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ABSTRACT

Objective: To advance use of real-world data (RWD) for pharmacovigilance, we sought to integrate a high-

sensitivity natural language processing (NLP) pipeline for detecting potential adverse drug events (ADEs) with

easily interpretable output for high-efficiency human review and adjudication of true ADEs.

Materials and methods: The adverse drug event presentation and tracking (ADEPT) system employs an open

source NLP pipeline to identify in clinical notes mentions of medications and signs and symptoms potentially in-

dicative of ADEs. ADEPT presents the output to human reviewers by highlighting these drug-event pairs within

the context of the clinical note. To measure incidence of seizures associated with sildenafil, we applied ADEPT

to 149 029 notes for 982 patients with pediatric pulmonary hypertension.

Results: Of 416 patients identified as taking sildenafil, NLP found 72 [17%, 95% confidence interval (CI) 14–21]

with seizures as a potential ADE. Upon human review and adjudication, only 4 (0.96%, 95% CI 0.37–2.4) patients

with seizures were determined to have true ADEs. Reviewers using ADEPT required a median of 89 s (interquar-

tile range 57–142 s) per patient to review potential ADEs.

Discussion: ADEPT combines high throughput NLP to increase sensitivity of ADE detection and human review,

to increase specificity by differentiating true ADEs from signs and symptoms related to comorbidities, effects of

other medications, or other confounders.

Conclusion: ADEPT is a promising tool for creating gold standard, patient-level labels for advancing NLP-based

pharmacovigilance. ADEPT is a potentially time savings platform for computer-assisted pharmacovigilance

based on RWD.
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INTRODUCTION

The 21st Century Cures Act calls for using real-world data (RWD)

in the drug approval process, including in the identification of ad-

verse drug events (ADEs).1 Generally, RWD refers to any data gen-

erated outside of clinical trials, but most often is used to designate

data produced in the course of routine delivery of healthcare.2 Be-

cause patients exposed to drugs during routine care often differ from

those who are not prescribed medications, causal inference—attrib-

uting a particular adverse event to a particular drug—is more chal-

lenging than it is in well-designed clinical trials. Much of the work

on pharmacovigilance using RWD has focused on disproportionality

statistics in structured databases.3 However, these systems are not

designed for causal assessment of drug safety signals.3 For instance,

disproportionality statistics do not differentiate when an apparent

adverse effect of a drug may overlap with or be a manifestation or

complication of the disease for which it is being used.

The preponderance of clinical data necessary for distinguishing

ADEs from signs and symptoms not caused by a drug are found in

clinicians’ notes.4 Natural language processing (NLP) can be used to

identify terms for medications and for signs and symptoms that may

suggest ADEs.4 However, most implementations of NLP for phar-

macovigilance focus on analysis of signs or symptoms that clinicians

have explicitly attributed in their documentation as being adverse

reactions due to medications.5 Furthermore, even with explicit docu-

mentation of potential causality, current top-performing NLP systems

have relatively poor performance for the end-to-end task of identify-

ing a relationship between drugs and adverse events.6–8 Thus, differ-

entiating in electronic health record (EHR) data when co-occurrence

of drugs and signs or symptoms are true ADEs and not effects of the

underlying disease, comorbidities, or other confounding medications

has to date largely remained a manual task.

We developed the adverse drug event presentation and tracking

(ADEPT) toolkit to assess causality of putative ADEs in EHR clini-

cal notes. ADEPT serves as a complement to active ADE surveillance

systems and ADE hypotheses generated from structured databases

by partially automating review and annotation of potential ADEs

identified in the unstructured clinical narrative. Manual review of

notes to find relevant information is a time-consuming and labori-

ous task, which has been made more difficult with the prevalence of

copied text in EHR notes.9 ADEPT uses NLP to screen patients’ clin-

ical notes for mentions of medications and signs or symptoms of in-

terest,4 presents the identified terms graphically on a timeline that

reviewers use to navigate relevant notes in a patient’s EHR, and

allows users to review whether each patient experienced each poten-

tial ADE of interest. Thus, ADEPT is a tool for computer-assisted

pharmacovigilance. Unlike most NLP annotation tasks,10–12 ADEPT

was not designed for instance- or document-level annotation of enti-

ties. Instead, ADEPT was optimized for patient-level, across-docu-

ment assessment of whether an identified sign or symptom was

likely to be a true ADE caused directly by a medication.

In this context, temporality of events plays a crucial role. Four of

ten criteria in the Naranjo Scale, an instrument for ADE evaluation,

consider change over time.13 An additional criterion—whether alter-

nate causes may explain the sign or symptom—requires knowing the

patient’s clinical status and comorbidities at the time the sign or

symptom occurred. Recent work in RWD-based pharmacovigilance

has focused on incorporating temporality of drug and sign/symptom

patterns into signal detection.14–16 However, we have identified

only one such project that has incorporated visualization of tempo-

rality in ADE signal detection, and that work was based on struc-

tured data only.14 By highlighting the sequence of multiple events

across a patient’s clinical timeline, ADEPT addresses the problem of

determining causality from free-form, narrative clinical text. To test

ADEPT, we use it to estimate the proportion of patients with inci-

dent seizures, a known but rare ADE associated with use of sildena-

fil to treat pediatric pulmonary hypertension (PH).

MATERIALS AND METHODS

Subjects and data processing
We previously identified a cohort of patients with PH using a com-

putable phenotype.17 The study was approved by the institutional

review board at Boston Children’s Hospital with waiver of informed

consent for review of EHR data.

ADEPT used the Apache clinical Text Analysis Knowledge Extrac-

tion System (cTAKES)18 to identify mentions of medications and signs

or symptoms of interest in plain-text clinical notes extracted from the

local data warehouse. Because of ADEPT’s modular design, the output

of any clinical NLP system capable of identifying clinical events of in-

terest within individual notes could be substituted as input to ADEPT.

We previously described the cTAKES pipeline used for extracting these

potential ADEs of interest from EHR notes.4 cTAKES identified tex-

tual mentions with mappings to concept unique identifiers (CUIs) rep-

resenting medications and signs or symptoms and assigned relevant

attributes—negation, conditional status (eg, “if you experience head-

ache”), and temporality—to each mention using open-source modules

whose methods are described in detail elsewhere.18–20 We included

only mentions that were not negated or conditional and whose tempo-

rality did not place them prior to the document creation time. We ex-

cluded certain terms that generated false-positive associations by

LAY SUMMARY
Much of the data necessary for pharmacovigilance are found in unstructured clinical notes. Natural language processing

(NLP) can be used to determine if a patient taking a medication experiences certain signs and symptoms. However, because

in real-world settings patients who are prescribed medications differ systematically from patients with the same disease

who do not require drug treatment, findings of potential adverse drug events (ADEs) can be confounded by comorbidities,

effects of the underlying disease, and other drugs. Determining whether potential ADEs represent true, causal ADEs remains

a challenging task. We designed adverse drug event presentation and tracking (ADEPT), a novel platform that uses NLP to

extract medications, signs, and symptoms, and potential relations among them, then feeds these data to a visualization plat-

form for highlighting those mentions in clinical notes. All the mentions and potential relations for each patient are presented

in a longitudinal timeline that can be used to navigate the patient’s clinical record and to record, on a patient level, whether

each sign or symptom represents a true ADE of each drug. Thus, ADEPT combines the high throughput of NLP and machine

learning with human validation to create the gold standard pharmacovigilance labels at the patient level.
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subsuming them into a more specific concept (eg, specifying that

“heparin flush” was not an instance of “flushing” as a sign or symp-

tom), which we implemented using a custom cTAKES dictionary. As a

postprocessing, rules-based step, we linked into potential relations

medication and sign/symptom mentions when mentions occurred

within 25 newline characters of one another. This proximity parameter

was determined empirically during pipeline development to maximize

F1 score.4 We excluded putative relations between medications and

signs and symptoms that were temporally implausible (ie, if the sign or

symptom overlapped the document creation time, but the medication

term had a temporality after the document creation time, that could

not be a temporally plausible relationship for an ADE). The pipeline

was tuned to maximize recall. Evaluated at the document level against

gold standard human annotations (interannotator agreement 0.88) for

extracting temporally compatible medication and relevant sign/symp-

tom pairs, the final pipeline had sensitivity 90%, positive predictive

value 69%, and F1 score 0.78.4

The output of cTAKES was a comma-separated file containing

identifiers for each patient and note, a timestamp for the note’s crea-

tion, the CUIs identified in that note and any potential relationships

among them, and the specific character spans in each note of the text

relating to each CUI (Figure 1). Using the high throughput cTAKES

NLP pipeline,4 ADEPT processed 149 029 notes for the 982 patients

with pediatric PH. We then developed ADEPT to increase precision for

the integrated task of clinical pharmacovigilance using the NLP data.

ADEPT technical description
Overview and front end

ADEPT is a Java- and JavaScript-based web application. Figure 2

presents an overview of users’ workflow within ADEPT. Users are

first presented with a listing of all patients in the system and a set of

filters to limit the list based on drugs or signs/symptoms representing

potential ADEs (Figure 3). Applying filters limits the patient list to

patients with mentions of the drugs and/or signs and symptoms

identified by the NLP pipeline. Underneath each patient identifier

are the (filtered) medications and potential ADEs identified for that

particular patient.

The patient-level ADE evaluation screen in ADEPT contains a

large area for displaying note text, a patient history timeline with

indicators for medications and signs and symptoms, and an ADE se-

lection and annotation pane (Figure 4). The patient history timeline

is used to navigate among a patient’s notes. Each note in the history

is shown as a translucent-white vertical bar. Notes containing any

mention of a drug or sign or symptom involved in one of the selected

potential ADEs contain a color-coded triangle, where drug mentions

are represented using an upward-pointed triangle and signs or symp-

toms are represented using a downward pointed triangle. Translu-

cency of the colored triangles and the bars indicating notes provide

an indication of note and mention density, cueing users to zoom in

on times of heavy documentation. Drug-candidate ADE pairings can

be selected and deselected at any time (Figure 4). Notes in which the

NLP pipeline identified a potential relationship between the drug

and sign or symptom are highlighted in a translucent orange color.

When a user clicks on a note to navigate to it, the note displays

in a large, scrollable pane in ADEPT. The visualization highlights

mentions of any drugs or signs and symptoms using color-coded rec-

tangles (Figure 4). The visualization also highlights mentions in-

volved in potentially causal relationships identified by the NLP

pipeline using a thick light-gray line. This color-coded visualization

directs user attention to potential ADE descriptions within the clini-

cal note.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
Duis aute irure dolor in
reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in
culpa qui officia deserunt mollit
anim id est laborum.

NLP Output in CSV Format
cTAKES NLP

pipeline

Encrypted notes

ADEPT Web
Application

ADEPT Server
with notes, metadata, CUIs, and offsets

of NLP-identified terms

eiusmod 

commodo 

Notes from EHR

Figure 1: Schematic of data flow in ADEPT. Clinical notes extracted from the EHR are processed using a NLP pipeline implemented in cTAKES. cTAKES identifies

terms for drugs and signs/symptoms as well as relations between them representing potential ADEs. The output of cTAKES is a comma-separated values (CSV)

file that includes patient and note identifiers, a timestamp of document creation time, and character spans for each CUI of interest identified. These data are
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Identify drug(s) &
sign/symptom(s) of

interest

ADEPT filters patient
list to patients with
potential ADE(s) of

interest

Potential ADE 1 Potential ADE 2 Potential ADE N ...

Validation user 1
reviews clinical

history to determine
whether potential

ADE is true ADE for
each patient

User reviews note1,
note2, noten ...

Validation user 2
reviews clinical

history to determine
whether potential

ADE is true ADE for
each patient

... ... ... ...

Conflicting validations
are presented to
adjudication user

Users confer while
reviewing clinical
timeline for each

patient 

Final adjudication is
recorded in ADEPT

Matching
validations are
automatically
adjudicated

ADEPT compiles
ADE validations
from all users for

all patients

User reviews note1,
note2, noten ...

Each user integrates
their impression of
all of each patient's

notes to validate
potential ADE

Figure 2: User workflow within ADEPT. The same workflow is repeated for each potential ADE.

416 JAMIA Open, 2020, Vol. 3, No. 3



The visualization of NLP output is implemented by a transparent

JavaScript Canvas element overlaid on top of the note text. Using

the character offsets from the cTAKES output for each note, each

mention of a drug or sign or symptom identified by cTAKES is

wrapped by a Hypertext Markup Language (HTML) span element.

An HTML class attribute is added to the span class identifying the

Unified Medical Language System (UMLS) CUI of the drug, sign, or

symptom. The UMLS CUI classes are used to add the color-coded

borders to the span element highlighting the mentions of interest. In

addition, a Group ID is added to the HTML class attribute. The

Group ID classes are used to identify mentions of drugs and signs or

symptoms among which the light-gray connection bars indicating

potential causal ADEs are drawn.

Once a user has completed review of the patient’s notes, the re-

viewer uses the right-hand pane to record whether each drug-sign/

symptom pair is consistent with a true ADE for that patient (Figure 4).

ADEPT supports both “review” and “adjudication” roles for users. In

the review role, a user sees only his/her own annotations of whether

drug-sign/symptom pairs are ADEs for each patient. In the adjudica-

tion role, a user can identify conflicting potential ADE evaluations and,

after review of the evidence, make a final adjudication of whether the

drug-sign/symptom pair for the patient is a true ADE.

Data structure and back end

To configure ADEPT for a particular task, the clinical note content

and metadata (patient identifier, date/time of note creation, and

Figure 3: The patient list screen in ADEPT showing the functionality of filters to select patients with seizures as a potential ADE for sildenafil. Note that clicking on

a patient number will select all potential ADEs for that patient for review, whereas clicking in the box “Sildenafil - Seizure” will select only sildenafil and seizure

as the potential ADE for review.
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term spans and relationships) are loaded into a Structured Query

Language (SQL) database (Figure 1). The locations for NLP-

identified terms are expressed in the cTAKES output as character

offsets from the start of the text. Each of the NLP-identified men-

tions of a term are stored in the database in the CTakesHit table. Re-

lated groupings of CTakesHit entries are tied together by a many-to-

one relationship with the CTakesGroup table.

Each candidate ADE identified by the NLP pipeline is stored in

the Candidate table and tied to a CTakesGroup record through the

candidateId column. User validations of candidate ADEs are cap-

tured in the CandidateValidation table. Candidate records which

have been adjudicated are marked by the isAdjudicated column and

have the adjudicator’s userId and adjudicated score recorded di-

rectly in the Candidate table.

Additional measures are taken to ensure security of the note text

data, since clinical notes frequently contain personally identifiable,

protected health information and other sensitive/confidential patient

information. ADEPT uses Transport Layer Security (TLS)-based

standards to encrypt data in transit. For encryption at rest, in addi-

tion to volume-level encryption, ADEPT encrypts the text of each

note using the Java Cryptography Extension implementation of the

Advanced Encryption Standard/Galois/Counter Mode/NoPadding

encryption algorithm. ADEPT also utilizes typical secure coding

practices, such as using stored procedures for database access, to

prevent SQL injection attacks.

The only flow of execution that yields a plain-text note

through ADEPT is a specific service call, which is secured via a

role-based access control model in addition to user-specific rate-

limiting. This provides a required human intervention to validate

that the user’s token has not fallen into the wrong hands. Every

action pertaining to user management, retrieval of patient data,

and annotation of candidate ADEs is logged to the application

log. This log is then forwarded to a log aggregation and analysis

server instance. For the current project, we used Splunk Enter-

prise (Splunk, Inc., San Francisco, CA, USA) for tracking ADEPT

interactions.

Figure 4: The patient-level annotation screen in ADEPT. The selected note text is in the top-left, showing several potential terms of interest highlighted with color-

coded rectangles. Note the thick line connecting “seizure” and “sildenafil,” indicating a potential plausible connection between the two terms. At the bottom-left

is the Patient History Timeline navigation pane, with triangles indicating notes that contain “sildenafil” and/or “seizures.” At right is the review/adjudication pane

(shown in review mode), where annotators indicate whether the potential ADE represents a true ADE.
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Evaluation
To test application of ADEPT to a clinical problem, we focused on

sildenafil, the most commonly prescribed PH-targeted therapy in

children.21 As our potential ADE of interest, we chose seizures, since

preliminary work suggested that seizures were a rare ADE in

patients taking sildenafil22 but a commonly recorded event in our

patients’ clinical notes.4 Two clinicians (A.G. and S.F.M.) indepen-

dently used ADEPT to review clinical notes of all patients identified

as potentially experiencing seizures while on sildenafil.

To review potential ADEs, we initially intended to use the Nar-

anjo scale.13 However, we noted several limitations of that assess-

ment tool, particularly to critically ill patients,23 which describes

many of the patients in the current study. Thus, we instead agreed

on consensus annotation criteria that accounted for temporal plausi-

bility of the ADE, alternative causes for the ADE, and objective evi-

dence of the ADE, but did not assign specific scores to those

components. Other components of the Naranjo scale, including

readministration of the drug, placebo administration, testing for

drug levels, and a dose–response relationship were rarely assessed in

our patient population. For each patient, each reviewer responded

to the question, “Is there a relation between sildenafil and seizure

for this patient across the clinical history?” and responses (“Yes,”

“No,” or “Cannot tell”) were recorded in ADEPT. Interannotator

agreement for the ADE determination was calculated using Cohen’s

weighted j. Discrepant responses were resolved by discussion and

consensus between the two reviewers and recorded as an adjudi-

cated result.

Prevalence of the ADE was calculated as the percent of patients

exposed to sildenafil who experienced seizures, with 95% confi-

dence intervals calculated using the binomial approximation. The

number of notes reviewed, time spent on each note, and total time

spent from accessing a patient’s history to recording a response to

whether the seizure was consistent with a true ADE were determined

from the server log data. Times greater than 10 min [N¼3 (1.8%)

of 169 actions] were considered potentially spurious and were elimi-

nated from further analysis. Differences in number of notes and time

reviewing notes were compared using the Mann–Whitney U test. A

P-value < 0.05 was considered statistically significant. Data analysis

was performed using R version 3.5.0 (R Foundation for Statistical

Computing, Vienna, Austria).

RESULTS

The NLP pipeline identified seizures in 72 [17%, 95% confidence

interval (CI) 14–21] of 416 patients taking sildenafil [age (mean 6

SD) 20 6 25 years, 46% male]. Most documents (77%) with men-

tions of sildenafil were written between 2012 and 2015.

While interannotator agreement was initially poor (65%,

j¼0.2), most (16 of 25, 64%) of the initially conflicting reviews

were due to one of the evaluators marking that he or she could not

tell whether the seizure was a true ADE and the other evaluator indi-

cating “yes” or “no.” After adjudication, only 4 (0.96%, 95% CI

0.37–2.4) of the patients’ seizures were found to be consistent with

true ADEs. In an additional 13 patients (3.1%, 95% CI 1.8–5.3),

users were not able to determine whether the seizure was consistent

with a true ADE. As compared to reaching consensus for discrepant

annotations, single-reviewer determination of whether a sign/symp-

tom represented an ADE required review of fewer notes and took

less time in total and per note (Table 1).

DISCUSSION

ADEPT facilitates ascertainment of gold standard, human-reviewed

ADEs. Our approach takes advantage the scalability of natural lan-

guage processing and machine learning for high throughput to maxi-

mize sensitivity and guide reviewers, while presenting the computed

data in a format that minimizes cognitive load and effort on the part

of human annotators. In this sense, ADEPT is similar to systems that

use preannotation to aid in annotating clinical text for other NLP

tasks.10,12 ADEPT, however, differs from other NLP annotation

tools, in that it facilitates clinical pharmacovigilance by providing

an interface to review whether a sign or symptom represents an

ADE across a patient’s entire clinical corpus, rather than in a single

instance or document. This functionality facilitates developing gold

standard ADE labels for ADE causality determination, in which ex-

pert clinicians review the totality of the clinical record to determine

whether the incidence of a sign or symptom is caused by a medica-

tion, but does so in a way that is notably more efficient than tradi-

tional, manual review of clinical notes. We demonstrate, with a

driving use case, that many potential ADEs that might be identified

through a chart search actually represent signs and symptoms that

cannot be attributed definitively to the patient’s being exposed to a

medication, even when searching specifically for known ADEs. Such

review would be laborious without the efficiency gains of ADEPT.

Given the importance of temporality in determining whether a

drug-sign/symptom pair represents an ADE (exposure to the medica-

tion must precede the sign or symptom), ADEPT’s utility was

heavily influenced by its ability to discriminate when a patient was

exposed to a medication. Studies have shown that as many as 82%

of notes may contain as much as 20% copied material from previous

notes.9 Thus, although our NLP pipeline filtered out temporally im-

possible relationships based on temporality of terms relative to the

document creation time,19 within-note temporality was not suffi-

cient to determine the overall clinical course of the patient. In con-

trast, the visual representation of medication and sign or symptom

mentions in ADEPT allowed annotators to find quickly first and fi-

nal mentions of these terms in a patient’s clinical history, determine

whether these terms truly represent initiation of a medication or

only first mention within our EHR, and determine when medica-

tions were discontinued in order to assess whether signs/symptoms

occurred prior to initiation or after cessation of the drug.

Determining whether a drug-sign/symptom pair is consistent

with a true ADE remains a difficult task requiring some subjective

assessment. Our ultimate interannotator agreement was poor

(j¼0.2), reflecting how challenging the task of determining causal-

ity in a complex, dense clinical record can be, but was similar to that

reported in several other studies of ADEs that used varied scales and

assessment tools.24–26 Moreover, disagreement largely stemmed

from the challenge of reviewers determining definitively whether

there was sufficient information in the clinical notes to rule in or out

Table 1. Usage statistics for ADEPT interactions

Review Adjudication P-value

Notes (N) 8 (6–10) 11 (9–19) <0.001

Unique notes (N) 7 (5–9) 10 (8–18) <0.001

Total time to result (s) 89 (57–142) 224 (141–317) <0.001

Time per note (s) 9.6 (0.21–21) 13 (3.8–24) 0.003

Data shown as median (interquartile range).
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each potential ADE. Agreement was better when both reviewers

found sufficient information to determine whether or not the seizure

was consistent with a true ADE, although the causal relation be-

tween sildenafil and seizures was rarely explicitly recorded by the

clinician. ADEPT addresses the challenge of interpretability in ADE

ascertainment by highlighting the specific sentences in which drugs

and signs and symptoms are mentioned and displaying that informa-

tion within the full context of the patient’s clinical narrative. This

contextual representation allows consideration of confounding from

other medications and conditions during manual annotation of po-

tential ADEs.

ADEPT increased efficiency of this pharmacovigilance case study

by reducing the time needed to review potential ADEs. Two recent

studies report times for case completion of 15–23 min,27,28 whereas

using ADEPT chart review typically took annotators less than 4 min

per patient to complete. This efficiency was gained despite the den-

sity of inpatient notes for a relatively ill patient population. By pro-

viding an interface that combined navigation across notes with

visual indicators of the most relevant notes, annotators were able to

rapidly peruse a patient’s clinical narrative.

We found that few of the potential ADEs identified by our

screening NLP pipeline were adjudicated to be consistent with true

ADEs. This was expected given that our NLP pipeline was tuned to

maximize sensitivity, at the expense of positive predictive value, as

an initial screen for ADE-related terms. In the case of seizures, the

rate of confirmed ADEs in this study was similar to the rate reported

in the STARTS-2 trial of sildenafil for pediatric PH.22 Of note, seiz-

ures were not a reported ADE in two other small studies of sildena-

fil.29,30 Using scalable, computer-assisted methods, we were able to

scan the retrospective records of 416 patients taking sildenafil, ex-

amining the rate of seizures in over twice as many patients taking sil-

denafil compared to prior studies. These findings highlight the

importance of RWD in pharmacovigilance, particularly for drugs

used in children, for whom limited randomized clinical trial and

postmarketing follow-up data exist.31

While many studies have used NLP for ADE detection, state-of-

the-art NLP pipelines continue to have limited performance for the

full, integrated task of ADE identification and depend on clinicians’

explicit assertion that a sign/symptom is related to a medication.5–

8 In contrast, ADEPT is built around the idea that the connections

between medications and signs/symptoms that may represent ADEs

are often represented vaguely and inconsistently in the clinical narra-

tive. In medically complex patients, in particular, many potential

ADEs may represent effects of underlying or comorbid diseases or

adverse effects of other treatments for those diseases. ADEPT lever-

ages the scalability of NLP and machine learning to screen notes for

potential informativeness regarding ADEs, while facilitating human

review of those potential ADE mentions. This two-step process

allows for the underlying NLP pipeline to be tuned to greater sensi-

tivity—capturing implicit rather than only explicit relations—while

the human review and validation allows for maintaining adequate

specificity for pharmacovigilance applications. Thus, even using an

NLP pipeline with relatively low positive predictive value, ADEPT

facilitated efficient human screening of potential ADEs and, after

adjudication to resolve disagreements between two reviewers,

allowed for rapid creation of gold standard ADE labels.

This study has several limitations. Though we found that AD-

EPT was used effectively by one user (S.F.M.) without prior experi-

ence with the platform, further usability testing with more

clinicians, epidemiologists, and researchers is needed. We were not

able to directly compare ADEPT to manual chart review of potential

ADEs, in which an annotators would have note-level NLP results

but not the visual/navigation functions of ADEPT. However, with-

out ADEPT, which highlighted which notes over a patient’s clinical

timeline had mentions of medications alone, signs/symptoms alone,

and medications and signs/symptoms in the same note with a puta-

tive relationship, annotators would have had to review an average

of over 200 notes per patient with mention of either a drug or sign/

symptom of interest to determine causality. In future studies, we will

compare ADEPT and manual chart review to confirm the hypothe-

sized performance gains. ADEPT is currently designed for research

purposes, and further refinements to the user interface for general

clinical use will be required. The NLP pipeline required significant

tuning and may not perform as well at other institutions or with dif-

ferent patient populations. Nonetheless, the methods underlying

ADEPT can be readily adapted to more robustly tuned input data.

Future planned application enhancements include the ability to

modify, tune, and run the NLP pipeline from within ADEPT in or-

der to allow end-users to develop custom NLP-assisted pharmacovi-

gilance pipelines. Finally, although the performance of the NLP

pipeline was evaluated on a hold-out test set of patients and showed

high sensitivity, the potential of false-negative patient-level annota-

tions using the ADEPT system could not be evaluated since we did

not have a gold standard against which to compare annotations. A

strength of ADEPT is that it allowed annotators to review discrepant

annotations together and record an adjudicated result.

CONCLUSION

ADEPT, a platform for NLP-based computer-assisted human anno-

tation of potential ADEs, effectively identifies and validates rare

events consistent with true ADEs in unstructured, real-world data.

Future studies in NLP-based pharmacovigilance should emphasize

causal inference between medications and signs or symptoms even

when the signs or symptoms are not explicitly labeled as an ADE in

the clinical text. Such studies should also address the relationships

among signs or symptoms and medications across a patient’s clinical

documents in addition to within individual documents. Systems

such as ADEPT that address temporality and confounding by facili-

tating rapid navigation of a patient’s clinical timeline can be used to

create gold standard labels and accelerate pharmacovigilance appli-

cations based on RWD. In future work, we plan to test ADEPT’s

ability to facilitate validation of novel potential ADEs. The ADEPT

source code is available at https://github.com/hms-dbmi/adept.
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