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Simple Summary: Cancer immunotherapy is a form of cancer treatment that uses a person’s own
immune system to prevent, control, and eliminate cancer. However, immunotherapy alone may not
be effective, especially in patients with limited treatment options. Immuno-targeted combination
therapies have a potential to create synergetic effects with improved health outcomes. Therefore,
there is a growing interest in searching for therapeutic combinations that could extend the benefits of
immunotherapy. In this study, we designed a computational method that facilitated the identification
of effective combination therapies for cancer patients with few treatment options. We determined
several specific drug targets that substantially increased the odds of stable disease versus progressive
disease for head and neck cancer, lung cancer, and melanoma. The identified treatment combinations
were targets in several clinical trials. Moreover, our approach has the potential to improve the
selection of patients for immuno-targeted combination therapies and lead to an overall improvement
in health outcomes for cancer patients with limited treatment options.

Abstract: (1) Background: Phenotypic and genotypic heterogeneity are characteristic features of
cancer patients. To tackle patients’ heterogeneity, immune checkpoint inhibitors (ICIs) represent
some the most promising therapeutic approaches. However, approximately 50% of cancer patients
that are eligible for treatment with ICIs do not respond well, especially patients with no targetable
mutations. Over the years, multiple patient stratification techniques have been developed to identify
homogenous patient subgroups, although matching a patient subgroup to a treatment option that
can improve patients’ health outcomes remains a challenging task. (2) Methods: We extended our
Subgroup Discovery algorithm to identify patient subpopulations that could potentially benefit from
immuno-targeted combination therapies in four cancer types: head and neck squamous carcinoma
(HNSC), lung adenocarcinoma (LUAD), lung squamous carcinoma (LUSC), and skin cutaneous
melanoma (SKCM). We employed the proportional odds model to identify significant drug targets
and the corresponding compounds that increased the likelihood of stable disease versus progressive
disease in cancer patients with the EGFR wild-type (WT) gene. (3) Results: Our pipeline identified six
significant drug targets and thirteen specific compounds for cancer patients with the EGFR WT gene.
Three out of six drug targets—FCGR2B, IGF1R, and KIT—substantially increased the odds of having
stable disease versus progressive disease. Progression-free survival (PFS) of more than 6 months was
a common feature among the investigated subgroups. (4) Conclusions: Our approach could help to
better select responders for immuno-targeted combination therapies and improve health outcomes
for cancer patients with no targetable mutations.
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1. Introduction

Immunotherapy represents one of the most promising therapeutic approaches in
cancer [1,2]. Immune checkpoint inhibitors (ICIs) can lead to long-term remission and
improved survival in patients with locally advanced/metastatic cancer [3,4]. However,
almost 50% of cancer patients that are eligible for treatment with ICIs do not respond [5,6].
This is particularly true in patients without targetable mutations [7]. Conventional cancer
treatments, such as radiation therapy [8], cytotoxic chemotherapy [9,10], and targeted ther-
apy [11,12], have immunomodulatory effects along with direct tumor-cell-killing activities.
Their clinical utility in combination with ICIs potentially creates synergetic effects with
improved and durable clinical response [13,14]. Therefore, there is a growing interest in
searching for predictive biomarkers of therapeutic response and identifying therapeutic
targets that could extend the benefits of ICIs.

Recent studies have shown that various factors contribute to the response to ICIs [15].
The tumor mutational burden (TMB) has emerged as one of the most crucial factors to deter-
mine the efficacy of ICIs [16,17]. The TMB quantitatively assesses the number of mutations
per megabase (muts/Mb). High TMB values are an indication of better survival in cancer
patients receiving immunotherapy [18]. However, the effectiveness of immunotherapy has
been demonstrated in some patients with a low TMB, while unfavorable outcomes have
been observed in a significant number of patients with a high TMB [19,20]. It is also unclear
how patients that harbor specific genetic alterations would respond to immunotherapy.
For example, anti-PD-1 monotherapy has been shown to be unable to improve survival
outcomes for non-small cell lung cancer (NSCLC) patients with EGFR mutations, even in
patients with high PD-L1 expression [21]. Meanwhile, the ATLANTIC trial has disputed
this observation and has highlighted the benefits of ICIs for EGFR-mutated tumors [22].
Therefore, the question of how to effectively utilize thousands of cell-intrinsic and -extrinsic
characteristics to identify patient subpopulations that would benefit from combinatorial
treatments with ICIs remains unanswered.

Over the past decades, Subgroup Discovery (SD) methods have been used to find ho-
mogenous subpopulations of patients that share common genetic profiles and may respond
similarly to therapeutic regimens [23,24]. Existing SD approaches can be classified into two
major categories: statistical methods and data-mining methods. Statistical methods include
regression analysis [25], clustering techniques [26], and latent class analysis (LCA) [27]. For
example, LCA is a finite mixture model that aims to uncover unobserved groups within
a population. However, this technique does not automatically determine the number of
latent classes and produces solutions that heavily rely upon expert knowledge, which
significantly limits the capability to discover novel subgroups in large heterogenous cancer
datasets. Data-mining methods for SD comprise two major categories based on the search
strategy for potential candidates—heuristic approaches and exhaustive approaches [28].
For example, CN2-SD [29] is a heuristic algorithm that searches for the statistically “most in-
teresting” subgroups that are as large as possible and have the most unusual distributional
characteristics with respect to the property of interest. However, CN2-SD suffers from
the standard scaling problem that appears in the evaluation of large datasets, including
heterogenous cancer datasets.

In this work, we extended our Subgroup Discovery algorithm [30] to predict immuno-
targeted combination therapies for EGFR WT patient subpopulations. We focused on EGFR
WT subgroups because EGFR-TKIs are widely used for the first-line treatment of patients
with EGFR-sensitizing mutations, leading to longer progression-free survival (PFS) [31,32].
However, beyond the first line, especially for EGFR WT tumors, the role of EGFR-TKIs
is elusive. We employed a proportional odds model to identify significant drug targets
and the corresponding compounds that increased the likelihood of stable disease versus
progressive disease in cancer patients that had the EGFR WT gene. This approach could
help to better select responders for immuno-targeted combination therapies and improve
health outcomes for cancer patients with no targetable mutations.
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2. Materials and Methods

Our informatic framework consists of two modules: Subgroup Discovery and Immuno-
Targeted Combination Therapies Discovery. The Subgroup Discovery module identifies
homogenous patient subgroups based on both phenotypic and genotypic parameters and
explains the differences among these subgroups using gene expression patterns. The
Immuno-Targeted Combination Therapies Discovery module predicts potential drug tar-
gets and the corresponding compounds for uses in combination therapies with immunother-
apy for cancer patients with no targetable mutations. The details of the modules are
described below.

2.1. Data Mapping

The TCGA dataset from Pan Cancer Atlas [33] consists of 1952 cancer patients. We
focused on four different cancer types: (1) head and neck squamous carcinoma (HNSC),
n = 515; (2) lung adenocarcinoma (LUAD), n = 510; (3) lung squamous carcinoma (LUSC),
n = 484; and (4) skin cutaneous melanoma (SKCM), n = 443. We chose these cancer
types because in several clinical trials involving patients with advanced lung cancer, skin
cutaneous melanoma, and other solid tumors, they demonstrated significant response
rates to nivolumab and pembrolizumab, where both are monoclonal IgG4 antibodies
against PD-1 [34].

The input data consisted of phenotypic and genotypic variables for a disease popu-
lation. The phenotypic variables divided disease population into subgroups, while the
genotypic variables described the main characteristics (patterns) of these subgroups. Eleven
phenotypic variables were chosen for this study, including demographic data (e.g., Age,
Gender), clinical–pathologic data (e.g., Tumor Type, Tumor Mutational Burden (TMB)),
treatment history (e.g., Administration of Radiotherapy), and behavioral data (e.g., Smok-
ing Status). As a part of the human-in-the-loop process, a physician panel specialized in
the care of cancer patients selected the phenotypic variables to be included in the analyses.
Many of these phenotypic variables were categorical. For example, Smoking Status was
categorized as follows: (1) Never Smoker, (2) Current Smoker, and (3) Former Smoker. We
ensured all continuous variables in the dataset were categorized based on the clinical litera-
ture or experience. To deal with missing data, we excluded patients with too many missing
values in both phenotypic and genotypic variables and used “NA” as a new category to
represent missing values. However, “NA” variables were never used to form subgroups.

The genotypic data in this study were z-score-transformed values for 730 immune-
related genes (including PD-1 and PD-L1 genes) [35] and 40 housekeeping genes be-
tween normal and tumor tissues. The categorization of the genotypic variables was based
on z-score-transformed values, where downregulated genes corresponded to the range
(−Inf, −2); not significantly expressed genes corresponded to the range (−2, 2); and up-
regulated genes corresponded to the range (2, Inf). Therefore, each gene represented a
genotypic variable.

2.2. Subgroup Discovery
2.2.1. Patient Stratification

The main goal of the Subgroup Discovery module is to identify homogeneous pa-
tient subpopulations. A set of common phenotypic and genotypic parameters specifies
each unique subgroup. For example, Females with a TMB defined as high (more than
10 muts/Mb) with SKCM could be considered as a subgroup. The unique subgroup is
reevaluated each time a phenotypic variable is included. The statistical significance of each
subgroup is defined using the genotypic patterns that distinguish this subgroup from the
rest of the outer population.

The Subgroup Discovery module includes three levels: Path Expansion, Floating Sub-
group Selection, and Inclusion/Exclusion criteria. This method differs from the decision
tree algorithm in a way that allows the same patient to be a member of multiple unique
subgroups. For example, LUSC patients could be members of the (LUSC, Former Smoker)
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subgroup and the (LUSC, Stage IIIA) subgroup. The key objective of the subgroup stratifi-
cation process is to determine a large number of existing subgroups based on phenotypic
parameters, where most patients in that subgroup shared unique genotypic patterns. This
method is not greedy, because the algorithm tracks the top potential subgroups based on
local optimal selection [36].

By iterating over various paths in the search space, the Floating Subgroup Selection
traverses multiple paths. A phenotypic variable with the highest contrast score against the
outer population (e.g., Tumor Type = LUAD in Figure 1) forms a base subgroup via the Path
Expansion process. In the first inclusion step, it adds a new variable, e.g., EGFR = WT, to
the base subgroup (Tumor Type = LUAD AND EGFR = WT). To eliminate less significant
inclusion steps, the exclusion function is used after each inclusion step. For example, when
in the third inclusion step, the subgroup is (Tumor Type = LUAD AND EGFR = WT AND
Smoker = Former AND Gender = Female), the exclusion function eliminates the less significant
move (Smoker = Former) from the existing subgroup if the newly created subgroup (Tumor
Type = LUAD AND EGFR = WT AND Gender = Female) has a higher contrast score. When
the algorithm reaches the subgroup with the highest contrast score, the exploratory search
is terminated.
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Figure 1. Subgroup Discovery module. The floating and path expansion processes initiate multiple,
distinct starting points at various computational nodes. Based on the contrast score, the node
is added or eliminated at each point. Each point portrays a potential subgroup. By applying
contrast pattern mining, each candidate subgroup is scored against the outer population. P refers to
phenotypic feature.

2.2.2. Subgroup Contrast

The algorithm identifies the genotypic patterns that frequently occur within each
candidate subgroup but are rare in the rest of the population. To evaluate the frequency
for a specific genotypic pattern in the homogenous subgroup, the support metric [37]
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(Equation (1)) is utilized. The growth rate metric [38] (Equation (2)) is employed to evaluate
the contrast of the pattern in the selected subgroup.

Support(p, D) =
|〈D, p〉|
|D| (1)

where p is a pattern, |<D, p>| is the number of patients with specific genotypic pattern,
and |D| is the total number of patients in the collection.

Growth(cp, SG1, SG2) =
Max|s1, s2|
Min|s1, s2|

(2)

where cp is the contrast pattern, SG1 is the focus subgroup, SG2 is the outer population, s1 is
the support of cp in the focus subgroup, and s2 is the support of cp in the outer population.

We employ a J-value [39] (Equation (3)) to calculate the contrast for all patterns in
each subgroup.

J-value =
T × Jorg+M × Javr

T + M
(3)

where T is a parameter related to the population size preference that depends on the type
of the disease under study and whether it is a rare disease or not, based on the concept of
the Bayesian average [40].

There are six major parameters for the Subgroup Discovery module: min_support_proportion,
max_depth, max_breadth, min_improvement_significance, max_checks and max_pop_complexity.
The min_support_proportion parameter describes the minimum proportion of the subgroup
rows that a pattern must be present in and was set to 0.05. The max_depth parameter
represents the maximum pattern length and was adjusted to five. The max_breadth stands
for the maximum number of candidates at each search level and was modified to 50. The
min_improvement_significance reflects the p-value needed to add any new element to a
pattern and was set to 0.05. The max_checks parameter describes a hard cap on the max
number of patterns checked and was adjusted to 1000. Finally, the max_pop_complexity
describes the maximum number of phenotypic variables that can define a subgroup and
was modified to three.

2.3. Immuno-Targeted Combination Therapies Discovery

Our goal was to find significant drug targets and their corresponding compounds
that could be used in immuno-targeted combination therapies for cancer patients with no
targetable mutations. Specifically, we were interested in identifying significant drug targets
that increased the likelihood of stable disease versus progressive disease in four cancer
types: HNSC, LUAD, LUSC, and SKCM. For this purpose, we used the proportional odds
model [41] on Prat, A., et al.’s dataset [42]. The dataset consists of 65 cancer patients, and
15 phenotypic and 770 genotypic variables. The outcome variable was categorical and had
four levels: partial response, complete response, progressive disease, and stable disease.
The continuous covariates were represented as genes with corresponding normalized
gene expression values. We used the MASS R package [43] to fit the proportional odds
model with the logit link function. We computed p-values via two-tailed z-tests to identify
significant predictors of response to immunotherapy.

3. Results
3.1. Identification of Candidate Subgroups for Immuno-Targeted Combination Therapies

The overview of our informatic pipeline is presented in Figure 2. The Subgroup
Discovery module generated 9887 subgroups. To reduce the search space, we focused on
subgroups that had Tumor Type (HNSC, LUAD, LUSC, or SKCM) as one of the phenotypic
variables. The filtering procedure resulted in 1207 subgroups. To further focus on more
specific subgroups, we selected those that had at least three phenotypic variables. In total,
1129 subgroups were used in our computational experiment.
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least 20% of the initial dataset. 3© For these subgroups, we determined common DE genes (n = 380).
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could be used in immuno-targeted combination therapies. 5© We determined significant drug targets
that increased the likelihood of SD versus PD using the proportional odds model. 6© We matched
significant genes to drugs that could be used in immuno-targeted combination therapies using the
Drug Gene Interaction Database (DGIdb).

First, we investigated subgroup coverage in the whole dataset of 1948 cancer patients.
The subgroup coverage ranged from 1.23% to 25.97%. Therefore, we decided to target
subgroups or unions of subgroups that covered at least 20% of the whole dataset, which
resulted in eleven subgroup unions. Secondly, we narrowed down our search to four sub-
group unions that had both Tumor Type (HNSC, LUAD, LUSC, or SKCM) and the EGFR
WT gene. We hypothesized that cancer patients from these four subgroup unions were un-
likely to produce a favorable outcome upon treatment with EGFR inhibitors due to the lack
of targetable mutations in this gene. However, these patients may have other mutations that
can be sensitive to FDA-approved targeted treatments. Therefore, it is important to identify
these additional drug targets to improve patients’ outcomes. In addition, immunotherapy
alone may not produce durable responses for these patients. In the ongoing phase III
KEYNOTE-042 trial of patients with treatment-naïve, advanced, EGFR/ALK WT NSCLC
and at least 1% tumor PD-L1 expression, there was no statistically significant PFS benefit
among patients receiving Pembrolizumab compared with those receiving chemotherapy,
except for those with the highest level of PD-L1 expression [44]. However, EGFR WT cancer
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patients may benefit from compounds that are used for immuno-targeted combination ther-
apies, as was previously showed in EGFR WT NSCLC patients [45]. Thirdly, we identified
common differentially expressed (DE) genes for these four subgroup unions. We started
with identifying unique genotypic patterns for each subgroup union and then determined
unique elements from these genotypic patterns. The intersection of unique genes from
four subgroup unions produced 380 DE genes. The summary for each subgroup union is
presented in Table 1.

Table 1. Subgroup summary for selected subgroup unions.

Subgroup Union # Patients % of Patients with
Cancer Type

% of Patients in
Whole Dataset

# Subgroups of
Size Three

# Unique
Genotypic Patterns

# Unique
DE Genes

HNSC 500 97.08 25.66 16 8448 693
LUSC 466 96.68 23.92 16 10,005 652
LUAD 444 87.06 22.79 20 10,216 656
SKCM 407 92.29 20.89 15 7428 497

There were also some unique features for each subgroup union. Our analysis revealed
that HNSC EGFR WT subgroups consisted of patients with a low TMB. The role of the TMB
in predicting the outcome of immunotherapy for advanced HNSCC remains unclear. For
example, one study showed that immunotherapy was more effective in metastatic HNSCC
patients with a high TMB, and the median OS of these patients was 2.5 times as long as that
of patients with a low TMB (25 vs. 10 months) [46]. However, data from over 10,000 patient
tumors included in The Cancer Genome Atlas failed to support the application of a high
TMB as a biomarker for treatment with ICIs in all solid cancer types [47]. The LUAD EGFR
WT subgroups had a substantial number of patients with the BRAF WT gene. The clinical
impact of BRAF mutational subtypes on lung adenocarcinoma remains to be defined.
For example, the data from two large German lung cancer centers showed that patients
with BRAF-mutated NSCLC had an inferior prognosis, which was not determined by
the BRAF mutation functional class. However, in contrast to NSCLC with other driver
mutations, BRAF-mutated NSCLC exhibited high susceptibility to immune checkpoint
inhibitors [48]. The LUSC union consisted of patients who were former smokers. For
example, LUSC patients with a history of smoking and a high TMB had longer PFS after
treatment with chemoimmunotherapy or anti-angiogenesis therapy [49]. There were no
distinctive phenotypic features for the SKCM union. These identified unique features
should be considered when designing combinatorial treatment regimens for EGFR WT
cancer patients.

3.2. Drug Target Prediction for EGFR Wild-Type Subgroups

We examined the Drug Gene Interaction Database (DGIdb) [50] to map therapeutic
compounds that could be used in immuno-targeted combination therapies. This search
produced 155 potential drug targets and 36 targeted treatments. We then mapped the
380 common DE genes from the subgroup unions to the list of 155 drug targets. In this
analysis, we identified 25 targets and 16 compounds that may be used in combination
with ICIs.

The Immuno-Targeted Combination Therapies Discovery module identified six signif-
icant drug targets: CDH5, FCGR2B, IGF1R, ITK, JAK2, and KIT (Table S1). The estimates in
the output were given in units of ordered logits or ordered log odds. For example, for the
FCGR2B gene, the likelihood of stable disease versus partial response, complete response,
and progressive disease increased by 9.70 on the log odds scale. We also calculated the odds
ratios and confidence intervals (Table S2). These were obtained either by profiling the likeli-
hood function or using the standard errors and assuming a normal distribution (Table 2).
For example, for every unit increase in the expression of the KIT gene, the odds of having
stable disease was multiplied by 3.57 times, with all other variables remaining constant.
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Table 2. Odds ratios and confidence intervals for significant genes.

OR 2.5% 97.5% p-Value

CDH5 2.875372 × 10−2 8.965756 × 10−4 9.221493 × 10−1 0.0448808290

FCGR2B 1.644836 × 104 8.151472 × 101 3.319015 × 106 0.0003368373

IGF1R 2.238631 × 103 1.110336 × 100 4.513470 × 106 0.0469308638

ITK 1.274047 × 10−1 2.807962 × 10−2 5.780693 × 10−1 0.0075795133

JAK2 1.047600 × 10−5 1.525653× 10−10 7.193414 × 10−1 0.0435977859

KIT 3.571475 × 100 1.543342 × 100 8.264815 × 101 0.0029426309

Therefore, these six drug targets were predicted to benefit EGFR WT patients in
immuno-targeted combination therapies (Table 3).

Table 3. Significant genes and potential compounds that can be used in immuno-targeted combina-
tion therapies.

Drug Target Compound Cancer Type

CDH5 Ruxolitinib, Lenalidomide Lung Squamous Carcinoma, Skin
Cutaneous Melanoma

FCGR2B Bevacizumab,
Cetuximab, Trastuzumab

Lung Adenocarcinoma, Head and Neck
Squamous Carcinoma

IGF1R Gefitinib Lung Adenocarcinoma

ITK Pazopanib, Ibrutinib Skin Cutaneous Melanoma

JAK2 Bortezomib Lung Adenocarcinoma

KIT Axitinib, Cabozantinib,
Pazopanib, Sunitinib Head and Neck Squamous Carcinoma

To address the question about the potential drug interaction effects and toxicity of
identified combinations, we employed the Drug Interaction Checker from the Drug Bank
database [51]. Based on our search, the administration of PD-1 or PD-L1 inhibitors in
combination with FCGR2B-targeting therapies could increase the risk of adverse effects.
Specifically, these therapeutic combinations carry a risk of immunogenicity, which can
produce a wide array of adverse effects, the most serious of which include anaphylaxis
and serum sickness-type reactions [52]. A few studies suggested that the use of multiple
immunoglobulin agents is relatively safe and may be more effective than monotherapy
under certain conditions [53,54].

From clinicaltrials.gov, we were able to identify clinical trials for predicted immuno-
targeted combination treatments (Table 4).
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Table 4. Clinical trials for predicted immuno-targeted combinations.

Trial ID Treatment Combination Condition Results/Conclusions Reference

MC1534, NCT03012230 Pembrolizumab and Ruxolitinib Stage IV triple negative breast cancer Estimated primary completion date: 1 April 2023. [55]

BTCRC-HEM15-027, NCT03681561 Nivolumab and Ruxolitinib Relapsed or refractory classical
Hodgkin lymphoma

Therapy combining Ruxolitinib with Nivolumab was well
tolerated and yielded encouragingly high remission rates and

durable responses in patients who had all failed with
previous check-point inhibitors (CPIs).

[56]

NCI-2020-08331, NCT04609046 Nivolumab and Lenalidomide Primary CNS lymphoma Estimated primary completion date: 31 May 2024. [57]

MK-3475-021/
KEYNOTE-021, NCT02039674 Pembrolizumab and Gefitinib Non-small cell lung cancer

First-line Pembrolizumab plus Pemetrexed-Carboplatin
continued to show improved response and survival versus

chemotherapy alone in advanced NSCLC, with durable
clinical benefit in patients who completed 2 years of therapy.
No new safety signals were observed with longer follow-up.

[58]

MC1577, NCT03021460 Pembrolizumab and Ibrutinib Stage III-IV melanoma Estimated primary completion date: 1 February 2023. [59]

OSU-18015, NCT03525925 Nivolumab and Ibrutinib Metastatic solid tumors Estimated primary completion date: 31 December 2021. [60]

020-008, NCT04265872 Pembrolizumab and Bortezomib Metastatic triple negative breast cancer Estimated Primary completion date: 1 October 2023. [61]

PANDORA 001, NCT04995016 Pembrolizumab and Axitinib Locally advanced non-metastatic clear
cell renal cell carcinoma Estimated primary completion date: 20 August 2022. [62]

Winship4234-17, NCT03468218 Pembrolizumab and Cabozantinib Head and neck squamous cell cancer

This phase II trial of Pembrolizumab + Cabozantinib met its
primary endpoint of overall response rate (ORR). The

regimen was well-tolerated, with very encouraging clinical
activity in relapsed metastatic HNSCC, and warranted

further exploration of this disease.

[63]

CheckMate 016, NCT01472081 Nivolumab, Pazopanib, and Sunitinib Metastatic renal cell carcinoma

The addition of standard doses of Sunitinib or Pazopanib to
nivolumab resulted in a high incidence of high-grade

toxicities limiting the future development of either
combination regimen.

[64]

16-2300.cc, NCT03149822 Pembrolizumab and Cabozantinib Metastatic renal cell carcinoma

This study of the combination of Pembrolizumab and
Cabozantinib met the primary endpoint of ORR.

Benefit was seen in first- and subsequent-line therapies.
The safety profile was manageable.

[65]



Cancers 2022, 14, 4759 10 of 15

Some of the clinical trials from Table 4 are still ongoing; therefore, they do not have
information about primary and secondary outcomes. However, we were able to retrieve
such information from other clinical trials, such as NCT02039674 and NCT01472081. In
the NCT02039674 trial [58], Cohort F received Pembrolizumab (Pembro; 2 mg/kg) via IV
infusion on Day 1 of each 3-week cycle plus Gefitinib (G; 250 mg) via oral tablets once a
day every day of each 3-week cycle. Overall, seven participants were treated with this
regiment, but none of these patients were able to complete the treatment due to death
(n = 1), excluded medication (n = 4), or withdrawal from the study (n = 2).

In the NCT01472081 study [64], Arm S was treated with a combination of Nivolumab
and Sunitinib, and Arm p was treated with a combination of Nivolumab and Pazopanib.
Arm S received two different doses of Nivolumab: 2 mg/kg (SUN + NIV2; n = 7) and
5 mg/kg (SUN + NIV5; n = 26). Arm P received only 2 mg/kg dose of Nivolumab
(PAZ + NIV2; n = 20). All-causality severe adverse effects (SAEs) of any grade were
observed in 42% of the SUN + NIV2 cohort, 61% of the SUN + NIV5 cohort, and 65% of
the PAZ + NIV2 cohort. Drug-related SAEs of any grade were observed in 28% of the
SUN + NIV2 cohort, 46% of the SUN + NIV5 cohort, and 10% of the PAZ + NIV2 cohort.
All-cause adverse effects (AEs) that led to the discontinuation of treatment were observed in
42% of the SUN + NIV2 cohort, 38% of the SUN + NIV5 cohort, and 25% of the PAZ + NIV2
cohort. These results suggested that a higher concentration of Nivolumab in combination
with Sunitinib (SUN + NIV5 cohort) led to a higher chance of SAEs. By analyzing secondary
responses, the SUN + NIV5 cohort achieved a lower rate of partial response to treatment, at
42%, in comparison with 71% in the SUN + NIV2 cohort. Therefore, lower concentrations
of Nivolumab in combination with Sunitinib led not only to less adverse effects but also
to better patient outcomes. Ideally, more trial settings are needed to study synergetic
effect of two or more drugs. Unfortunately, we could not assess the synergetic effects of
these treatments from the NCT01472081 study because there were no cohorts that solely
underwent Nivolumab or Sunitinib treatment.

4. Discussion

One of the aims of this study was to find phenotypic commonalities among EGFR WT
cancer patient subgroup unions that might be helpful in selecting responders for immuno-
targeted combination therapies. Unlike existing “black-box” models, our approach inter-
preted a combination of phenotypic characteristics by assessing the frequency of significant
genomic patterns in the investigated subgroups. For this purpose, we examined the third
phenotypic feature for each subgroup that was a part of the unions and covered at least 15%
of the dataset. For all four unions—HNSC, LUAD, LUSC, and SKCM—progression-free
survival (PFS) of more than 6 months was a common feature. Interestingly, in Impower
150, clinical trial patients with EGFR WT metastatic lung adenocarcinoma had longer
PFS upon combinatorial treatment with Atezolizumab (immunotherapy that targets PD-
L1), Bevacizumab (targeted therapy against VEGF-A), and Paclitaxel and Carboplatin (both
are chemotherapies) [66]. Finally, in the KEYNOTE-048 clinical trial, Pembrolizumab (im-
munotherapy that targets PD-L1) with chemotherapy improved overall survival versus
Cetuximab (EGFR targeted therapy) with chemotherapy in patients with head and neck
squamous cell carcinoma [67]. This demonstrated that combinatorial treatments with
anti-PD-1 or anti-PD-L1 inhibitors with targeted therapy substantially prolonged the PFS
of cancer patients with the EGFR WT gene.

The analysis of the dataset of Prat, A., et al. revealed that three out of six significant
drug targets—FCGR2B, IGF1R, and KIT—substantially increased the odds of having stable
disease versus progressive disease in EGFR WT cancer patients. The importance of this
finding is further supported by the fact there is an ongoing clinical trial of BI-1206, a
monoclonal antibody to FCGR2B, in combination with Rituximab (chemotherapy that
targets CD20) in patients with indolent B-cell non-Hodgkin lymphoma that has relapsed
or is refractory to Rituximab [68]. From another study, LUAD patients with high plasma
levels of IGF-1 or high IGF-1R expression in tumors were associated with resistance to
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anti-PD-1–programmed death-ligand 1 immunotherapy, which supported the need for the
clinical evaluation of IGF-1 modulators in combination with a PD-1 blockade [69]. Finally,
there is an ongoing clinical trial of Ipilimumab (immunotherapy that targets CTLA-4) and
Imatinib Mesylate (KIT inhibitor) for treating patients with solid tumors that have spread to
other places in the body or cannot be removed using surgery [70]. Therefore, these genes
could be useful therapeutic targets for immuno-targeted combination therapies.

Based on our knowledge, there is no computational pipeline that can evaluate the
synergetic effect from immuno-targeted combination therapies. Our evaluations were based
on primary and secondary outcomes from existing clinical trials. The limitation of these
trials was that they lacked the data on monotherapy effects. For example, the NCT01472081
trial evaluated the combinations of Nivolumab + Sunitinib and Nivolumab + Pazopanib.
However, there was no information on treatment with Nivolumab, Sunitinib, or Pazopanib
alone. Therefore, better clinical trial design is required to objectively evaluate the synergetic
effect of immuno-targeted combination therapies.

5. Conclusions

Phenotypic and genotypic heterogeneity are characteristic features of cancer patients
that limit therapeutic response. To tackle patient heterogeneity, immuno-targeted combi-
nation therapies represent a highly promising approach for patients with no targetable
mutations [71]. However, matching patient subgroups to treatment options that improve
their outcome remains a challenging task. In this work, we augmented our Subgroup
Discovery algorithm to identify patient subpopulations that may benefit from immuno-
targeted combination therapy. Specifically, we identified drug targets that increased the
likelihood of stable versus progressive disease in cancer patients with HNSC, LUAD, LUSC,
and SKCM. Our novel informatic pipeline identified six significant drug targets and thirteen
specific compounds for EGFR WT cancer patients. Three out of six drug targets—FCGR2B,
IGF1R, and KIT—were previously shown to substantially increase the odds of having a
stable disease in other studies. We also showed that PFS of more than 6 months was a
characteristic feature among the investigated EGFR WT subgroups. Moreover, the literature
demonstrated that immuno-targeted combination therapies with anti-PD-1 or anti-PD-L1
inhibitors substantially prolonged PFS in EGFR WT cancer patients. Further validation
of our findings in wet-lab experiments would be a significant step toward improving
healthcare for cancer patients without targetable mutations.
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