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A mathematical study on creeping flow of non-Newtonian fluids (power law model) through a nonuniform peristaltic channel, in
which amplitude is varying across axial displacement, is presented, with slip effects included.The governing equations are simplified
by employing the long wavelength and low Reynolds number approximations. The expressions for axial velocity, stream function,
pressure gradient, and pressure difference are obtained. Computational and numerical results for velocity profile, pressure gradient,
and trapping under the effects of slip parameter, fluid behavior index, angle between the walls, and wave number are discussed with
the help of Mathematica graphs. The present model is applicable to study the behavior of intestinal flow (chyme movement from
small intestine to large intestine). It is also relevant to simulations of biomimetic pumps conveying hazardous materials, polymers,
and so forth.

1. Introduction

The transportation of physiological fluids due to continuous
wavelike muscle contraction and relaxation of physiological
vessels such as the oesophagus, stomach, intestines, ureter
and blood vessels (arteries, veins, capillaries, etc.), and other
hollow tubes is known as peristalsis [1]. Peristalsis is used
in many diverse applications in the human body. These
include urodynamic conveyance from the kidneys to the
bladder [2], swallowing of food through the esophagus, the
movement of chyme in gastrointestinal tract, intrauterine
fluid motion, and the flow of spermatozoa in the ductus
efferentes of themale reproductive tract. Further applications
include the movement of ovum in the female fallopian tube,
transport of lymph in the lymphatic vessels, and the vaso-
motion of small blood vessels such arterioles, venules, and
capillaries. These are all internal peristaltic mechanisms. In
biolocomotion, earthworms also use peristalsis as an external
motion achieving very efficient “geonautical” mobility, aided

by the secretion of lubricating mucus. This also serves to
subject the soil to continuous biological “pistons” forcing
air through burrowed tunnels, promoting aeration and soil
mixing, and encouraging mineralization of nutrients and
their uptake by vegetation [3]. Roller and finger pumps also
operate on this principle and furthermore modern micro-
and nanorobots are exploiting peristaltic mechanisms [4].

The behavior of most of the physiological fluids is known
to be non-Newtonian. A simple yet versatile rheological
model is the Ostwald-DeWaele power law model which
successfully simulates viscosity, shear thickening, and shear
thinning effects. Representative studies deploying this model
in peristaltic fluid dynamics include [5–9] wherein the effect
of fluid behavior index on peristaltic pumping has been
examined. Other researchers [10–18] have deployed alter-
native rheological models for peristaltic transport of non-
Newtonian fluids including Eyring-Powell fluids [10], couple
stress fluids [11], Williamson viscoelastic fluids [12], Eringen
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micromorphic models [13], fractional viscoelastic mod-
els [14], Oldroyd-B viscoelastic models [15], second-grade
differential Reiner-Rivlin viscoelastic fluids [16], micropolar
models [17], and Herschel-Bulkley yield-stress fluids [18].
These studies explored a variety of flow geometries and
generally utilized the no-slip boundary condition at the
walls. However, in real physiological systems, slip effects
can arise at the walls, invalidating the classical Navier no-
slip boundary condition. This modified boundary condition
has been shown to exert a significant effect on transport
phenomena in the near-wall region of biopolymeric sheet
[19], gastric duct [20], and abnormal swallowing dynamics
[21].

Kwang et al. [22] studied the peristaltic transport of a
Newtonian fluid through a 2D microchannel where the slip
effect is present. Ali et al. [23] investigated slip effects on
the peristaltic transport of variable viscosity magnetic fluid.
Hayat et al. [24] studied slip effect on the peristaltic motion
of a third-order rheological fluid in an asymmetric channel.
Ebaid [25] analyzed effects of magnetic field and wall slip
conditions on the peristaltic transport of aNewtonian fluid in
an asymmetric channel. Recently Tripathi et al. [26] studied
slip effects in fractional viscoelastic Oldroyd gastric flows
using a homotopymethod, showing that pressure is decreased
with increasing slip.

It has been pointed out by Charm and Kurland [27, 28]
that the flow behavior of blood in vessels of small diameter
(0.02 cm) and at low shear rates (<20 s−1) can be represented
by a power law fluid. Also, it is found that physiological
organs are generally nonuniform ducts [29, 30]. Remaining
cognizant of these facts, in this paper we investigate peristaltic
transport of power law fluid in a nonuniform channel under
a slip boundary condition. The effects of slip parameter, fluid
behavior index, angle between the walls, and wave number
on pumping characteristics and trapping phenomenon are
investigated numerically and depicted graphically.

2. Mathematical Formulation

We consider the peristaltic flow of power law fluid in a
nonuniform channel under a hydrodynamic slip boundary
condition (see Figure 1). Let the motion of the walls of the
channel be governed by a sinusoidal nonuniformwave which
is mathematically modelled as

ℎ = 𝑎+𝑥 tan𝛼+ 𝑏 sin(2𝜋𝑥
𝜆

) , (1)

where ℎ, 𝑎, 𝑏, 𝜆, 𝑥, 𝛼 are transverse vibration of the wall,
half width of the channel, amplitude, wavelength, axial dis-
placement, and angle between walls of channels, respectively.
The sinusoidal nature of peristaltic waves is established in
numerous clinical studies andwe refer readers to the standard
monograph Keener and Sneyd [31].

The governing equations of the motion of power law
fluids (see, e.g., [6] for two-dimensional channel flow) are
given by

𝜕𝑢

𝜕𝑥

+

𝜕V
𝜕𝑦

= 0,

𝜌 (𝑢

𝜕𝑢

𝜕𝑥

+ V
𝜕𝑢

𝜕𝑦

) = −

𝜕𝑝

𝜕𝑥

+

𝜕𝜏
𝑥𝑥

𝜕𝑥

+

𝜕𝜏
𝑦𝑥

𝜕𝑦

,

𝜌 (𝑢

𝜕V
𝜕𝑥

+ V
𝜕V
𝜕𝑦

) = −

𝜕𝑝

𝜕𝑦

+

𝜕𝜏
𝑥𝑦

𝜕𝑥

+

𝜕𝜏
𝑦𝑦

𝜕𝑦

,

(2)

where 𝜏
𝑥𝑥

, 𝜏
𝑥𝑦

, 𝜏
𝑦𝑦

are the shear stress components and 𝜌, 𝑢,
V, 𝑦, 𝑝 are the fluid density, axial velocity, transverse velocity,
transverse coordinate, and pressure, respectively.

We introduce the following dimensionless parameters:
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where 𝑐, 𝛿,𝜙, 𝜇 are the wave velocity, wave number, amplitude
ratio, and viscosity, respectively, and 𝑛 is the fluid behavior
index (i.e., 𝑛 < 1 is pseudoplastic and 𝑛 > 1 is the
dilatant fluid and 𝑛 = 1 is the Newtonian fluid). Using the
above nondimensional variables and taking into account long
wavelength and low Reynolds number approximation, after
dropping the primes, the governing equations for flow of a
power law fluid reduce to
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where sign is a Signum function and is defined as

sign (𝑥) =
{
{
{
{

{
{
{
{

{

−1, if 𝑥 < 0

0, if 𝑥 = 0

1 if 𝑥 > 0.

(7)

The nondimensional wall equation in the wave frame is

ℎ = 1+ 𝑥
𝛿

tan𝛼+𝜙 sin 2𝜋𝑥. (8)

Boundary conditions in the wave frame of reference are
specified thus:
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= 0, at 𝑦 = 0, (9)

𝑢 = − 1∓𝛽𝜕𝑢
𝜕𝑦

at 𝑦 = ±ℎ, (10)

where 𝛽(=𝐿/𝑎) is the dimensionless slip parameter and 𝐿 is
the dimensional slip parameter.

3. Analytical Solutions

Integrating (5) with respect to 𝑦 and using condition (9) we
get
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Again integrating (11) with respect to 𝑦 and using condition
(10) we get
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The stream function is defined, based on Cauchy-Riemann
equations, as
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Using (12) and (13) we get
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The nondimensional volumetric flow rate in the wave frame
is defined as
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Figure 1: Geometry of nonuniform peristaltic channel.

The pressure gradient is obtained from (15) as follows:
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Integrating (16)with respect to𝑥, the pressure difference across
the axial line is
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4. Numerical Results and Interpretation

In this section, numerical calculations executed on Mathe-
matica software are presented via graphs, that is, Figures 2–5.

We systematically study the effects of slip parameter (𝛽),
rheological fluid power index (𝑛), angle between the walls
(𝛼), and wave number (𝛿) on the velocity profile, pressure
gradient, and the trapping phenomenon.

Figures 2(a)–2(d) illustrate the velocity profiles (axial
velocity versus transverse displacement). All plots exhibit
a distinctly parabolic shape and are generally symmetric
along the transverse (𝑦-)axis. Figure 2(a) depicts the effect
of slip parameter on velocity profile at prescribed values of
other physical parameters, 𝜙 = 0.5, 𝜕𝑝/𝜕𝑥 = 1, 𝑥 =

1, 𝑛 = 1, 𝛼 = 𝜋/4, 𝛿 = 1. Evidently the curves for
velocity profile are displaced downwardswhen the magnitude
of 𝛽 increases from 0 to 0.3. The curve for 𝛽 = 0 rep-
resents the velocity profile for a uniform no-slip channel.
The slip boundary condition defined in (10) is a Navier
modification of the conventional no-slip condition. In certain
physiological fluids, a partial nonadherence of the fluid to
a solid boundary is observed. This constitutes momentum
or velocity slip. This has been observed over four decades
ago in celebrated clinical physiological testing studies with
Weissenberg rheogoniometry for both blood and intestinal
liquids [32, 33]. As such, to provide a more realistic appraisal
of actual peristaltic transport, a slip condition is advisable.
Figure 2(a) shows that as the slip parameter increases, the
magnitude of the axial velocity (𝑢) is evidently boosted. The
fluid moves faster at the boundary with greater slip. This
adds momentum to the near wall flow which is transferred to
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Figure 2: Velocity profiles (axial velocity versus transverse displacement) at 𝜙 = 0.5, 𝜕𝑝/𝜕𝑥 = 1, 𝑥 = 1 for (a) 𝑛 = 1, 𝛼 = 𝜋/4, 𝛿 = 1, and
various values of slip parameter 𝛽 = 0, 0.1, 0.2, 0.3, (b) 𝛽 = 0.1, 𝛼 = 𝜋/4, 𝛿 = 1, and various values of fluid behavior index 𝑛 = 0.8, 1, 1.2, (c)
𝛽 = 0.1, 𝑛 = 1, 𝛿 = 1, and various values of inclination of channel 𝛼 = 𝜋/3, 𝜋/4, 𝜋/6, and (d) 𝛽 = 0.1, 𝑛 = 1, 𝛼 = 𝜋/4, and various values of
wave number 𝛿 = 1, 2, 3.

the core region also and generates a consistent acceleration
in the flow. In the absence of the momentum slip effect
(𝛽 = 0) the magnitude is suppressed. The implication is
that, with a slip effect, the axial flow distribution receives
a nontrivial modification (acceleration) which is generally
ignored in the majority of peristaltic flow models, and this
can influence the efficiency of the peristaltic pumping. It may
further be noted that with heat and species diffusion present
(not studied in the current analysis) thermal jump (slip) and
solutal slip (mass slip) at the deformable boundaries can also
be incorporated and this is being considered by the authors
for future investigations.

Figure 2(b) illustrates the impact of fluid behavior index
on velocity profile at fixed values 𝛽 = 0.1, 𝛼 = 𝜋/4, 𝛿 = 1,
𝜙 = 0.5, 𝜕𝑝/𝜕𝑥 = 1, 𝑥 = 1. It is found that the curve is
displaced in an upward direction with increasing the value
of 𝑛. The curve for 𝑛 < 1 (𝑛 = 0.8) represents the velocity
profile for pseudoplastic and for 𝑛 > 1 (𝑛 = 1.2) represents
the dilatant fluid and for 𝑛 = 1 represents Newtonian fluid.
Figure 2(c) describes the velocity profile for various values of
angle between the peristalticwalls (𝛼 = 𝜋/3, 𝜋/4, 𝜋/6) at fixed
values 𝛽 = 0.1, 𝑛 = 1, 𝛿 = 1, 𝜙 = 0.5, 𝜕𝑝/𝜕𝑥 = 1, 𝑥 = 1.

The curves of velocity profile move downwards with large
inclination between the peristaltic walls. Figure 2(d) shows
the curve between axial velocity and transverse displacement
for various values of wave number (𝛿 = 1, 2, 3) at fixed value
of 𝜙 = 0.5, 𝜕𝑝/𝜕𝑥 = 1, 𝑥 = 1, 𝛽 = 0.1, 𝑛 = 1, 𝛼 = 𝜋/4.
The magnitude of axial velocity increases with increasing the
wave number.

Figures 3(a)–3(d) illustrate the evolution of axial velocity
with axial displacement (longitudinal coordinate) for varia-
tion of the slip parameter (𝛽), rheological fluid behavior index
(𝑛), channel inclination angle (𝛼), and wave number (𝛿).
Inspection of these figures confirms the sinusoidal nature of
the axial flow in the direction of propagation of the peristaltic
waves. In all these graphs the channel is diverging (𝛼 >

0). The axial velocity is generally enhanced in magnitude
with greater wall slip effect (Figure 3(a)), and the amplitudes
are progressively increased with progressive distance from
the apex of the channel. With greater geometric divergence
of the channel, the peristaltic wave is allowed to grow
considerably and axial flow is substantially accelerated with
increasing slip. Conversely with greater power law index,
owing to an elevation in biofluid viscosity, the momentum in
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Figure 3: Axial velocity versus axial displacement at 𝜙 = 0.5, 𝜕𝑝/𝜕𝑥 = 1, 𝑦 = 1 for (a) 𝑛 = 1, 𝛼 = 𝜋/4, 𝛿 = 1, and various values of slip
parameter 𝛽 = 0, 0.1, 0.2, 0.3, (b) 𝛽 = 0.1, 𝛼 = 𝜋/4, 𝛿 = 1, and various values of fluid behavior index 𝑛 = 0.8, 1, 1.2, (c) 𝛽 = 0.1, 𝑛 = 1, 𝛿 = 1,
and various values of inclination of channel 𝛼 = 𝜋/3, 𝜋/4, 𝜋/6, and (d) 𝛽 = 0.1, 𝑛 = 1, 𝛼 = 𝜋/4, and various values of wave number 𝛿 = 1, 2, 3.

the propulsion is opposed and the axial velocity is depleted,
as observed in Figure 3(b). Dilatant (𝑛 > 0) biofluids
clearly propel slower than pseudoplastic (𝑛 < 0) biofluids.
Figure 3(c) reveals that as the channel apex angle (inclination)
is increased, the axial velocity along the pumping direction
is markedly accelerated again. Naturally with an expanding
frontier to propel into, the waves grow and the biofluid
accelerates. Finally in Figure 3(d), we find that, with greater
wave number, the axial velocity magnitudes are enhanced for
𝑥 > 0 whereas they are decreased for 𝑥 < 0.

Figures 4(a)–4(d) show the pressure gradient across the
axial displacement for different physical parameters. The
pattern of pressure gradient is nonlinear and is opposite to
the geometry of nonuniform peristaltic channel across the
longitudinal axial line. It is apparent that pressure gradient is
maximized at the point of contraction and minimized at the
point of relaxation. Pressure enhances with distance between
the walls. The effect of slip parameter on pressure gradient
at fixed values of other physical parameters 𝜙 = 0.5, 𝑞 = 1,
𝑛 = 1, 𝛼 = 𝜋/4, 𝛿 = 1 is shown in Figure 4(a). It is
observed that pressure gradient increases with increasing the
magnitude of 𝛽. The impact of fluid behavior index (𝑛) on

pressure gradient at fixed values 𝜙 = 0.5, 𝑞 = 1, 𝛽 = 0.1,
𝛼 = 𝜋/4, 𝛿 = 1 is illustrated in Figure 4(b). It is found
that the pressure gradient increases with fluid behavior index.
Pressure gradient for pseudoplastic biofluid is a minimum
and it is maximum for dilatant fluid. Figure 4(c) shows the
effect of inclination between the peristaltic walls on pressure
gradient for various values of (𝛼 = 𝜋/3, 𝜋/4, 𝜋/6) at fixed
values 𝜙 = 0.5, 𝑞 = 1, 𝛽 = 0.1, 𝑛 = 1, 𝛿 = 1. It is found
that the pressure gradient is maximumwith small inclination
and minimum with large inclination. Figure 4(d) depicts the
effect of wave number on pressure gradient at fixed value of
𝜙 = 0.5, 𝑞 = 1, 𝛽 = 0.1, 𝑛 = 1, 𝛼 = 𝜋/4. The pressure gradient
once again is found to be enhanced with increasing the wave
number.

Trapping is an interesting phenomenon in peristaltic
motion in which an internally circulating bolus of fluid
is formed by closed streamlines and this trapped bolus is
pushed ahead along with the peristaltic wave. The effects
slip parameter, power law index, angle between the walls,
and wave number are illustrated with the help of contour
plots (Figures 5(a)–5(i)) of streamlines. A general observation
regarding the effects of slip parameter (𝛽), fluid behavior
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Figure 4: Pressure gradient versus axial displacement at 𝜙 = 0.5, 𝑞 = 1 for (a) 𝑛 = 1, 𝛼 = 𝜋/4, 𝛿 = 1, and various values of slip parameter
𝛽 = 0, 0.1, 0.2, 0.3, (b) 𝛽 = 0.1, 𝛼 = 𝜋/4, 𝛿 = 1, and various values of fluid behavior index 𝑛 = 0.8, 1, 1.2, (c) 𝛽 = 0.1, 𝑛 = 1, 𝛿 = 1, and various
values of inclination of channel 𝛼 = 𝜋/3, 𝜋/4, 𝜋/6, and (d) 𝛽 = 0.1, 𝑛 = 1, 𝛼 = 𝜋/4, and various values of wave number 𝛿 = 1, 2, 3.

index (𝑛), angle between the walls (𝛼), and wave number
(𝛿) is that the trapped bolus increases in size as 𝛽, 𝑛, and 𝛼
increase. However, the size of the trapped bolus decreases in
size as 𝛿 increases. Evidently slip exerts a nontrivial influence
on pressure gradient, velocity, and bolus magnitude and
growth.

5. Conclusions

In this study the two-dimensional peristaltic flow of a power
law physiological fluid with the effect of slip condition
through a nonuniform channel has been investigated. On
the basis of computational and numerical results, the main
findings of the present study are as follows:

(i) Axial velocity across the transverse displacement
is parabolic in nature and shifted in a downward

direction increasing 𝛽 and 𝛼 and the converse behav-
ior with 𝑛 and 𝛿.

(ii) Pressure gradient across the axial length increases
with slip parameter, fluid behavior index, and wave
number and decreases with increasing inclination
between walls.

(iii) The size of trapped bolus increases with 𝛽, 𝑛, and 𝛼
increase and decreases with 𝛿.

The present study has ignored curvature effects of the physio-
logical vessel which are important in clinical applications and
also biomimetic pumps employed in chemical engineering.
These introduce a Coriolis effect and can lead to secondary
vortex effects. They have been studied by other authors [34]
and will be addressed imminently.
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Figure 5: Continued.
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Figure 5: Streamlines in wave frame at 𝜙 = 0.3, 𝑞 = 0.6 for (a) 𝛽 = 0, 𝑛 = 1, 𝛼 = 𝜋/6, 𝛿 = 1, (b) 𝛽 = 0.1, 𝑛 = 1, 𝛼 = 𝜋/6, 𝛿 = 1, (c) 𝛽 = 0.2,
𝑛 = 1, 𝛼 = 𝜋/6, 𝛿 = 1, (d) 𝛽 = 0, 𝑛 = 0.8, 𝛼 = 𝜋/6, 𝛿 = 1, (e) 𝛽 = 0, 𝑛 = 1.2, 𝛼 = 𝜋/6, 𝛿 = 1, (f) 𝛽 = 0, 𝑛 = 1, 𝛼 = 𝜋/4, 𝛿 = 1, (g) 𝛽 = 0, 𝑛 = 1,
𝛼 = 𝜋/3, 𝛿 = 1, (h) 𝛽 = 0, 𝑛 = 1, 𝛼 = 𝜋/6, 𝛿 = 2, and (i) 𝛽 = 0, 𝑛 = 1, 𝛼 = 𝜋/6, 𝛿 = 3.

Nomenclature

ℎ: Transverse vibration of the wall
𝑎: Half width of the channel
𝑏: Amplitude
𝑥: Axial displacement
𝑢: Axial velocity
V: Transverse velocity
𝑦: Transverse coordinate
𝑝: Pressure
𝑐: Wave velocity
𝑛: Fluid behavior index
𝐿: Dimensional slip parameter
𝑞: Volumetric flow rate in the wave frame
𝛿: Wave number

𝜙: Amplitude ratio
𝜇: Viscosity
𝛽: Dimensionless slip parameter
𝜓: Stream function
𝜆: Wavelength
𝛼: Angle between walls of channels
𝜏
𝑥𝑥

, 𝜏
𝑥𝑦

, 𝜏
𝑦𝑦

: Shear stress components
𝜌: Fluid density.
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