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Hypoxia-induced pulmonary hypertension (PH) is a leading cause of the clinical relevance of these findings by observing similar molecules

death, but despite its increasing morbidity and mortality no effective
treatment has been discovered. Hypoxic PH is the outcome of a multi-
step process involving epigenetic changes, cellular reprograming, prolif-
eration, inflammation and vasoconstriction [1]. These pathological
features ultimately lead to irreversible structural changes of the vascu-
lature. Classical molecules that have been linked to these multiple pa-
thologies include vascular endothelial growth factor (VEGF) and its
receptors, and the hypoxia inducible factors (HIFs) 1α and 2α [2]. Si-
multaneously, recent progress in the field has unraveled the potential
of cytokines related to Th1, Th2 and Th17 inflammation in drivingmul-
tiple pathologies in preclinical models of PH [3–5]. Classically, hypoxia
stabilizes HIF1α, leading to transcriptional regulation of many genes in-
volved in hypoxic PH pathology including VEGF. Alternative, non-
hypoxic regulators of HIF1α in hypoxic PH have not been clearly
elucidated.

The study by Liu et al. in this issue of EBioMedicine [6] addresses
this issue. By using in vivo studies in mice and in vitro experiments
with human pulmonary artery endothelial and smooth muscle cells
(HPAECs and HPASMCs), the authors report exciting data concerning
the potential roles of an interleukin (IL)-33/ST2/HIF1α/VEGF signal-
ing pathway in the pathogenesis of hypoxic PH. The authors report
that hypoxia exposure upregulates the expression of IL-33/ST2 by
PAECs, contributing to hypoxic pulmonary vascular remodeling via
activating downstream HIF1α/VEGF signaling. They also report that
HPAECs constitutively express IL-33 and its receptor ST2, and that
hypoxia upregulates their expression. In addition, IL-33 acts on
these cells to enhance proliferation, adhesion and angiogenesis in
an ST2-dependent fashion. Liu et al. conclude that IL-33/ST2, operat-
ing through activation of the HIF1α/VEGF axis on PAECs, induces the
angiogenesis and proliferation of PAECs, and may provide a basis for
the initiation of PASMC remodeling which results in PH, with hyp-
oxia a potential initiator for the proximate upregulation of the IL-
33/ST2 axis.

The present work by Liu et al. complements prior reports on IL-33/
ST2 in inflammation and remodeling processes [7–9], while supporting
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upregulated in the structural endothelial cells of blood vessels of
hypoxic patients. The requirement of ST2 receptor for the effect of
HIF1α on VEGF as shown by Liu et al. is interesting and points to a
novel insight into HIF1α regulation. Other studies showed HIF1α
drives metabolic shift and VEGF controls proliferation and migration
of endothelial cells [2]. Overall, Liu et al. convincingly prove their
point by usingmultiple molecular biology approaches that IL-33 reg-
ulates HIF1α and VEGF.

Therefore, based on the current findings, what are the next steps
towards the long term goal of developing effective treatments of
hypoxic PH by targeting cytokines and its downstream signaling
molecules? We suggest first reproducing and understanding the
roles of IL-33 in the pathology of hypoxic PH, to permit more precise
targeting of causal mechanisms. In particular, answering the follow-
ing questions will be helpful:

1. Does IL-33 have a role in increasing vasoconstriction as well as fixed
remodeling?

2. What are the critical mediators between hypoxia and IL-33
production?

3. Does the increase in IL-33 and ST2 by PAECs depend on or augment
recruitment of bone marrow derived circulating cells? Monocytes
also produce IL-33 [10], which may be promoted by similar or dis-
tinct pathways.

4. What will be the side effects of IL-33 blockade if it is targeted
therapeutically?

5. Does IL-33 also regulate HIF2α in PAECs?

Despite these uncertainties, the current findings by Liu et al.
support the possible therapeutic targeting of this pathway. One ex-
ample of more selective targeting of pathologic hypoxic PH is an on-
going study of IL-6 receptor inhibition in PH (NCT02676947). In the
future, targeting pathogenic cytokines could be an effective thera-
peutic approach to treat pulmonary vascular diseases such as hyp-
oxic PH.
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