
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Rajakumar Anbazhagan,
Eunice Kennedy Shriver National
Institute of Child Health and Human
Development (NIH), United States

REVIEWED BY

Asamanja Chattoraj,
Kazi Nazrul University, India
Jenny Fung,
School of Biomedical Sciences, The
University of Queensland, Australia
Ramya Billur,
University of Pennsylvania,
United States

*CORRESPONDENCE

Jongkil Joo
jkjoo@pusan.ac.kr
Ki-Tae Ha
hagis@pusan.ac.kr

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Reproduction,
a section of the journal
Frontiers in Endocrinology

RECEIVED 12 May 2022

ACCEPTED 07 October 2022
PUBLISHED 20 October 2022

CITATION

Bae S-J, Jo Y, Cho MK, Jin J-S, Kim J-
Y, Shim J, Kim YH, Park J-K, Ryu D,
Lee HJ, Joo J and Ha K-T (2022)
Identification and analysis of novel
endometriosis biomarkers via
integrative bioinformatics.
Front. Endocrinol. 13:942368.
doi: 10.3389/fendo.2022.942368

TYPE Original Research
PUBLISHED 20 October 2022

DOI 10.3389/fendo.2022.942368
Identification and analysis of
novel endometriosis biomarkers
via integrative bioinformatics

Sung-Jin Bae1†, Yunju Jo2†, Min Kyoung Cho3, Jung-Sook Jin3,
Jin-Young Kim4, Jaewon Shim5, Yun Hak Kim6,7,
Jang-Kyung Park8, Dongryeol Ryu2, Hyun Joo Lee9,
Jongkil Joo9* and Ki-Tae Ha3,4*

1Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan,
South Korea, 2Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine,
Suwon, South Korea, 3Korean Medical Research Center for Healthy Aging, Pusan National
University, Yangsan, South Korea, 4Department of Korean Medical Science, School of Korean
Medicine, Pusan National University, Yangsan, South Korea, 5Department of Biochemistry, Kosin
University College of Medicine, Busan, South Korea, 6Department of Anatomy, School of Medicine,
Pusan National University, Yangsan, South Korea, 7Department of Biomedical Informatics, School of
Medicine, Pusan National University, Yangsan, South Korea, 8Department of Korean Medicine
Obstetrics and Gynecology, Pusan National University Korean Medicine Hospital, Yangsan,
South Korea, 9Department of Obstetrics and Gynecology, Pusan National University Hospital,
Busan, South Korea
Endometriosis is a gynecological disease prevalent in women of reproductive

age, and it is characterized by the ectopic presence and growth of the eutopic

endometrium. The pathophysiology and diagnostic biomarkers of

endometriosis have not yet been comprehensively determined. To discover

molecular markers and pathways underlying the pathogenesis of

endometriosis, we identified differentially expressed genes (DEGs) in three

Gene Expression Omnibus microarray datasets (GSE11691, GSE23339, and

GSE7305) and performed gene set enrichment analysis (GSEA) and protein–

protein interaction (PPI) network analyses. We also validated the identified

genes via immunohistochemical analysis of tissues obtained from patients with

endometriosis or healthy volunteers. A total of 118 DEGs (79 upregulated and

39 downregulated) were detected in each dataset with a lower (fold change) FC

cutoff (log2|FC| > 1), and 17 DEGs (11 upregulated and six downregulated) with a

higher FC cutoff (log2|FC| > 2). KEGG and GO functional analyses revealed

enrichment of signaling pathways associated with inflammation, complement

activation, cell adhesion, and extracellular matrix in endometriotic tissues.

Upregulation of seven genes (C7, CFH, FZD7, LY96, PDLIM3, PTGIS, and

WISP2) out of 17 was validated via comparison with external gene sets, and

protein expression of four genes (LY96, PDLIM3, PTGIS, andWISP2) was further

analyzed by immunohistochemistry and western blot analysis. Based on these

results, we suggest that TLR4/NF-kB and Wnt/frizzled signaling pathways, as
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well as estrogen receptors, regulate the progression of endometriosis. These

pathways may be therapeutic and diagnostic targets for endometriosis.
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Introduction

Endometriosis is a common gynecological disorder in which

endometrial tissue grows outside the uterus (1). Endometriosis

affects around 10% of women of reproductive age and often

causes dysmenorrhea, chronic pelvic pain, and infertility (1, 2).

Despite the widespread acceptance of the retrograde

menstruation theory proposed by Sampson in 1927, the

pathogenesis of endometriosis remains poorly understood (3).

Thus, various other factors, including genetic, epigenetic, stem

cell, inflammatory, angiogenic, and immunological factors,

should be considered to better understand the complex

pathophysiology of endometriosis (3, 4). Gynecological surgery

is the major therapeutic option for endometriosis treatment.

Oral contraceptives, progestins, nonsteroidal anti-inflammatory

drugs, and gonadotropin-releasing hormone agonists are

alternative treatment options (2, 5). However, the efficacy of

these treatment strategies, whether surgical or non-surgical, is

still limited due to the high recurrence rate of the disease.

Despite its high prevalence, the diagnosis of endometriosis is

often delayed as it has no symptoms distinct from those of

ordinary menstrual cramps (6, 7). Histopathological

examination by invasive laparoscopy or surgery is the gold

standard for diagnosis of endometriosis (2). The identification

of diagnostic biomarkers is thus urgently required to improve

the diagnosis and treatment of patients with endometriosis.

Previous reviews on this topic have focused on identification

of potential biomarker candidates from specimens such as

peritoneal fluid, blood, urine, and endometrial biopsies (6–9),

highlighting several factors as noninvasive diagnostic

biomarkers, including growth factors, hormones, cytokines,

complements, glycoproteins, and antibodies. However, these

biomarkers are merely used to supplement diagnosis of

endometriosis, as none of them has demonstrated sufficient

sensitivity and specificity (10).

Integration of different types of omics data is routinely

utilized to discover and validate novel disease biomarkers (11,

12). Potential diagnostic biomarkers and therapeutic targets of

endometriosis have been proposed in such integrative

bioinformatics studies based on the identification of

differentially expressed genes (DEGs) (13–16). However,

identification of common biomarkers that are consistently
02
detected in all datasets is difficult due to the heterogeneity

among independent datasets. Here, three microarray datasets

(GSE11691, GSE23339, and GSE7305), which include gene

expression data from normal endometrial and endometriosis

tissues, were obtained from the Gene Expression Omnibus

(GEO) database. Non-biased bioinformatics analyses,

including identification of DEGs, gene set enrichment analysis

(GSEA), and protein–protein interaction (PPI) network analysis,

were conducted, and the findings were further validated by

analyzing immunohistochemistry (IHC) and western blot

analysis of tissue specimens obtained from patients with

endometriosis or healthy volunteers. Based on the obtained

results, we propose six biomarkers as potential targets for the

diagnosis and treatment of endometriosis.
Materials and methods

Data collection

The datasets for analysis in this study were chosen according

to the inclusion and exclusion criteria summarized in

Supplementary Figure 1. Briefly, the gene sets were obtained

by searching the Gene Expression Omnibus (GEO; https://www.

ncbi.nlm.nih.gov/geo) database and filtered by three different

criteria, including characteristics of data, experiment, and

sample. Among six datasets filtered by three criteria,

GSE11691, GSE23339, and GSE7305 were applied for DEG

and GSEA analysis. Whereas GSE135485 and GSE25628 were

used as validation datasets due to their imbalanced and small

sample sizes, GSE6364 was filtered out as it contained the data

from normal endometrium but not endometriosis. The gene

expression data used in this study (GSE11691, GSE23339,

GSE7305, GSE135485, and GSE25628) were downloaded from

the GEO database, and a total of 128 samples were collected.

GSE11691 using the GPL96 platform includes data obtained

from nine endometriosis and normal uterine endometrium

samples, respectively (17). GSE23339 includes data derived

from 10 endometriosis and nine normal uterine endometrium

samples using the GPL6102 platform I (18). GSE7305 using the

GPL570 platform includes data collected from 10 endometriosis

and normal uterine endometrium samples, respectively (19).
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GSE135485 includes data collected from 54 endometriosis and

four normal uterine endometrium samples using the GPL21290

platform. GSE25628 includes data from seven endometriosis and

six normal uterine endometrium samples using the GPL571

platform (20). Detailed information on the datasets is

summarized in Table 1.
Data processing and identification
of DEGs

Transcriptome analysis was conducted using R (version

4.1.1) via RStudio (Desktop version, 1.4.1717). The three

datasets selected for DEG identification (GSE11691,

GSE23339, and GSE7305) were downloaded from the GEO

database of the National Center for Biotechnology Information

using the GEOquery R package (17–19, 21). Multiple probes

related to the same gene were reduced to one, and summarized

as median values for further analysis. Since gene expression

profiles differed between samples included in GSE11691,

quantile normalization was applied using the preprocessCore

R package (https://github.com/bmbolstad/preprocessCore).

DEGs were defined as genes with adjusted p-values and Log2|

FoldChange| (Log|FC|) less and greater than 0.05 and 1,

respectively. We adjusted p-value to correct the false positive

error caused by the multiple tests and calculated it by the

Benjamini & Hochberg method (22), which is one of the

popular tools to minimize the false discovery rate. The cutoff

criteria that we applied was 0.1. For analysis of the pathway and

PPI of DEGs, we adopted Log|FC| > 1 and used Log|FC| > 2 for

heatmap and network analysis.
Pathway enrichment analysis

Analysis of Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Gene Ontology (GO) biological processes of

DEGs were performed using the JEPETTO plugin (version

1.3.1) of Cytoscape (version 3.8.2). Visualization was

performed by constructing a scatter plot with XD-score and q-

value as axes. q-value < 0.25 was used as the cutoff criterion,
Frontiers in Endocrinology 03
according to GSEA guidance (https://software.broadinstitute.

org/cancer/software/gsea/wiki/index.php/FAQ).
PPI network analysis

The interactions of proteins encoded by the DEGs were

identified using the STRING plugin (version 1.7.0) of Cytoscape

by using “Homo sapiens” as search keyword, and a confidence

score cutoff higher than 0.4. GeneMANIA plugin (version 3.5.2)

was used to identify physical interactions. Visualization of the

network was performed using Cytoscape.
Heatmap construction and network
analysis of DEGs

A heatmap of the top 17 DEGs identified in each dataset was

generated using Morpheus, a versatile matrix visualization and

analysis software from the Broad Institute at the Massachusetts

Institute of Technology (https://software.broadinstitute.org/

morpheus/).

Network analysis was performed as previously described

(23). Briefly, the pattern of co-expression between the normal

and endometriosis groups was visualized based on Spearman’s

correlation. For this purpose, dplyr, stringr, ggpubr, ggplot2,

igraph, ggraph, corrr, corrplot, tidyverse, and reshape2 R

packages were applied.
GSEA

GSEA of each gene expression dataset was performed using

the GSEA software (version 4.1.0) from the Broad Institute at the

Massachusetts Institute of Technology (https://www.gsea-

msigdb.org/gsea/index.jsp). The absolute value of the

normalized enrichment score (NES), the enrichment score for

the gene set after it had been normalized across analyzed gene

sets, was set to > 1.5 as the cutoff criteria. The false discovery rate

(FDR) q-value, which represents the estimated probability that

the normalized enrichment score constitutes a false-positive
TABLE 1 Details of endometriosis GEO data used in this study.

GEO Author (year) Platform Method Samples Normal Endometriosis PMID

GSE11691 Hull et al (2008) GPL96 Microarray Endometrium 9 9 18688027

GSE23339 Hawkins et al (2011) GPL6102 Microarray Endometrium 9 10 21436257

GSE7305 Hever et al. (2007) GPL570 Microarray Endometrium 10 10 17640886

GSE135485 Yana et al. (2019) GPL21290 NGS Endometrium 4 53 –

GSE25628 Crispi et al. (2013) GPL571 Microarray Endometrium 6 7 23460397
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finding, was set to < 0.02. GO network analyses were performed

on each GSEA by uti l iz ing Cytoscape to visual ize

enrichment maps.
Clinical sample collection

Laparoscopic surgeries were performed at the Department of

Obstetrics and Gynecology of Pusan National University

Hospital (Busan, Korea) between June 2019 and December

2020. The surgical process was performed during the early

follicular phase to rule out the potential early pregnancy and

the possibility of the ovarian cyst being functional (24, 25). To

obtain normal uterine endometrial tissue as the control group,

we gathered the patients with male-factor infertility with normal

gynecologic anatomy who underwent endometrial scratch prior

to proceeding to programmed or natural embryo-transfer cycle,

and the patients with hormone-independent ovarian cysts such

as mature teratoma or cystadenoma who underwent laparoscopy

and presented no endometriotic lesion in the pelvic cavity. The

exclusion criteria were irregular menstrual periods, the presence

of endocrine disorders such as hyperprolactinemia or thyroid

dysfunction, and medication history with dysmenorrhea

management such as GnRH analogs, oral contraceptives, or

progestins during the past three months to the recruitment.

Eligible patients were further examined and proven

morphologica l ly free from poss ib le asymptomat ic

endometriosis and other hormone-dependent gynecological

pathologies, such as uterine adenomyosis and leiomyoma, by

undergoing imaging studies including gynecological

ultrasonography, abdominal computed tomography scans and/

or pelvic magnetic resonance imaging. All specimens from the

control group were further histologically assessed and confirmed

as normal endometrial tissue by pathologists. Endometriosis was

pathologically diagnosed in tissue specimens derived from 32

patients. Endometriosis was classified into stages I-IV according

to the revised American Society for Reproductive Medicine (r-

ASRM) classification system. The average stage detected in the

samples was approximately III. The average age of the patients

was 33.33 ± 7.53 years, whereas the average BMI was 21.51 ±

3.52. Samples of normal endometrial tissue were obtained from

ten healthy volunteers who have not been diagnosed with

endometriosis. The average age of the volunteers was 30.3 ±

4.9 years, whereas the average BMI was 22.06 ± 2.06. There was

no statistically significant difference between the average age and

BMI values of the two groups (with p-values of 0.16 and 0.56).

Tissue specimens were deposited in the Biobank of the Pusan

National University Hospital. Detailed information on the

pa t i en t and norma l vo lun tee r i s summar i zed in

Supplementary Table 1.
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This study was approved by the Institutional Review Board

(IRB) of Pusan National University Hospital (2104-009-101). All

patients signed informed consents for the study protocol. All

procedures were conducted in accordance with IRB guidelines.
IHC analysis

Fresh tissues collected by the laparoscopic surgeries were

rinsed with normal saline to remove blood and impurities, and

rapidly frozen and stored in the Biobank of Pusan National

University Hospital. The donated specimens were fixed with 4%

formaldehyde solution, and processed to obtain paraffin

embedded tissue blocks. Five–mm thick sections of tissue

blocks were deparaffinized by soaking in xylene and gradient

ethanol solution. The sections were then incubated with primary

antibodies, including anti-lymphocyte antigen 96 (LY96; 1:200;

ab22048, Abcam), anti-PDZ And LIM Domain 3 (PDLIM3;

1:200; HPA004749, Atlas Antibodies, Bromma, Sweden), anti-

prostaglandin I2 synthase (PTGIS; 1:200; ab23668, Abcam), and

anti-WNT1-inducible-signaling pathway protein 2 (WISP2;

1:200; ab28317, Abcam) at 4°C overnight. The sections were

then incubated with Dako REAL EnVision Detection System

(K5007; Dako, Jena, Germany) for 1 h. After rinsing with

phosphate-buffered saline (PBS), immunostaining was

visualized using DAB+ chromogen buffer (K5007, Dako). The

slides were counterstained with hematoxylin solution, and

representative images were taken using an optical microscope

(Axio Scope A1; Carl Zeiss, Oberkochen, Germany).

Histopathological scoring was performed through examination

under a light microscope by a pathologist. Staining intensity was

classified as follows: 0, negative immunostaining; 1, weak

expression level; 2, moderate expression level; 3, strong

expression level; and 4, very strong expression level.
Western blot analysis

Total proteins were extracted from frozen tissue specimens

using protein lysis buffer containing 10 mM HEPES pH 7.45,

150 mM sodium chloride, 1% (w/v) NP−40, 5 mM sodium

pyrophosphate, 5 mM sodium fluoride, and 2 mM sodium

vanadate with a protease inhibitor cocktail (Roche Applied

Science, Penzburg, Germany). 30 mg of protein lysates was

electrophoresed by sodium dodecyl sulfate−polyacrylamide gel

and transferred onto nitrocellulose membranes (0.45 mm;

ThermoFisher Scientific, Waltham, MA). The membranes

were blocked with 5% (w/v) non-fat dry milk and incubated

with primary antibodies against target proteins, including LY96,

PDLIM3, PTGIS, and WISP2 at 4°C overnight. The membranes
frontiersin.org
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were washed and incubated with proper secondary antibodies

conjugated with horseradish peroxidase. The bands of

interesting proteins were detected with the enhanced

chemiluminescence Plus kit (ThermoFisher Scientific) using

ImageQuant LAS 4000 imaging system (GE healthcare,

Chicago, IL).
Identification of potential
druggable genes

The Drug-Gene Interaction Database (DGIdb, http://www.

dgidb.org) is an online database that facilitates interpretation of

the results of genome-wide studies, and generation of hypotheses

in the context of druggable genome (26). DGIbd was used to

identify potentially druggable genes from an input list of genes

including the statistically significant DEGs.
Statistical analysis

To evaluate the statistical difference between the two groups,

Student’s t-test was performed using GraphPad Prism (version

5.01; GraphPad Software, San Diego, CA, USA). Statistical

significance was set at p < 0.05.
Results

Identification of DEGs

We first determined the distributions of gene expression

levels in three human endometrial transcriptome datasets,

GSE11691, GSE23339, and GSE7305 (17–19) . The

transcriptome profiles of GSE11691 showed the highest level

of variation among the three transcriptomes. Thus, we

conducted quantile normalization to avoid artifacts in

subsequent analyses. The gene expression data included in

GSE23339 and GSE7305 datasets were converted to Log2 scale

(Figure 1A), and DEGs were then identified using these three

datasets. As highlighted in the colored volcano plots (Figure 1B),

a total of 536 (361 upregulated and 175 downregulated), 1,042

(562 upregulated and 480 downregulated), and 1,515 (882

upregulated and 633 downregulated) DEGs were identified in

GSE11691, GSE23339, and GSE7305, respectively (Figure 1C).

Moreover, integration of DEGs shared across the datasets

revealed 118 (79 upregulated and 39 downregulated;

Figure 1C) and 17 (11 upregulated and six downregulated;

Figure 1D) common DEGs with a lower (fold change) FC
Frontiers in Endocrinology 05
cutoff (log2|FC| > 1) and a higher FC cutoff (log2|FC| > 2),

respectively (Table 2).
Pathway enrichment analysis

To elucidate the pathways and molecular functions related to

the 118 common DEGs identified above, KEGG and GO

enrichment analyses were conducted. The analysis results

revealed the involvement of the identified DEGs in the

extracellular matrix, cell adhesion, complement activation,

immune response, and inflammation processes (Figure 2A).
PPI network analysis

Interactions between proteins encoded by 118 DEGs

identified above were analyzed using the STRING and

GeneMANIA plugins of Cytoscape. STRING analysis resulted

in a network comprising 118 nodes (genes) and 197 edges

(interactions). A total of 37 nodes did not have any edges, and

four nodes had only few edges. The rest of the network,

including 77 genes and 195 interactions is shown in Figure 2B.

The genes AP1M2, BGN, C3, C3AR1, CCL2, CD14, CD163,

COL14A1, FCGR2A, FGL2, FN1, LYZ, MS4A4A, RNASE6,

TYROBP, and VCAM1 had relatively higher number of

interactions (over four edges). GeneMANIA analysis resulted

in a network consisting of 138 nodes and 72 edges. Among these

nodes, 77 genes did not have any physical or pathway

interactions, and 24 genes had merely simple interactions. The

main interaction network harboring 37 nodes and 57 edges is

shown in Figure 2C. The genes showing relatively higher

number of interactions (over three edges) in the network were

identified to be C3, CFH, CNDP2, COL11A1, COL14A1, FABP4,

FN1, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DRA, ITGB8,

LAMA4, LY96, and TAGLN. STRING analysis revealed CCL2 as

significant (with over three edges), based on 15 common DEGs

with a cutoff value of Log2|FC| > 2. On the other hand,

GeneMANIA revealed that three proteins encoded by AGR2,

FZD7, and LY96 were in physical or pathway contact with each

other (Supplementary Figure 2).
Network analysis of DEGs

The heatmaps (Figure 3A) depicted the expression levels of

the 17 frequent DEGs with p-values less than 0.05 and Log2|FC|

more than 2, clearly illustrating the differential expression

patterns of those selected genes in endometriosis compared to
frontiersin.org
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TABLE 2 The list of identified DEGs in three endometriosis datasets, GSE11691, GSE23339, and GSE7305.

DEGs Gene names

Up-
regulated
(27)

AEBP1, AGTR1, BGN, C3, C3AR1, C7, CCL2, CD14, CD163, CFH, CHL1, COL11A1, COL14A1, COLEC12, CPE, CPVL, CSTA, CXCL12, DKK3, DPYD,
DPYSL3, DSE, ELMO1, EVI2B, FABP4, FAM129A, FCGR2A, FCHSD2, FGL2, FMO1, FMO2, FMOD, FN1, FRZB, FZD7, GAS1, HEG1, HLA_DPA1,
HLA_DPB1, HLA_DQA1, HLA_DRA, IGJ, IL4R, ITM2A, KCTD12, LAMA4, LHFP, LTBP2, LY96, LYZ, MEIS2, MMP23A, MN1, MNDA, MS4A4A, MS4A6A,
NUAK1, OLFML1, PDE1A, PDGFRL, PDLIM3, PLSCR4, PLXDC2, PRELP, PTGER4, PTGIS, RNASE1, RNASE6, ROBO3, SGCE, SULF1, TAGLN, TCEAL2,
THBS2, TNFSF14, TYROBP, VCAM1, VSIG4, WISP2

Down-
regulated
(28)

ACSL5, AGR2, AP1M2, BTBD3, CDS1, CLDN10, CLDN3, CNDP2, DEFB1, EDN3, ELF3, GALNT4, GRAMD1C, GRHL2, HMGCR, HOOK1, HOXB6, HPN,
HSD17B2, IL20RA, IRF6, ITGB8, KIAA1324, MME, OSR2, PAPSS1, PEMT, PERP, PLS1, PPM1H, PRSS16, PRSS8, PTPN3, RAB25, SH3YL1, SLC3A1, SPINT2,
TPD52L1, TSPAN1
Frontiers
Red and blue characters indicate genes enriched in endometriosis and normal endometrial tissues, respectively (log2|FC|>2.0).
B

C D

A

FIGURES 1

Identification of DEGs using integrative bioinformatics analysis. (A) The distribution of transcriptome obtained from GSE11691, GSE23339, and
GSE7305 were shown. (B) The volcano plots show the DEGs from GSE11691, GSE23339, and GSE7305. Red indicates relative upregulated genes
with p-value < 0.05 and Log2|FC| > 2, orange indicates relative upregulated genes with p-value < 0.05 and 1 < Log2|FC| ≤ 2, blue indicates
relative downregulated genes with p < 0.05 and Log2|FC| > 2, and light cyan indicates relative downregulated genes with p < 0.05 and 1 < Log2|
FC| ≤ 2. (C, D) Venn diagrams of upregulated and downregulated genes DEGs from three indicated datasets. The cutoff values of Log2|FC| were
set to 1 (C) and 2 (D).
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normal control across three independent datasets. In addition,

gene networks showing the co-expression patterns of the

selected genes were constructed based on Spearman’s

correlation. The 17 DEGs were highly associated with one
Frontiers in Endocrinology 07
another in three independent datasets from normal tissues,

and thereby generated a massive co-expression gene network

(Figure 3B). On the other hand, the number of correlations,

shown as edges, was drastically reduced in ectopic lesions of
B C

A

FIGURE 2

Analysis of the enriched pathways and interaction networks of DEGs in endometriosis. (A) KEGG and GO pathway analysis of DEGs from
GSE11691, GSE23339, and GSE7305 datasets with Log2|FC| > 1 were performed with JEPETTO plugin of Cytoscape, and scatter plot were
constructed with q-value and XD-score as x- and y-axis, respectively. Red character indicates the pathways with q-value < 0.1 and black
character indicates the pathways with 0.1 < q-value < 0.25. (B, C) Protein–protein interaction network of DEGs from three datasets with Log2|
FC| > 1 were analyzed in Cytoscape with plugins of STRING (B) and GeneMANIA (C). Red character indicates genes enriched in endometriosis
and blue character indicates genes enriched in normal.
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endometriosis patients compared to normal sites. Interestingly,

these patterns of gene networks with decreased correlations

under endometriosis were comparable across the three

independent datasets. Hence, the decrease in correlations

between these 17 DEGs may contribute to the pathophysiology

of endometriosis.
Identification of functional pathways
by GSEA

GSEA was carried out to identify functional pathways in

endometriosis that are shared across the three datasets

analyzed (GSE11691, GSE23339, and GSE7305). A total of 11
Frontiers in Endocrinology 08
common pathways were identified in the hallmark analysis,

including 9 upregulated and 2 downregulated pathways

(Figure 4A). Inflammation-related pathways such as IL6-

JAK/STAT3 signaling, inflammatory response, interferon a
response, interferon g response, and TNFa signaling via NF-

kB, were found to be significantly upregulated in patients with

endometriosis. In addition, nine common pathways were

found to be upregulated in KEGG analysis (Figure 4B).

Further, inflammation-related pathways including chemokine

signaling pathway and NOD-like receptor signaling pathway,

cytokine-cytokine receptor interaction, viral myocarditis,

Leishmania infection, and asthma were found to be

upregulated in patients with endometriosis. In GO network

analysis, inflammation-related pathways, such as immune
B

A

FIGURE 3

Expression and correlation of 22 DEGs with Log2|FC| > 2. (A) Heat maps show the expression levels of 22 DEGs in datasets, GSE11691,
GSE23339, and GSE7305. (B) Gene networks display correlations of 22 DEGs in the normal and endometrial tissues of each dataset. The depth
of edges indicates absolute Rho ranging from 0.5 to 1. The color of edges indicates co-expression ranging from -1 (red) to 1 (blue) by
Spearman’s Rho.
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response, chemotaxis, and immune cell migration, and cell-cell

interaction-related pathways, such as extracellular matrix,

proteoglycan, and endocytosis, were commonly enriched for

genes of three datasets with endometriosis (Figure 4C).

Phagocytosis-related pathways were upregulated in

endometriosis in two datasets, GSE23339 and GSE7305. The

small portions of pathways related to platelets and coagulation
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were upregulated in endometriosis of the two gene sets,

GSE11691 and GSE7305 . GO pathways , inc luding

mitochondria, ribosomes, and RNA splicing and/or

processing, were commonly enriched in three normal

datasets. Finally, the GO pathways involved in the cell cycle

and microtubules were downregulated in two datasets,

GSE23339 and GSE7305.
B

C

A

FIGURE 4

Identification of pathway networks by GSEA. (A, B) Common pathway categories identified by GSEA with gene set database of Hallmark (A) and
KEGG (B) are presented. (C) GSEA was performed to obtain enriched GO-terms and visualized using Enrichment Map plugin of Cytoscape. The
size of each node indicates the size of gene set. Red and blue indicate the node enriched in endometriosis and normal tissue, respectively.
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Protein expression of identified DEGs in
endometriosis lesions

To further evaluate the reliability of the results from

integrative analysis of GSE11691, GSE23339, and GSE7305,

the expression levels of 17 common DEGs in two external

datasets, GSE135485 and GSE25628, were determined. The

expression levels of 10 genes in GSE135485, including C7,

CFH, CHL1, CLDN3, FZD7, IGJ, LY96, PDLIM3, PTGIS, and

WISP2 were correlated with those in the validation sets

(Supplementary Table 2). However, the expression levels of

other genes did not correlate with those in the integrated data.

In the GSE25628 dataset, expression levels of 11 genes, including

AGR2, C7, CFH, FABP4, FZD7, GALNT4, LY96, PDLIM3,

PPM1H, PTGIS, and WISP2 were in line with integrative

analysis results (Supplementary Table 3). According to results

from two external datasets, GSE135485 and GSE25628, the

expression levels of seven genes, including C7, CFH, FZD7,

LY96, PDLIM3, PTGIS, and WISP2 were correlated with

training sets listed in Table 2.

The roles of C7, CFH, and FZD7 in endometriosis have been

reported previously (8, 29). These studies revealed higher

expression of C7, CFH, and FZD7 proteins in tissues with

endometriosis compared to normal endometrium by IHC

analysis. High expression of PDLIM3 in endometriosis has

also been reported in several previous bioinformatics studies

with little supportive experimental evidence (15, 30, 31). Thus,

we conducted IHC and western blot analysis on tissues from

normal endometrium and endometriosis foci to further evaluate

the expression of proteins encoded by the identified genes,

including LY96, PDLIM3, PTGIS, and WISP2. None of these

genes have yet been evaluated in terms of their expression

profiles in endometriosis tissue. Quantitative assessments of

histological images clearly demonstrated higher expression

levels of LY96, PDLIM3, PTGIS, and WISP2, proteins in

tissues from patients with endometriosis, in line with

integrative analysis results (Figure 5). According to western

blot analysis, the protein levels of LY96, PDLIM3, and PTGIS

were higher in the tissues of endometriosis patients. However,

the expression of WISP2 was not correlated with the IHC

analysis (Supplementary Figure 3).
Identification of potent druggable genes

To further identify relevant drug-gene interactions and

potential druggable target genes, we utilized the DGIdb by

applying C7, CFH, FZD7, LY96, PDLIM3, and PTGIS as

queries. Three genes, FZD7, LY96, and PTGIS, were found to

be associated with drugs vantictumab, eritoran tetrasodium, and

phenylbutazone, respectively (Table 3). CFH was predicted to be

a target gene for three antibody drugs: bevacizumab, eculizumab,
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and ranibizumab. No potential gene-drug interactions were

identified for C7 and PDLIM3.
Discussion

Endometriosis is a chronic inflammatory disease. The

infiltration of immune cells and secretion of inflammatory

mediators in the peritoneal microenvironment cause

symptoms and signs observed in endometriosis patients (32).

Endometriosis is characterized by inflammation and subsequent

fibrosis, which eventually lead to pelvic discomfort, bowel and

urinary problems, and infertility (32, 33). In contrast to normal

endometrium, accumulated hemorrhage and tissue injury are

key steps for initiating inflammation in the endometrial lesion

and peritoneal cavity (33, 34). Hormonal alterations, particularly

cyclic estrogen fluctuations, also contribute to an inflammatory

imbalance in endometriosis (35). In contrast to other

inflammatory diseases, increased estradiol production and

estrogen receptor b (ERb) expression in ectopic endometriosis

lesions jointly activate nuclear factor-kB (NF-kB), a key

inflammatory regulator (36, 37). Thus, the combination of oral

contraceptives and non-steroidal anti-inflammatory drugs

(NSAIDs) has been advised as the initial medical treatment

option (10, 38). However, the clinical efficacy of this

combination is suboptimal due to its low potency and

side effects.

In this study, we identified six genes that may be utilized as

diagnostic and/or therapeutic targets in endometriosis. STRING

and GeneMANIA analyses revealed no evidence of any potent

protein–protein interaction between these genes. Complement 7

(C7) and complement factor H (CFH), both of which are

components of the complement system, have previously been

identified as potent indicators of complement activation in

endometriosis and endometriosis-associated ovarian cancer

(29). C3, another member of the complement system, has been

reported to be upregulated in endometriosis (39) and was also

identified in our study as a common upregulated gene. Other

members of the complement activation pathway, such as

complement C3a receptor 1 (C3AR1) and V-set and

immunoglobulin domain containing 4 (VSIG4), are also

known in endometriosis, and upregulation of complement and

coagulation pathways in endometriosis has been well-reported

in several studies (15, 29, 39, 40). These studies suggested that

autoimmune response in endometriosis is associated with the

complement system (29, 39). In addition, the membrane attack

complex in the complement system, which is composed of

several complement proteins including C5b, C6, C7, C8, and

C9, may also cause tissue damage and thereby induce

inflammation in endometrial lesions.

Lymphocyte antigen 96 (LY96), also known as myeloid

differentiation protein 2 (MD-2), has been reported its
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expression in the uterine endometrium (28, 41) and is a

coreceptor of Toll-like receptor 4 (TLR4) (42). The TLR4

system is crucial for pathogen recognition and the activation

of innate immunity. The complex of bacterial lipopolysaccharide

(LPS) and LPS-binding protein interacts with cluster of

differentiation 14 (CD14), a glycosylphosphatidylinositol-

anchored membrane protein, and transfers LPS to LY96,
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consequently facilitating the dimerization of TLR4 (43).

Damage-associated molecular patterns (DAMPs) secreted by

most types of damaged tissues also bind to the TLR4 system

and activate downstream pro-inflammatory signals similar to

pathogen-associated molecular patterns, including bacterial LPS

(44). Prostaglandin I2 synthase (PTGIS), also known as

prostacyclin synthase (PGIS) or cytochrome P450 isomerase
B

C D

A

FIGURE 5

The protein expression of LY96, PDLIM3, PTGIS, and WISP2 in endometriosis tissue. (A–D) The protein expression of (A) LY96, (B) PDLIM3, (C) PTGIS,
and (D) WISP2 was measured by IHC analysis of endometrial tissues from healthy volunteers or endometriosis patients. The representative IHC images
are shown in upper panel (bar = 100 mm). The graphs in lower panel represent IHC score. **p < 0.01 and ***p < 0.001.
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8A1 (CYP8A1), is an enzyme that converts prostaglandin H2 to

prostaglandin I2, and thereby modulates the inflammatory

response (45). The role of PTGIS in inflammatory diseases is

controversial, as it promotes progression of rheumatoid arthritis

yet suppresses progression of pulmonary vascular disease and

atherosclerosis (46). Although PTGIS was identified as a

transcriptional target gene of NF-kB (47), the regulation of

PTGIS mRNA expression does not exactly correlate to those

of typical NF-kB targets (48, 49). In the vascular system and

uterine endometrium, estrogen receptors work in concert with

NF-kB to regulate the activity of prostaglandin-synthesizing

enzymes, including COX-2 and PTGIS (50, 51). Furthermore,

high levels of prostacyclin and its derivative, 6-keto-

prostaglandin F1a, have been detected in the peritoneal fluid

of endometriosis patients (52, 53). PTGIS expression was shown

to be downregulated in a murine model of implanted

endometr ium (54) ; however , proteomics ana lyses

demonstrated upregulated PTGIS expression in human

ovarian endometrioma samples (55). In this study, we

demonstrated the increased expression of LY96 and PTGIS via

integrative transcriptome analysis, and further validated by IHC

analysis of human-derived tissues.

Frizzled 7 (FZD7) is a member of the frizzled family and an

atypical G protein-coupled receptor for Wnt proteins. FZD7

interacts with Dishevelled (Dvl) and lipoprotein receptor-related

proteins (LRPs) in the presence of canonical Wnt signaling, and

thereby promotes b-catenin signaling (56). This signaling

pathway is closely related to embryonic development, cell

proliferation, epithelial-to-mesenchymal transition, and

carcinogenesis (57, 58). Wnt signaling is also involved in the

production of enzymes related to prostaglandin metabolism in

bone and skin, including COX-2 and PTGIS (59, 60). The

crosstalk between the Wnt/frizzled and TLR4/NF-kB signaling

pathways is well-established in chronic inflammation,

development, and tumorigenesis (61, 62). PDZ and LIM
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domain 3 (PDLIM3) are involved in cytoskeleton assembly, in

particular the formation of Z-disks in skeletal muscles (63).

Although several microarray and proteome analyses have

already revealed high PDLIM3 expression in this regard (15,

30, 31, 55), the exact role of PDLIM3 in endometriosis remains

to be elucidated. The expression of Wnt1-inducible signaling

pathway protein 2 (WISP2) might be another evidence of the

connection between Wnt/frizzled and TLR4/NF-kB signaling

pathway. The protein, also known as cellular communication

network factor 5 (CCN5), is a secretory protein and a member of

the connective tissue growth factor family (64). The expression

of WISP2 is induced by Wnt signaling, and restricts cell growth,

migration, adhesion, and differentiation, particularly in the

vascular system and cancer cells (65–67). Secreted WISP2 is

also involved in the activation of the canonical Wnt signaling

pathway (68). However, our examination of WISP2 expression

was not consistent between IHC and Western blot analysis. the

delicate role of the WISP2 in the endometriosis still remains

ambiguous and further extensive studies are required.

In endometriosis, chronic inflammation is co-regulated by

ERb-related signaling and the classical NF-kB signaling pathway

(36, 37). Estrogen stimulation increases the expression of

PDLIM3 in human prostate cancer (69). However, even if the

expression level of PTGIS does not perfectly match that of the

ERb, it may be negatively influenced by ERb (70, 71). We thus

propose here the existence of signaling interactions between the

validated DEGs including C7, CFH, FZD7, LY96, PDLIM3, and

PTGIS, and pathways including TLR4/NF-kB, Wnt/frizzled, and

estrogen receptors (Figure 6). Further research is needed to

elucidate the precise roles of the identified genes

in endometriosis.

We also found four druggable genes: FZD7, LY96, PTGIS,

and CFH. FZD7 is a direct target of vantictumab, a neutralizing

antibody currently being developed as an anticancer agent,

particularly for triple-negative breast cancer (72, 73). In
TABLE 3 Potent drugs identified in DGIdb corresponding to consistently upregulated six DEGs in endometriosis.

Gene Drug Approved Interaction score Interaction types Drug class PMID

C7 – – – – – –

CFH ECULIZUMAB Yes 14.14 na Antibody 19854549,
27799617

BEVACIZUMAB Yes 7.53 na Antibody 26439641

RANIBIZUMAB Yes 58.35 na Antibody 21558292,
22840423

FZD7 VANTICTUMAB No
(Clinical trial)

27.28 Antagonist Antibody 22753465

LY96 ERITORAN
TETRASODIUM

No
(Clinical trial)

31.83 Antagonist – 23512062

PDLIM3 – – – – – –

PTGIS PHENYLBUTAZONE Yes
(For animal
use)

37.13 Inhibitor Non-steroidal anti-inflammatory
agent

3917545, 6434940
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addition to vantictumab, an oligopeptide Fz7-21 and a small

molecule SRI37892 have been evaluated as a new Fzd7-targeting

agent to disrupt the Wnt signaling pathway for inhibiting

intestinal stem cell function and cancer progression (74, 75).

We suspect that these agents may have been identified for

candidate drugs if registration in DGIdb. LY96 has been

identified as a target of eritoran tetrasodium, a TLR4

antagonist drug that has been indicated for the treatment of

sepsis in several clinical studies (76). However, eritoran

tetrasodium was not successful due to its similar mortality

compared to that of placebo (42). Instead of eritoran

tetrasodium, we suggest that MD2-IN-1, isofraxidin, and

L48H37, studied in the inflammation and cancer research field

at the preclinical level, might be applied to treat endometriosis as

LY96-targeting agents (77–79). Phenylbutazone is a non-

steroidal anti-inflammatory drug (NSAID) that inhibits

prostaglandin H synthases (PTGS1 and PTGS2) and PTGIS

through peroxide-mediated deactivation (27). Although it has

been approved for the treatment of backache and ankylosing

spondylitis, phenylbutazone is currently withdrawn from human

medicine, as it can cause severe adverse effects such as

suppression of white blood cell production and aplastic

anemia (80). For CFH-targeting drugs, DGIdb has suggested

two VEGF-neutralizing antibodies, including ranibizumab and
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bevacizumab, and one C5-antagonizing antibody, eculizumab.

As CFH is a non-specific off-target for these antibodies, its

clinical application may result in significant adverse effects,

particularly in patients with a mutated CFH gene (81–85).

None of these drugs for targeting identified genes have yet

been used to target the identified genes for endometriosis

treatment. Additional in vivo and clinical studies are needed to

determine the efficacy of these drugs in endometriosis treatment.

The datasets should ideally be comparable in terms of

sample collection, underlying disease, menstrual cycle, and

experiment types for the analysis of the collection of public

gene sets. These elements of the datasets used for DEG analysis

varied, particularly with regard to the menstrual cycle and

underlying diseases such leiomyoma. We tried to select

datasets using a filter of three objective criteria despite the

restriction of only being able to access the datasets from public

databases. In addition, we meticulously gathered normal control

samples during the early follicular phase from healthy volunteers

who were free of any gynecological diseases. However, there is

almost no significant chance of finding genes that follow the

menstrual cycle or underlying disease. The results clearly

indicate that the genes discovered by DEG analysis may be

important for conditions beyond than underlying disease and/or

the menstrual cycle.
FIGURE 6

The schematic illustration of the hypothesized signaling network in endometriosis. Signaling interaction between six identified DEGs including
C7, CFH, FZD7, LY96, PDLIM3, and PTGIS, and three enriched pathways including TLR4/NF-kB, Wnt/frizzled, and estrogen receptors were
hypothesized and schematically illustrated. Solid line indicates direct interaction, and dashed line indicates indirect and/or proposed interaction.
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In conclusion, we identified 118 DEGs (79 upregulated and

39 downregulated) that may be involved in endometriosis

pathogenesis. KEGG and GO functional analyses revealed

enrichment of inflammation, complement activation, cell

adhesion, and extracellular matrix pathways in endometriosis.

Six genes, C7, CFH, FZD7, LY96, PDLIM3, and PTGIS were

verified as upregulated DEGs by comparison to external gene

sets, IHC and western blot analyses further confirmed the

elevated protein expression levels of LY96, PDLIM3, and

PTGIS in human endometrial lesions. We further analyzed the

involvement of these genes in signaling pathways including

TLR4/NF-kB, Wnt/frizzled, and estrogen receptors. We expect

that subsequent studies will confirm the genes identified here as

essential biomarkers for endometriosis diagnosis and treatment.
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