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Adipose progenitor cells, or preadipocytes, constitute a small population of immature
cells within the adipose tissue. They are a heterogeneous group of cells, in which
different subtypes have a varying degree of commitment toward diverse cell fates,
contributing to white and beige adipogenesis, fibrosis or maintenance of an immature
cell phenotype with proliferation capacity. Mature adipocytes as well as cells of
the immune system residing in the adipose tissue can modulate the function and
differentiation potential of preadipocytes in a contact- and/or paracrine-dependent
manner. In the course of obesity, the accumulation of immune cells within the adipose
tissue contributes to the development of a pro-inflammatory microenvironment in the
tissue. Under such circumstances, the crosstalk between preadipocytes and immune
or parenchymal cells of the adipose tissue may critically regulate the differentiation
of preadipocytes into white adipocytes, beige adipocytes, or myofibroblasts, thereby
influencing adipose tissue expansion and adipose tissue dysfunction, including
downregulation of beige adipogenesis and development of fibrosis. The present review
will outline the current knowledge about factors shaping cell fate decisions of adipose
progenitor cells in the context of obesity-related inflammation.
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INTRODUCTION

In the past two decades, adipose tissue (AT) has been extensively studied in both rodents and
humans, especially regarding mechanisms involved in obesity-related metabolic dysregulation.
There are two morphologically and functionally distinct types of AT: white AT (WAT) and brown
AT (BAT). WAT is predominantly responsible for energy storage in the form of triglycerides
and secretes hormonal regulators, namely adipokines, such as leptin and adiponectin, which can
regulate whole-body’s metabolic homeostasis. BAT, in contrast, has a non-shivering heat production
capacity, due to expression of uncoupling protein-1 (UCP-1) (Kershaw and Flier, 2004; Peirce et al.,
2014; Rosen and Spiegelman, 2014). Beige, or brite adipocytes represent a type of adipocytes that
morphologically resemble white rather than brown fat cells and reside within WAT, but express
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UCP-1 and exert brown-like properties (Rosen and Spiegelman,
2014; Alexaki and Chavakis, 2016; Cinti and Giordano, 2020).

In addition to adipocytes, the stromal vascular cell
fraction (SVF) of the AT contains further cell types, such as
endothelial cells, various immune cells and adipocyte progenitors
(preadipocytes or adipose progenitors cells, APs) (Ailhaud et al.,
1992; Church et al., 2014). APs reside in perivascular regions of
the AT, and can differentiate into mature adipocytes (Tang et al.,
2008; Rosen and Spiegelman, 2014; Vishvanath et al., 2016).
A recent study defined a developmental hierarchy of APs starting
from Dipeptidyl peptidase-4-postive (DPP4+) cells that give rise
to committed ICAM1+ and CD142+ preadipocytes capable of
adipogenic differentiation (Merrick et al., 2019). Commonly,
preadipocytes are described as CD45−, CD31−, Lin−, CD29+,
and Sca-1+ cells (Rodeheffer et al., 2008; Tang et al., 2008; Berry
and Rodeheffer, 2013). Platelet-derived growth factor-receptor
β positive (PDGFRβ+) APs were described as predisposed to a
white adipogenic (Gao et al., 2018), while PDGFRα+ progenitors
to a beige adipogenic or a fibrogenic phenotype (Lee et al., 2012;
Marcelin et al., 2017). A recent study provides an insight in the
heterogeneity of APs in the mouse VAT based on scRNAseq
analysis, demonstrating the existence of two distinct populations
of AT-derived stem cells and three populations of preadipocytes
(Cho et al., 2019).

During obesity, the expansion of the AT is driven by
two processes: hypertrophy (increased adipocyte size) and
hyperplasia (increased adipocyte numbers). Hyperplastic growth
is considered more metabolically favorable (Shao et al.,
2018; Vishvanath and Gupta, 2019), while AT hypertrophy is
associated with the development of hypoxia and release of
pro-inflammatory cytokines and chemokines by the adipocytes,
leading to the recruitment of immune cells and the formation
of a pro-inflammatory microenvironment in the AT (Arner
et al., 2010; Chatzigeorgiou et al., 2014; García-Martín et al.,
2015; Choe et al., 2016; Chung et al., 2018; Michailidou, 2019).
Macrophages play a crucial role in the development of AT
inflammation. They shift from an anti-inflammatory M2-like
(M2-M8) to a pro-inflammatory M1-like (M1-M8) phenotype
and form “crown-like” structures surrounding dead adipocytes
(Cinti et al., 2005; Lumeng et al., 2007a; Chawla et al., 2011;
Cinti and Giordano, 2020). M1-M8 secrete pro-inflammatory
mediators such as tumor necrosis factor (TNF), interleukin 1
beta (IL-1β), and IL-6 (Chawla et al., 2011; Chmelar et al., 2013;
Shapouri-Moghaddam et al., 2018). AT inflammation is also
featured by the accumulation within the obese AT of several
innate and adaptive immune cells including natural killer cells,
neutrophils, CD8+ cytotoxic- and type l T helper-lymphocytes,
which also produce pro-inflammatory factors (Cildir et al., 2013;
Chung et al., 2018; Kane and Lynch, 2019).

Studies suggest that various stromal cells, including AT
fibroblasts and endothelial cells, create an adipose niche for
APs (Jiang et al., 2017; Zhang et al., 2018), while resident and
infiltrating immune cells also contribute to the niche formation,
especially in the context of obesity-related inflammation (Nawaz
et al., 2017). Considering that preadipocytes are plastic cells that
respond to both niche and systemic signals (Jeffery et al., 2016),
the pro-inflammatory microenvironment of the obese AT might

play a critical role in determining the fate of APs. The present
review focuses on the current knowledge about AP fate driven
by both intracellular and extracellular factors in the context of
obesity-related chronic inflammation.

ADIPOGENESIS

White Adipogenesis and AT Expansion
The hyperplastic growth of the AT occurs through the process
of adipogenesis, namely the highly dynamic transformation
of immature fibroblast-like precursor cells into mature lipid-
loaded adipocytes (Rosen and MacDougald, 2006). Peroxisome
proliferator-activated receptor-γ (PPARγ) and members of the
CCAAT-enhancer-binding proteins (C/EBP) family are master-
regulators of this process. However, a considerable number of
signaling pathways, including Wnt, Notch, Hedgehog, MAPK,
and pro- and anti-adipogenic mediators (KLF and GATA
transcription factors, cell cycle proteins) regulate the adipogenic
conversion (Farmer, 2006; Rosen and MacDougald, 2006;
Ghaben and Scherer, 2019). Of note, APs from different AT
depots display qualitative and quantitative heterogeneity. For
instance, in both mice and humans, APs from subcutaneous
fat depots have shown in vitro higher growth rates and
adipogenic potential compared to those from visceral AT
(Permana et al., 2004; Tchkonia et al., 2005; Macotela et al.,
2012). Nevertheless, in vivo evidence from adult C57BL/6
mice, supports that following HFD-feeding, visceral AT expands
through both adipocyte hypertrophy and hyperplasia, while
subcutaneous AT almost exclusively via cellular hypertrophy
(Vishvanath and Gupta, 2019). Several markers, such as
CD36 and Zfp423 have been suggested to define preadipocyte
populations with pronounced adipogenic capacity (Gupta et al.,
2012; Gao et al., 2017).

A crosstalk between APs and immune cells could orchestrate
adipogenesis in both lean and obese state (Bing, 2015; Chung
et al., 2017). For instance, macrophages constitute 5–10% of the
SVF in lean mice and their numbers increase in obesity (Weisberg
et al., 2003; Weinstock et al., 2019; Daemen and Schilling,
2020). Both proliferation of tissue-resident macrophages and
monocyte infiltration contribute to the expansion of this
population in the obese AT (Weisberg et al., 2003; Amano
et al., 2014; Zheng et al., 2016). Several studies have shown that
pro-inflammatory macrophage-conditioned medium inhibits
AP differentiation and leads to insulin resistance in mouse
and human preadipocytes in vitro (Constant et al., 2006;
Lacasa et al., 2007; Lumeng et al., 2007b). The potential
contribution of individual components of the macrophage
secretome to this process has gained strong attention. TNF
is a major factor contributing to the anti-adipogenic effect
of macrophages, possibly via an epigenetic reprogramming-
dependent mechanism (Isakson et al., 2009; Andersen et al.,
2019). IL-6 exerts an inhibitory effect on IRS-1, Glut4, and
PPARγ, thereby contributing to the decreased adipogenic
capacity of human preadipocytes (Rotter et al., 2003; Gustafson
and Smith, 2006; Almuraikhy et al., 2016). IL-1β from pro-
inflammatory macrophages inhibits insulin sensitivity in both
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APs and mature adipocytes of mice and humans (Lagathu
et al., 2006; Gao et al., 2014). Moreover, the aforementioned
cytokines participate in a positive-feedback loop induction of
pro-inflammatory gene expression (IL-6, MCP-1, IL-1β, TNF,
and IL-8) in APs (Gustafson and Smith, 2006; Isakson et al.,
2009; Gao et al., 2014). Priming of human preadipocytes toward
a pro-inflammatory phenotype is also mediated by elevated
extracellular glucose levels, which accompany obesity and insulin
resistance (Rønningen et al., 2015). Pro-inflammatory priming
of murine preadipocytes is also mediated by leptin, the levels of
which are elevated during obesity (Ouchi et al., 2011; Palhinha
et al., 2019). Contrastingly, adiponectin, which is decreased in the
obese AT, promotes the differentiation of 3T3-L1 preadipocytes
and insulin sensitivity (Fu et al., 2005).

Besides macrophages that contribute to obese AT remodeling,
other immune cells within the AT can affect preadipocyte
differentiation as well. For instance, murine monocyte-derived
dendritic cells (DCs), which accumulate in the obese AT,
display anti-adipogenic properties in vitro (Pamir et al.,
2015; Macdougall and Longhi, 2019). The inhibition of AP
differentiation during obesity and AT inflammation promotes the
hypertrophic, rather than hyperplastic expansion of the AT, due
to storage of the supplied energy in the form of lipids by mature
adipocytes and not by differentiating APs (Hammarstedt et al.,
2018; Gustafson et al., 2019).

Apart from immune cells, the interaction of APs with the
highly abundant endothelial cells of the AT may shape the
adipogenic potential of preadipocytes, likely via vasculature-
derived factors (Cao, 2007). Indeed, vascular endothelial growth
factor (VEGF) is considered a key factor coupling adipo- and
angiogenesis in the mouse AT and may favor adipogenesis
within adipogenic/angiogenic cell clusters (Nishimura et al.,
2007; Sun et al., 2012; Breier et al., 2017). Along this line, a
recent study suggested a possible role of endothelial cells in
the regulation of fatty acid transport and PPARγ activation
in human preadipocytes, due to secretion of PPARγ ligands
by endothelial cells (Gogg et al., 2019). Moreover, a spatial
and functional overlap of CD34+ APs with pericytes has been
described, which plays a role in the stabilization of the AT
vasculature (Traktuev et al., 2008).

Of interest, a subpopulation of CD142+ adipogenesis-
regulatory cells (Aregs) was recently identified among the stromal
cell population of the mouse AT. This unique subtype of
precursor cells is increased in the obese AT and can suppress
the differentiation of preadipocytes in a paracrine-dependent
manner (Schwalie et al., 2018). However, as described above, a
later study did not support this finding (Merrick et al., 2019).

Beige Adipogenesis
Beige adipogenesis is integral to the metabolic homeostasis
of WAT. It contributes to insulin sensitivity by upregulating
molecular thermogenic signatures of WAT. Specifically, upon
adrenergic stimulation or exposure to cold, beige or brite
adipocytes can upregulate UCP-1 expression and adopt a
thermogenic phenotype, resembling brown adipocytes (Wu et al.,
2012; Alexaki and Chavakis, 2016; Wang and Seale, 2016; Shao
et al., 2019). However, a non-canonical UCP-1 mechanism can

also contribute to the formation of this phenotype (Bertholet
et al., 2017; Ikeda et al., 2018). Lineage-tracing studies allowed
to distinguish between Myf5+ progenitors that can differentiate
into brown adipocytes or myocytes, and Myf5− precursors that
are committed to white and beige adipocyte differentiation
(Gesta et al., 2007; Obregon, 2014; Peirce et al., 2014).
Furthermore, apart from the common white-beige progenitor,
beige adipocytes can also derive from a transdifferentiation
of mature white adipocytes into beige ones (Lee et al., 2012;
Rosenwald et al., 2013).

Until now, “beiging” or “browning” of the WAT is considered
as metabolically more favorable than “whitening,” and is
essentially a feature of the lean WAT, while it is diminished in
the course of obesity and the development of AT inflammation
(Alexaki and Chavakis, 2016). Indeed, several innate and adaptive
immune cell types have been implicated in the regulation of beige
adipogenesis in a positive or negative fashion (Lee et al., 2015;
Chung et al., 2017). Multiple studies have suggested the beneficial
role of cells of type 2 immunity, such as eosinophils and M2-
M8 in the induction and maintenance of beige adipogenesis
in mice, especially in the lean WAT (Lee et al., 2013; Qiu
et al., 2014; Alexaki and Chavakis, 2016). For instance, the
release of IL-4 by eosinophils is required for the maintenance of
the alternatively activated M2-M8 population, which promote
induction of beige adipogenesis in mice (Wu et al., 2011;
Qiu et al., 2014; Hui et al., 2015). Nevertheless, contradictory
data exist pertinent to the mechanism by which M2-M8 exert
their beige adipogenesis-promoting effect on APs and mature
adipocytes and whether the latter may depend on the release
of catecholamines by the M2-M8 or not (Qiu et al., 2014;
Fischer et al., 2017). In addition, type 2 innate lymphoid cells
(ILC2) promote beige adipogenesis in mice, predominantly by
propagating the maintenance of eosinophils and M2-M8 in a
IL-5- and IL-13-related manner (Molofsky et al., 2013). Along
this line, type 2 cytokines secreted by ILC2s and eosinophils
can stimulate beige adipogenesis in murine PDGFRα+ APs,
thereby triggering signaling via the IL-4Rα present on the latter
(Lee et al., 2015). Another mechanism suggests that mouse
AT beiging is stimulated by IL-33-mediated activation of ILC2
and the release by them of a methionine-enkephalin peptide
(Brestoff et al., 2014). Interestingly, a recent study showed that
murine PRDM16-expressing adipocytes, favor a fibrogenic-to-
adipogenic transition of APs, thus promoting beige adipogenesis
by secreting β-hydroxybutyrate (Wang W. et al., 2019).

In contrast, the development of a pro-inflammatory
microenvironment in the obese WAT restricts the potential
of APs toward beige adipogenesis. The increased numbers of
M1-M8 and the concomitant release of pro-inflammatory
mediators, such as IL-1β and TNF, contribute to the impaired
browning of the obese murine WAT and the suppression of
UCP-1 expression, likely in a Toll-like receptor 4 (TLR4) and
Nod-like receptor 3 (NLRP3) inflammasome-dependent way
(Sakamoto et al., 2016; Okla et al., 2018). Additionally, signaling
via the IL-18/IL-18R1 system has been reported to impede energy
expenditure and mouse AT beiging in vivo (Pazos et al., 2015).
Interestingly, a major mechanism involved in the diminished
beige adipogenesis in mice and humans during obesity-related
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FIGURE 1 | Multiple contact- and paracrine-mediated interactions shape differentiation of adipocyte progenitors toward white or beige adipocytes or myofibroblasts.
Pro-inflammatory M1-like macrophages (M1-M8) inhibit both white and beige differentiation of preadipocytes. Dendritic cells (DCs), as well as
adipogenesis-regulatory cells (Aregs) contribute to the inhibition of white adipogenic differentiation. On the other hand, paracrine factors like adiponectin and VEGF
stimulate precursor’s commitment toward white fat cells. Beige adipocytes can derive either from common white/beige adipocyte progenitors or from
transdifferentiation of mature white adipocytes. Pro-inflammatory M1-M8 and CD8+ T cells inhibit beige adipogenesis during obesity, while Type 2 innate lymphoid
cells (ILC2), M2-like macrophages (M2-M8), eosinophils as well as a subpopulation of PRDM16+ adipocytes were described as positive regulators of beige
adipogenesis. Adipocyte progenitors can differentiate into myofibroblasts and therefore, contribute to the development of fibrosis. This process is stimulated by
pro-fibrotic factors (TGF-β, PDGF) as well as type 1 innate lymphoid cells (ILC1) and mast cells.

WAT inflammation relies on the direct integrin-mediated
interaction between M1-like macrophages and APs as well as
mature adipocytes (Chung et al., 2017). Furthermore, CD8+
T cells were also shown to inhibit beiging of the obese murine
WAT in an IFN-γ-dependent manner (Moysidou et al., 2018).

FIBROSIS

Fibrosis is considered a pathophysiological consequence
of the persistent low-grade inflammation in the WAT in
obesity. Myofibroblasts are the major cell type contributing
to the extracellular matrix (ECM) deposition in fibrosis of
various organs. They can originate from different precursor
cells under the effect of transforming growth factor beta 1
(TGF-β1) and platelet-derived growth factor (PDGF) deriving
from inflammatory cells (Wynn, 2008; Sun et al., 2013;
Marcelin et al., 2019).

TGF-β inhibits human preadipocyte differentiation into
mature adipocytes, while it promotes collagen production and
cell proliferation, a process that can be controlled by Jak-
Stat signaling (Weiner et al., 1989; Keophiphath et al., 2009;
Babaei et al., 2018). TGF-β is involved in the generation of
Sca-1−SMA+ITGA5+ fibrogenic progenitor cells in the murine
WAT. This process depends on myocardin-related transcription

factor A (MRTFA) and results in the shift of the fate of
perivascular progenitors from APs with adipogenic potential
toward pro-fibrotic cells (Lin et al., 2018).

PDGFRα has been recognized as an anti-adipogenic factor
that favors the generation of profibrotic cells in mice (Iwayama
et al., 2015; Sun et al., 2017). Marcelin et al. showed the existence
of two subsets of PDGFRα+ adipocyte progenitors based on
the level of their CD9 expression. In both humans and mice,
AT CD9high cells were described as pro-fibrotic progenitors,
while CD9low precursors were rather committed to adipogenesis.
The CD9low subpopulation was almost lost in the fibrotic
obese WAT, while CD9high progenitors’ frequency positively
correlated with the degree of WAT fibrosis (Marcelin et al.,
2017). Similar characterizations of profibrotic vs. adipogenic
cells were identified in humans and mice based on Ly6C and
CD34 expression. Specifically, Hepler et al. (2018) described
in the mouse AT the coexistence of Ly6C+ PDGFRβ+ fibro-
inflammatory progenitors along with the highly adipogenic
Ly6C−CD9−PDGFRβ+ cells. Similarly, CD34high APs were
described as pro-fibrotic cells in the human visceral AT
according to their secretome profile (Buffolo et al., 2019). On
the contrary, another study did not find significant differences
in proliferative, adipogenic and fibrogenic potential between
CD34−, CD34low, and CD34high cells (Raajendiran et al., 2019).
Subpopulations of fibro-inflammatory progenitors increase in
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numbers following AT expansion, and exert an anti-adipogenic
effect on other adipocyte precursor cells via secretion of
soluble factors (Marcelin et al., 2017; Hepler et al., 2018;
Buffolo et al., 2019).

Importantly, the extent of AT fibrosis positively correlates
with the number of crown-like structures in the obese AT (Cinti
et al., 2005; Buechler et al., 2015), implying that AT fibrosis
may be triggered by the pro-inflammatory microenvironment.
Transcriptomic analysis of human preadipocytes cultured with
conditioned medium from pro-inflammatory macrophages
revealed an upregulation in the expression of ECM components
(Henegar et al., 2008). Moreover, macrophage-derived IL-1β

promotes the expression of ECM remodeling enzymes, such
as metalloproteinases 1 (MMP1) and 3 (MMP3), in human
APs (Gao and Bing, 2011). Not only cells of the monocytic
lineage contribute to the stimulation of ECM production
by preadipocytes. Mast cells accumulate in the mouse and
human obese AT preferentially in depots with progressed
fibrosis and provoke the secretion of collagen V by AT
fibroblasts, which can contribute to the suppression of the
adipogenic differentiation of APs. Of note, the secretion of
collagen V in the obese AT is triggered by the release of
mast cell protease 6 (MCP-6) by mature mast cells (Divoux
et al., 2012; Hirai et al., 2014). Other ECM components of
the AT, like collagen VI and its derivative endotrophin, can
trigger fibrosis in the AT and contribute to preadipocytes’
myofibroblastic transformation (Khan et al., 2009; Sun et al.,
2014; Jones et al., 2020). Additionally, while ILC2 drive beige
adipogenesis, type 1 innate lymphoid cells (ILC1) promote AT
fibrogenesis in human and mice in an IFN-γ dependent manner
(Wang H. et al., 2019).

In conclusion, in the lean WAT, APs represent a highly
heterogeneous cell population; yet with intrinsic white or
beige differentiation potential rather than a pro-fibrotic one.
Contrastingly, in obesity, interactions of APs with cells of
both the innate and adaptive immunity that accumulate in
the obese WAT can trigger fibrosis by inducing a pro-fibrotic
transcriptional program in APs.

CONCLUSION AND FUTURE
PERSPECTIVE

APs are a highly heterogeneous population of stromal AT
cells. Different subtypes of APs can have a varying degree
of commitment toward white, beige adipocyte or fibroblast

differentiation. Along this line, extensive in vivo and in vitro
studies report the identification of numerous AP subpopulations.
However, in several of these studies the characterization of
the multiple AP subtypes is based on different experimental
approaches (Burl et al., 2018; Cho et al., 2019; Min et al., 2019).
This issue is further complicated by the regional variation of
APs within the different fat depots and the distinct abundance
of different progenitor subtypes therein. Thus, the identification
of reliable and broadly acceptable molecular and surface markers
to distinguish the various AP subtypes is imperative. It is
recognized, that the number of adipocytes is set during childhood
and adolescence and stays nearly constant in adulthood with a
10% turnover rate in lean and obese individuals (Spalding et al.,
2008; Rodríguez et al., 2015; Meln et al., 2019). Consequently, a
deeper insight into AP subtypes and crosstalk mechanisms with
other cells could shed the light on how the fate of preadipocytes
can be predetermined early in life and lead to the development of
obesity and accompanying metabolic complications later.

Importantly, the crosstalk between APs and immune cells
in the AT orchestrates AP fate in both lean and obese state.
For instance, obesity-related AT inflammation leads to reduced
beige adipogenic and increased pro-fibrotic potential of APs.
So far, the majority of studies have focused on the interaction
between macrophages and APs, while less information exists
pertinent to the role of cells of the adaptive immunity as well
as less abundant stromal cell types, which may also shape the
differentiation potential of APs (Figure 1). Identification of
the specific contribution of different immune and stromal cell
populations, which may affect fate decisions of APs, as well as
better understanding of the molecular mechanisms implicated in
this crosstalk is needed for the development of new therapeutic
strategies against obesity-related AT dysfunction.
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