then use particular fitting to evaluate

the derivative in Eq (7). In the 2-D case, linear fitting on both sides of the vessel can be directly

utilized to evaluate the flux qn(s). Detailed discussion on the fitting method is included in

Appendix A. Similar treatment can also be used to evaluate the oxygen flux utilizing the

Kedem-Katalchsky’s law. In general, we denote the evaluation of qn as

qn�ðsÞ ¼ LðPnb; P
n
OÞ; ð11Þ

which is linearly dependent on PnO and Pnb . According to our numerical tests, it is not efficient

for convergence to update the flux directly using qn
�

. Instead, a weighted sum

qnþ1ðsÞ ¼ lqnðsÞ þ ð1 � lÞqn�ðsÞ ð12Þ

is more efficient, where the weight l ¼ 1

2
is used in our simulation. Once the flux is obtained,

Eq (9) is used to update Pb in all vessels

df ðPnþ1
b Þ

ds
¼ � qnþ1ðsÞ: ð13Þ

The fourth-order Runge-Kutta method is used to solve the ODE (13) to obtain Pnþ1
b in each

vessel segment. In practice, qn
�

can also be updated in a Gauss-Seidel fashion. Namely, the val-

ues of Pnþ1
b on the updated nodes can be used in Eq (11) to evaluate the flux.

The flux qn+1 is also used to calculate the oxygen source Sn+1, which is required in comput-

ing Pnþ1
O . It is possible to update PO by fully solving the PDE (10) with given oxygen source

Sn+1. However, since we still need the nonlinear iteration, it is neither necessary nor efficient

to find the accurate solution at each iteration step. Instead, we use the following scheme to

update PO

1

Dt
ðPnþ1

O � PnOÞ ¼ Da4hP
nþ1

O � MðPnþ1

O Þ þ S
nþ1; ð14Þ

where4h is the numerical Laplacian operator and Δt is the temporal step size. This implicit

numerical scheme solves the time-dependent reaction-diffusion equation for one time step.

When the iteration converges, the solution satisfies the steady state PDE (10).

Note that an increase of the oxygen partial pressure PnO in tissue can lead to a decrease of the

oxygen flux qn+1 (thus the oxygen source Sn+1). This implies at least one negative eigenvalue of

the coupled system in the sense of linearization. As a result, it may even be not stable to update

PO by fully solving the steady state PDE (10) for each iteration step (namely, Δt =1). The

instability has been observed in our numerical test. From this point of view, a suitable time

step size Δt should be selected so that it is both good for iteration stability (Δt is not too big)

and good for fast convergence (Δt is sufficiently big).

3.2 PDE solver

Based on the iteration framework above, our remaining task is to numerically solve the PDE

(10) efficiently. For the simplified coupled system, we do not consider the detailed geometry of

vessel walls. Thus, a square mesh can be easily used in our simulation. We simply use the cen-

tral difference as the numerical Laplacian4h, where h is the mesh size. This brings great con-

venience in developing a fast solver. The system in this paper contains no fluid convection and
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maintains a uniform diffusion coefficient. Under this situation, the central differential scheme

is equivalent to the finite volume method, which ensures the local mass conservation. When

convection becomes significant, we can use the mass-conservative finite volume method

instead.

There are two problems left for us to solve: First, the oxygen sources are located on vessel

centerlines, we need to distribute the sources onto the square mesh points; Second, in order to

conduct a large scale simulation, we need to use a relatively large spatial mesh size while main-

taining sufficient numerical accuracy.

In order to distribute the oxygen sources onto the square mesh points, first we discretize

the sources to be point sources SnkðxÞ ¼ q
nðxkÞhkdðx � xkÞ on the center lines, where k is the

index of the point source at xk = (xk,1, xk,2, . . ., xk,d) (d is the space dimension) and hk is the

step size on the centerline; Then, we use Peskin’s numerical δ-function �dð�Þ (see Appendix B)

to distribute all point sources onto their neighboring mesh points [40]. Namely, we have

�Sni ¼
X

k

qnðxkÞhk�dðx � xkÞ; ð15Þ

where �dð�Þ is the numerical δ-function and i = (i1, i2, . . ., id) is the index of the mesh point.

Due to the nonlinearity in the consumption functionM(�), we use the standard multigrid

algorithm combined with the Newton’s method to solve Eq (14). According to our numerical

tests, only a few steps of Newton-iteration are sufficient to make the numerical error small

enough.

Notably, the above redistribution of oxygen-sources can lead to numerical error in the solu-

tion. As a result of using Peskin’s numerical δ-function, the numerical error induced by source

redistribution is local—mainly on the local mesh points to which the oxygen sources are dis-

tributed (see Appendix C). Nevertheless, the local oxygen field around the blood vessels must

be sufficiently accurate for evaluating the oxygen flux using Eq (11). Therefore, without further

improvement, we can only use a small spatial mesh size h to perform simulations.

Next, we introduce a post-processing technique to reduce the local error induced by the

redistribution of oxygen-sources. With this post-processing step, we are able to use a relatively

large mesh size h (e.g., be comparable to or even larger than vessel diameters) while maintain-

ing a sufficiently small numerical error.

3.3 Post-processing

The post-processing is designed to reduce the error introduced by oxygen-source redistribu-

tion. This error can be defined as the difference dP ¼ Pnþ1
O � �Pnþ1

O , where Pnþ1
O and �Pnþ1

O satisfy

the following equations

1

Dt
ðPnþ1

O � PnOÞ ¼ Da4hPnþ1
O � MðPnþ1

O Þ þ
X

k

qnþ1

k hkdðxk � xÞ;

1

Dt
ð�Pnþ1

O � P
n
OÞ ¼ Da4h

�Pnþ1
O � Mð�P

nþ1
O Þ þ

X

k

qnþ1

k hk�dðxk � xÞ;

respectively. Therefore, δP satisfies

dP
Dt

¼ Da4 dP � dM þ
X

k

qnþ1

k hkðdðxk � xÞ � �dðxk � xÞÞ; ð16Þ

where dM ¼ MðPnþ1
O Þ � Mð�P

nþ1
O Þ � M

0ðPnþ1
O ÞdP.
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Eq (16) appears to be nonlinear due to the nonlinearity in δM. However, in real applica-

tions, this term is always very small and we can neglect it. The reason that δM is small is double

fold: For mesh points near a vessel, the oxygen partial pressure is relatively high (much bigger

than P0), thusM0ðPnþ1
O Þ is very small; whereas for mesh points away from all vessels, δP

becomes very small thanks to the good property of the numerical δ-function. Therefore, we

can evaluate δP by neglecting the nonlinear term

dP
Dt

¼ Da4 dP þ
X

k

qnþ1

k hkðdðxk � xÞ � �dðxk � xÞÞ: ð17Þ

Due to the linearity of Eq (17), δP can be regarded as the linear combination

dP ¼
P

kq
nþ1
k hkdPk, where δPk satisfies

dPk
Dt

¼ Da4 dPk þ ðdðxk � xÞ � �dðxk � xÞÞ: ð18Þ

The boundary condition for Eq (18) is that δPk vanishes when x!1. In fact, as shown in

Appendix C, only a few mesh-sizes away from xk, the error δPk is already negligible. This

observation allows us to solve δPk only on local mesh near to xk (e.g., an 8 × 8 mesh in the 2-D

case).

The error δPk can be further decomposed into two parts dPk ¼ Pk � �Pk, where the first part

Pk ¼
R Dt

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
ð4pDasÞd
p exp � jxk � xj

2

4Das

� �
ds is the fundamental solution corresponding to the point

source δ(xk − x) and the second part �Pk is corresponding to the distributed sources

�Pk
Dt
¼ Da4 �Pk þ �dðxk � xÞ; ð19Þ

�Pkj@Ok ¼ Pk; ð20Þ

where @Ok is the boundary of the local domain Ok. Note that the coefficient matrix to numeri-

cally solve the linear system (19) on the local mesh is independent of k and the size of the coef-

ficient matrix is small (e.g., 64 × 64). We can find and save the inverse of the coefficient matrix

numerically. Then a matrix-vector multiplication is used to find �Pk.
In summary, for each source point xk, δPk is evaluated on a local mesh at the beginning. At

each iteration step, the linear combination dP ¼
P

kq
nþ1
k hkdPk is used to evaluate the error on

mesh points close to vessels introduced by oxygen-source redistribution. This error is then

removed from �Pnþ1
O .

4 Parameters for simulation

The model parameters used in this work are listed in Table 1. The data are adapted from previ-

ous experiments on different animal retinas [41–45].

5 Numerical results

5.1 Blood vessel network structures

Four model structures of blood vessel networks are used in our simulation (see Fig 1). The

simple cobweb structure (Fig 1(a)) in 2D and the single vessel (Fig 1(c)) in 3D are used for

model validation and numerical convergence analysis. The 2D and 3D refined structures (Fig

1(b) and 1(d)) are adapted from real experimental measurements on a mouse retina. They are
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further used for analyzing the efficiency of oxygen supply. In this study, the no-flux boundary

condition is used in solving the oxygen field with Eq (1).

5.2 Numerical solution for the cobweb vessel network

In Fig 2(a), we show the numerical solution of the oxygen partial pressure obtained with a

1024 × 1024 square mesh for the cobweb vessel structure. Since the distance between neighbor-

ing vessels is much bigger than that of real microvasculature, tissue away from the vessels is in

a hypoxic state, i.e., the oxygen partial pressure is very low. The width of the well irrigated

region for each vessel depends on the blood flow in it, being roughly on the scale of 100 μm.

Note that the gap between neighboring capillaries in normal tissue is also roughly on the scale

of 100 μm, which is much smaller than that in the cobweb structure. With such a high capillary

density, normal tissue can be well irrigated.

The numerical error of the oxygen partial pressure is shown in Fig 2(b). The error is calcu-

lated by comparing the solution obtained with a 1024 × 1024 mesh and a 2048 × 2048 mesh.

The error is smaller than 1mmHg. This suggests that with a mesh size of about 5 μm, the

numerical error can be smaller than one percent.

In Fig 3, we show the blood oxygen partial pressure Pb and oxygen flux q on all vessels.

Because the blood vessels of the most inner loop are very small, they have a big resistance to

blood flow. As a result, the blood flow in these vessels is very small, which leads to a fast decay

in blood oxygen partial pressure along the flow direction (see Fig 3(a)). From Fig 3(c), we can

see that the blood oxygen partial pressure Pb decreases along each vessel segment as the oxygen

diffuses from vessel to tissue. Similarly, in Fig 3(b) and 3(d), we show the oxygen flux q. From

Fig 3(b), we can see that the flux q reaches minimums at most cross-links of the vessel seg-

ments. This is because that more than one vessels share the oxygen supply to the local tissue at

the cross-links. On the contrary, from Fig 3(d), we can see that the oxygen flux in vessel a and

d reaches the maximums at their one or two ends. This is due to the vacancy of vessels at the

center and the outer domain. At the end of the vessel segment b, the blood oxygen partial pres-

sure becomes a constant and the flux becomes zero, because the oxygen partial pressure is

higher in the surrounding tissue than the blood inside the vessel. Note that this unphysiologi-

cal behavior is a consequence of the cobweb vessel structure. Here we set the negative flux to

be zero. This setting does not significantly change the tissue oxygen level and blood oxygen

concentration in downstream vessels since this piece of vessel is always short.

Table 1. Model parameters.

Blood oxygen parameters

Maximal RBC oxygen concentration C0 = 0.5cm3O2/cm3 [26]

Effective oxygen solubility αb = 3.1 × 10−5cm3O2/cm3/mmHg [26]

Hill equation parameter P50 = 38mmHg [26]

Hill equation parameter n = 2 [26]

Tissue oxygen parameters

Diffusion constant Dα = 6 × 10−10cm3O2/cm/s/mmHg [26]

Consumption parameter M0 = 1.7 × 10−4cm3O2/cm3/s [26, 41]

Consumption parameter P0 = 1mmHg [26]

Blood flow parameters

Oxygen partial pressure at inlet Pb0 = 100mmHg [42]

Blood viscosity μ = 4.6 × 10−9g/cm2 [43]

https://doi.org/10.1371/journal.pone.0247641.t001
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5.3 Numerical solution for the 2D refined vessel network

The numerical solutions of the oxygen partial pressure PO obtained with the refined vessel net-

work with a 1024 × 1024 mesh are shown in Fig 4. The oxygen partial pressure field is obtained

Fig 1. Model vessel structures. (a) A cobweb vessel structure mimicking the main branches of retinal vessel networks. There are six inlets and six

outlets for blood flow near the center of the network. The inlets and outlets are in a spaced arrangement. The arrows show the direction of blood flow.

(b) A refined vessel network with 4306 blood vessels. The network structure is adapted from a real retinal vessel network measured in experiment by

stretching and symmetrical extensions. There are four flow inlets and flow outlets near the center. (c)A single vessel embedded in a tissue cube. (d) A

refined 3D vessel network with 7815 blood vessels. The intermediate and deep capillary plexi layers in retina are reconstructed by projecting the above

2D network onto two spherical shells. The diameter of the two spheres for the deep capillary plexi layer, the intermediate layer, and the choroid layer is

2mm, 2.1mm, and 2.2mm, respectively. The widths of the lines in each figure show the radii of blood vessels. The unit for the axes is micrometer for

(c), and millimeter for others.

https://doi.org/10.1371/journal.pone.0247641.g001
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Fig 2. Oxygen partial pressure and its numerical error. (a) Numerical solution of the oxygen partial pressure

obtained with a 1024 × 1024 square mesh. (b) Numerical error of the oxygen partial pressure calculated by the

difference between the solution obtained with a 1024 × 1024 mesh and a 2048 × 2048 mesh. The unit for oxygen partial

pressure ismmHg.

https://doi.org/10.1371/journal.pone.0247641.g002

Fig 3. Blood oxygen partial pressure and oxygen fluxes from the vessels. (a) Blood oxygen partial pressure Pb on the

vessels. (b) Oxygen fluxes q from the vessels to tissue. (c-d) Pb and q on four marked vessel segments in (a). The x-axis

denotes the distance from the inlet for each vessel (i.e., arc-length coordinate). The unit of Pb ismmHg. The unit of q is

10−9cm3O2/cm/s.

https://doi.org/10.1371/journal.pone.0247641.g003
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with a normal tissue consumption (M0 = 1.7 × 10−4cm3O2/cm3/s) (see Fig 4(a)), whereas the

partial pressure field is obtained with a reduced tissue consumption (M0 = 2.89 × 10−5cm3O2/

cm3/s) (see Fig 4(c)). In both cases, we can see that the oxygen partial pressure directly reflects

the refined vessel structure. In Fig 4(b) and 4(d), we statistically analyze the oxygen fields

inside the circles shown in Fig 4(a) and 4(c), respectively. The distance between the circle and

the outer vessels is greater than 200 μm. Hence the boundary effects is insignificant. For the

normal consumption case as shown in Fig 4(a) and 4(b), tissue in the outer domain has a very

low oxygen supply. This is due to the large stretch in the outer domain when we generate the

Fig 4. Oxygen partial pressure obtained with the refined vessel network. The partial pressure for normal tissue consumption and reduced tissue

consumption are shown in (a) and (c), respectively. The tissue inside the white circles shown in (a) and (c) are used to statistically evaluate the area

percentages of tissue with particular partial pressure of oxygen. The statistical results are shown in Figure (b) and (c), respectively. The unit of the

x− and y− axes in (a) and (c) ismm. The unit of oxygen partial pressure ismmHg.

https://doi.org/10.1371/journal.pone.0247641.g004
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refined vessel network, which significantly affects the oxygen supply in two folds: First, it

increases the irrigated area of the corresponding blood vessels in the outer domain; Second, it

increases the resistance of these vessels, thus decreases the blood flow in these vessels. For the

reduced consumption case as shown in Fig 4(c) and 4(d), all tissue inside the circle is well irri-

gated. This statistical results of oxygen field under various tissue consumption are consistent

with that reported in previous works [21, 46].

5.4 Numerical solution for the 3D refined vessel network

The 3D refined structure with 7815 vessels is adapted from the intermediate and deep capillary

plexi of a mouse retina and used for simulation of the oxygen field with a 512 × 512 × 512

mesh. The tissue consumption rateM0 = 2 × 10−3cm3O2/cm3/s and total blood flow Q = 10nl/s
are adapted from experimental data to simulate the real situation [47, 48]. The simulated oxy-

gen field at different layers is displayed in Fig 5. While low oxygen partial pressure can be

observed in the layers away from the capillary plexus, the capillary-rich areas are well irrigated,

which agrees well with the experimental data. Note that the irrigation efficiency depends on

the total blood flow rate Q and the vessel density.

5.5 Model validation

The comparison between our results and previous experimental and simulation results are

shown in Fig 6. The horizontal axis represents the normalized retinal depth and the vertical

axis represents the oxygen partial pressure. Despite the large differences in the independent

experimental profiles, the profiles indeed share similar features, e.g., relatively high oxygen

partial pressure is observed near the choroid surface and the deep capillary plexi, which is

attributed to the high local vessel density. Meanwhile, a ‘peak’ can be observed in the middle,

which corresponds to the intermediate capillary plexi layer. Despite the differences induced by

particular parameter settings and experimental conditions, the simulation results are relatively

consistent with the experimental data.

The comparison between our simulation results and that obtained with the numerical

method developed in Ref. [26] are shown in Fig 7. Both simulations are performed on the

same single-vessel domain as shown in Fig 1(C). The edge length of the cube is 640 μm and the

vessel radius is 10 μm. The oxygen profile in Fig 7(a) was obtained from a line through the

cube center perpendicular to the vessel. All curves exhibit a similar diffusion distance that

agrees well with the data under physiological conditions. Our results show good consistency

with that obtained with the method developed in Ref. [26]. The blood oxygen partial pressure

Pb obtained with different mesh size is shown in Fig 7(b). A more detailed illustration of the

error in oxygen field is shown in Fig 12. According to these results, a mesh size of 10μm is suf-

ficient to achieve a relatively low numerical error (1%).

5.6 Convergence analysis and efficiency analysis

We use the cobweb vessel network in 2D and the simple single-vessel network in 3D to numer-

ically study the convergence of our new method. The results for mesh refinement test are

shown in Fig 8(a). The relative error En is computed by the normalized L2-norm of the differ-

ence between the solutions obtained with an Nk mesh and a 2Nk mesh, where k is the dimen-

sion of the model. The numerical convergence order is about 1.7 for both the 2-D and 3-D

cases. For the 3-D case, the relative error reaches at about 1% with a mesh size of 10μm, which

is consistent with the result shown in and Fig 7.

The iteration convergence is shown in Fig 8(b), where the relative difference is shown by

the normalized L2-norm of the difference of the corresponding functions, q and PO, between

PLOS ONE Fast numerical method for tissue oxygen supply

PLOS ONE | https://doi.org/10.1371/journal.pone.0247641 February 26, 2021 13 / 25

https://doi.org/10.1371/journal.pone.0247641


two iteration steps. We can see that the relative differences have a fast decay at the beginning,

followed by a relatively slower linear convergence. In Fig 8(c), we show the iteration numbers

required to make the relative difference smaller than 1 × 10−3. We can see that the iteration

numbers are comparable for the simple and refined vessel network structures, while both of

them increase slightly with the mesh size N. The increase in iteration numbers is mainly due to

the choice of the temporal step size Δt in Eq (14). As we have discussed above, a large Δt is

helpful for convergence while a too large Δt can induce instability in the iteration. According

to our numerical test, the optimal Δt decreases with N. For example, Δt� 5000 is used for

N = 1024 in our simulation, while Δt� 3500 is used for N = 2048. The behavior in the 3-D

case is similar.

The average number of Newton iterations required for each full iteration step is about

5* 6. Therefore, the time cost is about 40 seconds to find the solution with a relative error

Fig 5. The oxygen partial pressure at different layers of the retina. The oxygen profiles on the layers corresponding to 0, 25, and 50 percent of the

retina depth are shown in the Figure (a), (b), and (c), respectively. The unit of the axes is mm and the unit of oxygen partial pressure ismmHg.

https://doi.org/10.1371/journal.pone.0247641.g005
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smaller than 1% on a 1024 × 1024 mesh with a standard 3.7 GHz personal computer, whereas

about 170 seconds on a 2048 × 2048 mesh. The iteration process for the 3-D simulation shares

the similar convergence rate to that for the 2-D case. In our simulation, the complete 3-D sim-

ulation requires about 726 seconds on a 256 × 256 × 256 mesh and about 8200 seconds on a

512 × 512 × 512 mesh. This time increase from 2-D to 3-D comes mainly from the increase in

solving the PDE.

The average time cost for each Newton iteration is analyzed in Fig 9. At the beginning of

each iteration, three to six Newton iterations are required for each full iteration step. In each

Newton iteration step, two to three V-cycles of multigrid iterations are required to solve the

oxygen partial pressure field. After a few full iteration steps, only two to three Newton iteration

steps, each with only one V-cycle, are sufficient to make the error small enough for each itera-

tion step. In Fig 9(a) and 9(b), we show the average time cost for solving the oxygen field in tis-

sue (PDE-time), solving the blood oxygen partial pressure (ODE-time), and post-processing

(P-time) in each Newton iteration step, tested on a standard 3.7 GHz personal computer.

In our simulations, the step size along the blood vessels is set to be hk ¼ h
3
¼ L

3n, where L is

the domain size and n is the mesh size on one direction. For a given vessel network structure,

the total number of discrete nodes on the blood vessels is proportional to n. Hence the sum of

the ODE-time and P-time (OP-time) is also proportional to n. Note that for the standard

Fig 6. Comparison between retina oxygen partial pressure profiles simulated by our model for the mouse retina and those experimentally

measured in mice by [47], in macaques by [41], in rats by [48] and in a human retina model [31]. DCP: deep capillary plexi, ICP: intermediate

capillary plexi.

https://doi.org/10.1371/journal.pone.0247641.g006
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multigrid method, the computation complexity and the PDE-time are O(n2logn) for 2-D cases

and O(n3logn) for 3-D cases, which increase much faster than the OP-time (see Fig 9(a) and

9(b)). As shown in Fig 9(c), for large mesh size n, the OP-time is only a small fraction of the

PDE-time for the refined retina vessel networks.

In many real applications, simulations are required to perform in fully-vascularized 3-D tis-

sue domains. Thus it is of interest to estimate the OP-time required in such cases. Obviously,

the OP-time increases linearly with the total length of blood vessels. In principle, the OP-time

is proportional to the total number of discrete grids on the blood vessels Nv ¼
Lv
hk

, where Lv is

the total length of blood vessels. In order for a fair comparison for different simulations, we

define the normalized time ration by

Rn ¼
OP‐time=Nv
PDE‐time=n3

¼
OP‐time
PDE‐time

�
n3hk
Lv

:

As shown in Fig 9(d), Rn is relatively invariant with the mesh size n and the total vessel

length Lv. This suggests that the OP-time is really proportional to the total vessel length for

given mesh size n.

For a fully vascularized tissue with fixed vessel density, the total vessel length is proportional

to the volume V of the tissue domain. As a result, for given mesh step size h, the ratio between

the OP-time and the PDE-time is almost invariant with the domain size. Using the vessel den-

sity suggested in Ref. [33], the total vessel length in a cube with the edge length of 5.12mm is

about 13422mm, which is 13.3 times of that of the 3-D retina network (about 1012mm) in

this work. Therefore, for h� 20μm, the ratio between the OP-time and PDE-time is about

smaller than 1 for fully vascularized tissue (see Fig 9(c)). In particular, for a fully vascularized

(5.12mm)3 cube, the OP-time is about 789 seconds for h = 10μm, and the total time cost is

Fig 7. Model validation and convergence analysis. (a) The profiles of oxygen partial pressure on a line perpendicular to the vessel, where x = 0

represents cube center. The oxygen partial pressure inside the vessel (−10, 10) are set to be equal to the blood oxygen partial pressure Pb. The line

“Secomb” is obtained from the method developed in Ref. [26] with a mesh size of 10μm. All simulations are performed with tissue consumptionM0 =

2.0 × 10−3cm3O2/cm3/s and total blood inflowQ0 = 0.05nl/s. (b) The blood oxygen partial pressure Pb along the blood vessel.

https://doi.org/10.1371/journal.pone.0247641.g007
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about 8000 seconds; For a fully vascularized (10.24mm)3 cube, which contains about 106 vessel

segments, the estimated total time is about 70390 seconds for h = 10μm.

6 Conclusions and discussions

Oxygen delivery in tissue plays an important role in many physiological processes such as

angiogenesis, blood flow regulation, and blood vessel adaptation. Repeatedly evaluating the

oxygen field in tissue is the key bottleneck that limits the large scale modeling and simulation

of these important processes. In this work, a fast numerical method is developed for the

Fig 8. Numerical convergence analysis. (a)Mesh refinement test. The stars show the numerical error. The fitted lines show a convergence order of 1.73

for the 2D case and 1.71 for the 3D case with respect to mesh size. The relative error is computed by the normalized L2-norm of PO. (b) The decay of the

relative difference between two iteration steps. The relative difference is computed by the normalized L2-norm of q. (c) Iteration numbers for different

mesh size.

https://doi.org/10.1371/journal.pone.0247641.g008
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computation of the nonlinear coupled system of oxygen consumption, oxygen diffusion, and

oxygen delivery in blood vessels with complex network structures.

Our fast numerical method involves an implicit finite-difference method for solving the

partial differential equation of oxygen partial pressure with a square mesh. The key techniques

we used include (1) the Peskin’s numerical δ-function to distribute the oxygen sources onto

mesh points and (2) the post-processing to remove the numerical error induced by the distri-

bution of oxygen sources. With these techniques, relatively large spacial mesh size can be used

while sufficient numerical accuracy is maintained. The computational complexity is slightly

bigger than linear with respect to the number of mesh points, taking into account the increase

Fig 9. Numerical efficiency analysis. (a) and (b) Average time cost for each iteration step in the 2-D and 3-D cases, respectively. The black solid lines,

the blue dotted lines, and the red dashed lines show the average time cost for solving the PDE, the ODEs, and the post-processing in each Newton

iteration step, respectively. For the 2-D case, the circled and squared lines show the time cost for the refined vessel network and the simple cobweb

network, respectively; whereas for the 3-D case, the circled and squared lines show the time cost for the refined retina network and the single vessel

system, respectively. (c) The time ratio between the OP-time and PDE-time for the 2-D and 3-D cases. (d) The normalized time ratio for different

systems.

https://doi.org/10.1371/journal.pone.0247641.g009
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in iteration steps for refined meshes. The convergence of numerical error is slightly less than

second order with respect to the mesh size. For three-dimensional simulations, the numerical

error can be controlled to be about 1% with a mesh step size of h = 10μm.

Although we have not performed a 3-D simulation of fully vascularized tissue because we

do not have a suitable 3-D vascular structure, our numerical tests show that for given step size

h� 20μm, the simulation time is mainly costed in the multigrid method for solving the oxygen

field. A large scale simulation in a fully vascularized (10.24mm)3 cube can be achieved within

20h for h = 10μm. Moreover, the natural extension of our method from serial to parallel also

leaves abundant possibilities for further applications on various large organs.

Nevertheless, we can see that the total number of iterations used in our current simulations

is still large. Hence, to pave the way for more realistic three-dimensional simulations with

complex blood vessel networks, better iteration strategies should be explored to reduce the

time cost in our method.

7 Appendix

A Oxygen flux through blood vessel walls

For the two-dimensional case, oxygen flux is evaluated on both side of the vessel walls sepa-

rately. The oxygen partial pressure PO is assumed to be equal to Pb on vessel walls. In order to

evaluate the oxygen flux at a discrete node x = (x, y) on the vessel center line, we first numeri-

cally calculate the unit normal direction n by central difference. Then, we define two corre-

sponding points x± = x±r n on the vessel wall (see Fig 10), where r is the vessel radius. Next,

the oxygen partial pressures PO on four nearest mesh points to x+ outside the vessel are used to

fit a linear function PO(x, y)�Pb + G � (x − x+) in the sense of least squares, where G is the gra-

dient to be fitted. Finally, the oxygen flux is given by q = DαG � n.

Fig 10. (a) Evaluation of oxygen flux in 2D. The red solid lines represent the vessel wall. The red dashed line shows the center line

of the blood vessel, the crosses on which show the discrete nodes. The blue (green) solid circle shows x+ (x−), whereas the blue

(green) solid squares show the nearest mesh points used to fit the linear function and evaluate the flux. (b) Evaluation of oxygen flux

in 3D. The red dashed line shows the center line of the blood vessel. The black circle shows the cross-section of blood vessel,

whereas the blue (green) solid squares show the nearest mesh points used to fit the solution and evaluate the flux.

https://doi.org/10.1371/journal.pone.0247641.g010
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For the three-dimensional case, the oxygen field near the blood vessel can be described by

the Laplace equation under cylindrical coordinate system.

1

r
@

@r
r
@PO

@r

� �

þ
1

r2

@
2PO
@y

2
þ
@

2PO

@z2
¼ 0;

POðr0; y; z0Þ ¼ Pb;

where r0 denotes the radius of the blood vessel, z0 and Pb are z coordinate of one discrete node

on vessel center line and the corresponding blood oxygen partial pressure, respectively. Then

the series expansion of the solution can be writen as,

POðr; y; zÞ ¼ ða1 þ a2zÞða3 þ a4 log rÞ

þ ða5 þ a6zÞða7r þ a8=rÞða9 cosyþ a10 sin yÞ þ � � �

By keeping the first term and applying the boundary condition, the solution can be written

as

POðr; y; zÞ ¼ Pb þ c1 log ðr=r0Þ þ c2ðz � z0Þ þ c3ðz � z0Þ log ðr=r0Þ:

In our numerical tests, a few nearest mesh points are used fit the function in the sense of

least squares. The distance between the fitting point and the point on center line is less than

r0 + h. Finally, the oxygen flux is obtained by q = 2πDαc1.

B Peskin’s numerical δ-function

Peskin’s numerical δ-function is defined as

�dðxÞ ¼
1

hd
Yd

i¼1

�ð
xi
h
Þ;

where d is the dimension of x, h is the mesh size, and xi are the Cartesian components of x.

The one-dimensional continuous function ϕ(x) is given by

�ðrÞ ¼

0; r � � 2;

1

8
ð5þ 2r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 7 � 12r � 4r2
p

Þ; � 2 � r � � 1;

1

8
ð3þ 2r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4r � 4r2
p

Þ; � 1 � r � 0;

1

8
ð3 � 2r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r � 4r2
p

Þ; 0 � r � 1;

1

8
ð5 � 2r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 7þ 12r � 4r2
p

Þ; 1 � r � 2;

0; r � 2:

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

PLOS ONE Fast numerical method for tissue oxygen supply

PLOS ONE | https://doi.org/10.1371/journal.pone.0247641 February 26, 2021 20 / 25

https://doi.org/10.1371/journal.pone.0247641


ϕ(x) satisfies the following constraints

�ðxÞ ¼ 0 for jxj > 2;

P
j even �ðx � jÞ ¼

P
j odd �ðx � jÞ ¼

1

2
for all real x;

P
jðx � jÞ�ðx � jÞ ¼ 0 for all real x;

P
j ð�ðx � jÞÞ

2
¼ const for all real x:

8
>>>>>>>>><

>>>>>>>>>:

C Localization of δPk
An example of δPk defined in Eq (18) on the local mesh is illustrated in Fig 11, where the mesh

size is h = 0.002, xk = (0.5 + h/2, 0.5 + h/2) is set at the center of the local mesh. It can be clearly

seen that δPk decays very rapidly. When |x − xk|>2h, the error is already negligible.

D Detail error analysis for single vessel

A detailed error analysis for this classical Krogh model is shown in Fig 12. In order to estimate

the numerical error induced by the spatial discretization, we performed simulations with mesh

sizes of 5,10,20 and 40 μm, respectively. The result of 5-μmmesh was used as a reference to

determine the errors of those obtained with other mesh sizes. It can be observed that the errors

are mainly distributed in the vessel and surrounding tissue. A space step of 40 μm will bring

Fig 11. The relative error δPk on a local mesh.

https://doi.org/10.1371/journal.pone.0247641.g011
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Fig 12. Detailed oxygen field error analysis for the single vessel model. (a) The oxygen profile on the plane of the vessel under

the fine grid (h = 5μm). The numerical error for the h = 10, h = 20 and h = 40 are shown in (b-d), respectively, while the result of

5-μmmesh were used as a standard. The unit of the axes is μm and the unit of oxygen partial pressure ismmHg.

https://doi.org/10.1371/journal.pone.0247641.g012

Table 2.

vascular system Number of inlets inlet flow Number of outlets outlet flow

2D cobweb network 6 0.6 nl/s 6 0.6 nl/s

2D refined network 4 1 nl/s 4 1 nl/s

3D single vessel 1 0.05 nl/s 1 0.05 nl/s

3D refined network 4 2.5 nl/s 4 2.5 nl/s

https://doi.org/10.1371/journal.pone.0247641.t002
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about 10% numerical error in the blood vessel, where the case of 10 μm only has an error less

than 1%.

E Inflow and outflow conditions

The inflow and outflow conditions of the four vascular systems used in in this work are listed

in Table 2. When there are multiple inlets and outlets, they share the same blood flow rate.
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