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Abstract: Single image dehazing is a difficult problem because of its ill-posed nature. Increasing
attention has been paid recently as its high potential applications in many visual tasks.
Although single image dehazing has made remarkable progress in recent years, they are mainly
designed for haze removal in daytime. In nighttime, dehazing is more challenging where most
daytime dehazing methods become invalid due to multiple scattering phenomena, and non-uniformly
distributed dim ambient illumination. While a few approaches have been proposed for nighttime
image dehazing, low ambient light is actually ignored. In this paper, we propose a novel unified
nighttime hazy image enhancement framework to address the problems of both haze removal
and illumination enhancement simultaneously. Specifically, both halo artifacts caused by multiple
scattering and non-uniformly distributed ambient illumination existing in low-light hazy conditions
are considered for the first time in our approach. More importantly, most current daytime dehazing
methods can be effectively incorporated into nighttime dehazing task based on our framework.
Firstly, we decompose the observed hazy image into a halo layer and a scene layer to remove the
influence of multiple scattering. After that, we estimate the spatially varying ambient illumination
based on the Retinex theory. We then employ the classic daytime dehazing methods to recover
the scene radiance. Finally, we generate the dehazing result by combining the adjusted ambient
illumination and the scene radiance. Compared with various daytime dehazing methods and the
state-of-the-art nighttime dehazing methods, both quantitative and qualitative experimental results
on both real-world and synthetic hazy image datasets demonstrate the superiority of our framework
in terms of halo mitigation, visibility improvement and color preservation.

Keywords: nighttime dehazing; halo removal; Retinex; image enhancement

1. Introduction

Images captured in outdoor scene are often degraded by interaction of atmospheric phenomena.
The phenomena such as haze, fog and smoke are mainly generated by the substantial presence of
suspended atmospheric particles which absorb, emit or scatter light. As a result, acquired outdoor
scenery images are often of low visual quality, such as reduced contrast, limited visibility, and weak
color fidelity. The performance of computer vision-based algorithms like detection, recognition,
and surveillance are severely limited under such hazy conditions. The goal of image dehazing
is to mitigate the influence of haze and recover a clear scene image, which is beneficial for both
computational photography and computer vision applications. Based on analysis of the mechanism
of haze formation [1], a number of approaches have been proposed in the past decades to solve this
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challenging problem relying on various image assumptions and priors [2–8]. While most existing
methods are focused on daytime image dehazing, nighttime image dehazing remains a challenging
problem. During the night, the performances of existing dehazing methods are significantly limited,
because the priors and assumptions of these methods become invalid due to the weak illumination
and multiple scattering of the scene ambient light.

Unlike uniformly distributed sunlight as the dominate light source in daytime, illumination
varies spatially during the night. In addition, the overall brightness of the scene could be extremely
weak, resulting failures of currently used priors and assumptions, such as the dark channel
prior [2] and the color attenuation prior [6]. Moreover, significant halo effect caused by multiple
scattering can be observed around light sources in hazy night, which is not considered in the
commonly used daytime dehazing model. In order to overcome these problems, several techniques
have been introduced with novel assumptions recent years, such as bright alpha blending [9],
color transfer [10], maximum reflection prior [11] illumination correction [12], glow removal [13]
and image fusion [14,15]. However, although the nighttime haze can be removed from the observed
images, color distortion still exist in the dehazed results. In addition, visibility and scene details
are reduced and hidden due to the low ambient illumination. While various methods have been
proposed for low-light image enhancement and have achieved satisfying results [16–19], practically,
dehazing and brightening are regarded as two independent problems in nighttime image processing.
As the result, ambient illumination remains dim in dehazed nighttime images, while haze remains in

the low-light enhancement results. Although the result can be obtained by a dehazing-and-enhancing
flow, severe color distortion could appear. Therefore, it is argued that both brightness enhancement
and dehazing are crucial for visibility improvement of nighttime hazy images.

In this paper, a novel unified framework for SImultaneously Dehazing and Enhancement
of nighttime hazy images (SIDE) is proposed by considering both halo mitigation and ambient
illumination enhancement. More importantly, the classic daytime dehazing methods can be effectively
incorporated into nighttime dehazing based on the proposed framework. Specifically, a layer
extraction approach is firstly introduced to mitigate the halo artifacts caused by multiple scattering.
Then, a Retinex based decomposition is proposed to estimate the spatially varying ambient illumination.
After that, daytime dehazing methods can be applied to recover the scene radiance. To the best of our
knowledge, the proposed SIDE is the first attempt which considers both haze removal and illumination
enhancement for nighttime hazy images. Experimental results on both real-world and synthetic
datasets demonstrate the effectiveness of the proposed framework for classic daytime dehazing
methods under nighttime hazy conditions. In the comparisons with the state-of-the-art nighttime
dehazing methods, both the quantitative and qualitative evaluations indicate the superiority of our
proposed SIDE in terms of halo mitigation, visibility improvement and color preservation.

The rest of the paper is organized as follows—Section 2 introduces related work and limitations
in existing image dehazing and low-light enhancement. Section 3 throughly describes the proposed
SIDE. Section 4 shows the experimental results and analysis. Finally, Section 5 concludes the work.

2. Related Work

In hazy days, a beam of light traveling through the atmosphere is attenuated along the incident
path and is scattered to other directions. Sensors not only receive the attenuated reflection from
the scene objects, but also the additive light in the atmosphere. To describe the formation of the
hazy imaging process, in computer vision, a hazy image can be mathematically modeled as the
pixel-wise convex combination of the scene radiance and the airlight according to the Koschmieder’s
law as follows:

I (x) = J (x) t (x) + A (1− t (x)) , (1)

where I (x) and J (x) represent the observed hazy image and the haze-free scene radiance in RGB
color space, respectively. A is the global atmospheric light, which is assumed to be spatially constant.
x indicates the pixel index. t (x) ∈ [0, 1] is the depth dependent medium transmission function
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describing the portion of the light that reaches the camera without scattering, which can be expressed
as follows:

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere medium and d is the scene depth.
Based on single scattering haze model in (1), various approaches have been proposed to address

the single image dehazing problem [1–4,20–23]. In recent years, encouraged by the milestone progress
in single image dehazing—known as the Dark Channel Prior [2]—the performance of single image
dehazing has been improved continuously [4–7,24–27]. With the development of machine learning
technique, learning-based methods, especially the convolutional neural network (CNN) based methods,
have also been introduced to single image dehazing [28–36]. Cai et al. proposed an end-to-end
DehazeNet to estimate transmission map [29]. The scene radiance was then recovered according to
the single scattering model. Ren et al. further improved the accuracy of transmission estimation by
introducing a multi-scale deep neural network [30]. Li et al. introduced a lightweight end-to-end CNN
based AOD-Net for image dehazing by generating the haze-free images directly [31]. Zhang et al.
also addressed the end-to-end dehazing problem under a deep learning based densely connected
pyramid dehazing network [34]. Approaches using generative adversarial networks have also been
studied in recent years [37–40] Although these methods are capable of recovering satisfying results
in daytime, their performances on nighttime dehazing are quite limited. In addition, learning based
methods, especially the data-driven deep learning based approaches rely on the sufficient training data.
However, datasets containing a large number of paired earl nighttime hazy images and corresponding
clear scene images are practically unable to obtain due to the complex environmental illumination.

Compared with daytime dehazing, less attention has been paid to nighttime dehazing. Pei and
Lee [10] proposed a color transfer method for nighttime hazy image mapping, haze was removed
using a modified dark channel prior. Although the visibility could be increased, their results are
visually unrealistic. Zhang et al. introduced an imaging model that combines gamma correction and
color correction [12]. Although their results are visually better, a severe halo effect is also observed.
They further proposed a maximum reflectance prior to estimate ambient illumination [11]. However,
their method has limitation in illuminant regions. Li et al. addressed the halo effect in nighttime
dehazing by introducing an atmospheric point spread function [13]. They removed the glow around
light sources through layer decomposition. However, the illumination in the dehazed results remain
dim. Ancuti et al. investigated the local airlight estimation and introduced a multi-scale fusion
technique for both daytime and nighttime hazy image enhancement by employing a patch-based dark
channel prior [14,15].

However, the patch size requires carefully selection. More recently, Yu et al. proposed a pixel-wise
alpha blending method to improve the dark channel prior, and the illumination is estimated using
guided filter [9]. Although the color constancy is well preserved, halo effect is still obvious due to the
use of guided filter. Lou et al. constructed a linear model to connect transmission and haze-relevant
features and employed a learning approach to solve the model [41]. Kuanar et al. introduced a CNN
based DeGlow model with a embedded DeHaze module for nighttime dehazing [42].

The main limitation of the single scattering model is that Equation (1) only considers the single
scattering effect, which means each pixel in the obtained image I(x) corresponds to a sole scene pixel in
J(x), while the flux scattered in the other directions by each particle is ignored. The value of a pixel in
the observed image is not only composed by the direct attenuation and airlight, but also influenced by
its neighbor points due to multiple scattering phenomenon. In daytime, constant atmospheric light is
presumed since the homogeneous sunlight is the main light source in the scene. However, the ambient
illumination is no longer uniformly distributed during the night. In addition, the inhomogeneous
ambient light generated by multicolor light sources varies spatially, and the influence of multiple
scattering becomes significant.

On the other hand, continues contributions have been introduced for low-light image
enhancement. Based on the Retinex theory, early methods enhance the low-light images by removing
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illumination component with Gaussian filtering [43–45]. However, due to the ill-posed nature of
the Retinex model, results are often over-enhanced unnaturally. To effectively overcome such a
problem, many recent works resort to variational methods by applying priors and assumptions on the
illumination and reflectance with different regularized models [46–50]. Kimmel et al. introduced a
smooth illumination prior in the regularization term [46]. Ng et al. proposed a `2 fidelity prior with TV
based regularized model by considering both the illumination and the reflectance [47]. Inspired by Ng’s
work, Wang et al. proposed a constrained variational model with barrier functionals [50]. Based on the
assumption that the illumination is spatial smooth and the reflectance is piece-wise continuous, Fu et al.
proposed a probabilistic algorithm and a weighted variational method to decompose the illumination
and the reflectance simultaneously [51,52]. Guo et al. proposed a `1 norm based regularization
framework to refine an initial illumination map under a structure-aware prior [17]. Learning based
methods have also been developed for low-light image enhancement [53–58]. Although visibility and
contrast could be increased, these approaches can not handle haze in the scene.

In this paper, we address both haze removal and illumination enhancement for nighttime hazy
images in a unified framework. In order to better understand and describe nighttime haze, halo effect
and spatially varying illumination should be considered. Inspired by Li’s work [13], we employ
following nighttime haze model in our work:

I(x) = J(x)t(x) + L(x) (1− t(x)) + H(x), (3)

where L(x) denotes the varying ambient illumination, and H(x) indicates the additive halo layer.

3. Methodology of the Proposed SIDE

The scheme of the proposed SIDE is illustrated in Figure 1, which includes Halo Decomposition
Module, Illumination Decomposition Module, Image Dehazing Module and Enhancement Module.
We firstly introduce a halo extraction module to mitigate the halo artifacts caused by multiple
scattering After that, we propose a Retinex based illumination decomposition method to estimate the
spatially varying ambient illumination. With the illumination extracted, the classic daytime dehazing
methods are employed for haze removal. Finally, we generate the output scene image by combining
the adjusted illumination and dehazed scene layer. We will express each module in detail in the
following subsections.

Figure 1. Framework of the proposed SImultaneously Dehazing and Enhancement of nighttime hazy
images (SIDE).

3.1. Halo Decomposition Module

As discussed above, one major problem of nighttime hazy images is detail and visibility
degradation of objects around light sources caused by the multiple scattering of nearby illuminants.
Inspired by Li’s work [13], an observed hazy image I(x) can be modeled as a linear superimposition of
a scene layer S which contains haze and scene information, and a halo layer H which indicates halos
and glows around illuminants. Consequentially, Equation (3) can thus be written as:

I(x) = S(x) + H(x), (4)
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where S and H indicate the scene layer and the halo layer, respectively.
The halo layer has the characteristics of high intensities and smooth variation around light sources,

wheres hazy scene layer itself only contains scene structure and texture details with relatively dim
brightness. It is noticed that the gradients of halo patches has a sharper and sparser distribution
compared with the non-halo patches. Therefore, a probabilistic model with prior knowledge on
gradient distribution of the two layers can be employed to extract the halo layer. By assuming S and
H are independent, the optimized S and H can be decomposed by minimizing the object function
as follows:

min
S,H

∑
x

 ∑
∂i∈ΩS

|∂i ∗ S(x)|+ ∑
∂j∈ΩH

λ

2

∥∥∂j ∗H(x)
∥∥2

 , (5)

where ∗ denotes the convolution operator. ∂ indicates the derivative filters in sets
ΩS =

{
[1,−1], [1,−1]T

}
and ΩH =

{
[1,−2, 1], [1,−2, 1]T

}
, which contain the first order derivative

filters in two directions, and the second order Laplacian filter, respectively. The scale weight λ controls
the smoothness of the halo image layer.

According to convolutional system theory, the convolutional result of a signal and a finite-length
sequence can be expressed with the product of a Toeplitz matrix and the signal, where the Toeplitz
matrix is uniquely determined by the finite-length sequence. By substituting H = I− S, Equation (5)
can be rewritten as follows:

min
S

∑
x

{
∑

i∈ΩS

|DiS(x)|+ ∑
j∈ΩH

λ

2

∥∥DjI(x)− DjS(x)
∥∥2
}

, (6)

where DkS(x) indicates the elements of the Toeplitz matrix generated by the convolutional kernel ∂k.
The non-convex problem in (6) can be optimized via the alternating direction method of

multipliers (ADMM) as in References [59,60]. Figure 2 shows a result of halo layer separation. It is
observed in the scene layer that halo effect around light sources is mitigated, compared with the
observed nighttime hazy image.

(a) (b) (c)

Figure 2. Illustration of halo layer extraction. (a): a nighttime hazy image, (b): the halo layer,
(c): the scene layer.
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3.2. Illumination Decomposition Module

With the halo layer H extracted, the dehazing problem becomes:

S(x) = J(x)t(x) + L(x) (1− t(x)) . (7)

Unlike the commonly used haze imaging model in (1) which assumes a global constant
atmospheric light, the ambient illumination in our work is assumed to be an inhomogeneous and
spatially-varying map L(x). Consequentially, the local maximum assumption of atmospheric light
in daytime dehazing no longer holds for estimating L(x) during nighttime. Inspired by the Retinex
theory which assumes an observed image as the combination of reflectance and illumination, we resort
to the illumination decomposition model to overcome these limitations.

According to the Retinex theory [61], the scene layer image can be formulated as the pixel-wise
product of a reflectance component and a light-dependent illumination component as follows:

S = R(x) ◦ L(x), (8)

where R is the reflectance component, and L is the illumination component. ◦ represents the
pixel-wise multiplication.

Denoting J(x) = L(x)ρ(x), Equation (7) can be reformulated in a Retinex-like pattern as follows:

S(x) = L(x)[ρ(x)t(x) + 1− t(x)], (9)

where ρ is the intrinsic reflectance of objects in the scene [20,62].
The illumination is presumed to be spatially smooth and contains the overall structure,

which shares the same characteristic of ambient illumination of the scene layer, therefore, (9) can
be solved by minimizing the following objective function:

min
R,L,ω
‖R ◦ L− S‖2

F + TGV2
α(L) + β‖∇R−∇S‖0, (10)

where R = ρ(x)t(x) + 1− t(x), β is the regularization parameter and ∇ is the first order differential
operator. TGV2

α(L) indicates the second order TGV with respect to L, which can be expressed in terms
of the following `1 minimization problem:

TGV2
α(L) = min

ω
α1‖D(∇L−ω)‖1 + α0‖∇ω‖1, (11)

where α ∈ {α0, α1} is a weighting vector and ω is a vector field with low variation. D is a diffusion
tensor formulated as follows:

D = exp (−ζ|∇S|µ) nnT + n⊥n⊥T, (12)

where n = ∇S/ |∇S| indicates the normalized direction of the image gradient, and n⊥ is the normal
vector to the gradient. ζ and µ are parameters controlling the magnitude and the sharpness of D.

In practice, we apply the `1 norm as the convex relaxation [63] of the original `0 minimization
problem. In addition, (10) is a non-convex and non-smooth optimization problem because of the
adoption of pixel-wise multiplication and TGV regularization. An alternating direction method of
multipliers (ADMM) [59,60] is adopted to solve it. Figure 3 demonstrates an example of ambient
illumination estimation. It is observed the unevenly distributed ambient illumination is effectively
estimated. Color distortion caused by artificial illuminant is also corrected in the reflectance.
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(a) (b) (c)

Figure 3. A sample of ambient illumination decomposition. (a): scene layer, (b): estimated ambient
illumination, (c): estimated reflectance.

3.3. Scene Recovery Module

As expressed in (9), the reflectance component R in Equation (8) is composed as follows:

R(x) = ρ(x)t(x) + 1− t(x), (13)

which can be expressed in the following formation:

R(x) = J1(x)t(x) + A1(1− t(x)). (14)

It can be easily observed that Equation (13) has the similar formation of the original single
scattering model in Equation (1) with the atmospheric light as A1 = (1, 1, 1)T and the scene radiance
J1(x) = ρ(x). Therefore, various assumptions and priors of existing daytime dehazing approaches can
be employed to effectively solve Equation (13). In addition, to preserve the naturalness of the scene,
we also manipulate the ambient illumination L(x) with gamma transformation to increase the global
brightness. We will demonstrate and analyze the results in the next section.

4. Experimental Results and Analysis

In this section, we firstly demonstrate the effectiveness of the proposed SIDE in terms of halo
layer extraction. After that, we compare the performances of various daytime dehazing methods
with and without the proposed SIDE. In addition, comparisons with conventional low-light image
enhancement methods are also illustrated. Next, comprehensive experiments are conducted to
demonstrate the superiority of the proposed SIDE. Since it is hard to obtain the nighttime haze and
daytime haze-free image pairs, the proposed SIDE is evaluated on Zhang’s datasets [11], which contains
20 real world nighttime hazy images. We also test the proposed SIDE on synthesized nighttime
hazy images for quantitative comparisons. The proposed algorithm is implemented using MATLAB
2019b on PC with 9700K CPU and 32GB RAM. In the implementation, parameter λ is set to 3 for
halo layer extraction, the regularization parameters for ambient illumination decomposition are set
as α0 = 0.5, α0 = 0.05. While most conventional daytime dehazing methods can be applied for
scene radiance recovery, He’s dark channel prior (DCP) [2], Meng’s boundary constraint method
(BC) [4], Color Attenuation Prior (CAP) [6], and Berman’s non-local method (NL) [7] are selected for
demonstrations. The performance of the proposed SIDE is also compared with several state-of-the-art
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nighttime dehazing approaches, including Zhang’s Maximum Reflectance Prior (MRP) [11,12],
Li’s Glow and Multiple Light Colors (GMLC) [13], Yu’s Pixel-wise Alpha Blending (PAB) [9] and
Lou’s Haze Density Features (HDF) [41], where the parameters are set as defined in the references.

4.1. Results on Hazy Scene Estimation

To demonstrate the effectiveness of our halo layer extraction, we first illustrate the results of the
extracted halo layer and scene layer, in Figure 4. It can be seen that the halos around illuminants are
effectively mitigated in the scene layers.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Illustration of halo layer extraction. (a,d,g): nighttime hazy images, (b,e,h): the halo layers,
(c,f,i): the scene layers.

4.2. Verification on Daytime Dehazing Methods

To demonstrate the effectiveness of the proposed SIDE, we compare the performances of five
classic daytime dehazing methods with and without SIDE on test nighttime hazy images. As shown
in Figure 5a–d show the dehazing results without our SIDE using He’s dark channel prior (DCP) [2],
Meng’s boundary constraint method (BC) [4], Color Attenuation Prior (CAP) [6], and Berman’s
non-local method (NL) [7], respectively. Figure 5e–h show the results in the enhancing-and-dehazing
flow of the corresponding methods, while the observed hazy image is firstly enhanced using LIME [17].
The bottom row of Figure 5 show the dehazing results of corresponding methods with the proposed
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SIDE. It is observed in the top row that applying daytime dehazing methods directly on nighttime
hazy images would cause halo artifacts, color distortion, contrast reduction in outputs. Details are also
lost in dark regions in the results. In the middle row, halo artifacts and color distortion become more
serious after enhancement by LIME [17]. It is also noticed in Figure 5g that the visibility is worse after
the enhancement. On the contrary, the results in the bottom row have better visibility and ambient
color. In addition, the halo artifacts are significantly mitigate. It is clearly that these daytime dehazing
methods can be effectively applied to nighttime dehazing under the proposed SIDE framework.

Figure 5. Illustration of the proposed SIDE. (a–d): results of conventional daytime dehazing
methods without SIDE; (e–h): results with the enhancing-and-dehazing flow (enhanced by LIME [17]);
(i–l): results of corresponding methods with the proposed SIDE. From left to right: dark channel prior
(DCP) [2], boundary constraint method (BC) [4], Color Attenuation Prior (CAP) [6] and Berman’s
non-local method (NL) [7].
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We also compare our SIDE with different low-light enhancement methods in Figure 6. Specifically,
the probabilistic image enhancement method (PIE) [51], the naturalness preserved enhancement
method (NPE) [49], the low-light image enhancement via illumination map estimation (LIME) [17] and
the structure-revealing low-light image enhancement method (SLIE) [18] are employed for comparisons.
It is easily observed that although existing low-light enhancement methods can significantly increase
the contrast of the nighttime hazy images, haze remains in the enhanced results.

Figure 6. Comparisons of conventional low-light enhancement methods. From left to right: real
nighttime hazy images, results of low-light enhancement methods PIE [51], NPE [49], LIME [17],
SLIE [18] and the result of proposed SIDE.

To further verify the effectiveness of the proposed SIDE, we compare the results of our SIDE
with the results using traditional daytime dehazing method BC [4] directly, using the low-light
enhancement method LIME [17], and using the enhancing and dehazing flow, respectively. As shown
in Figure 7, although conventional daytime dehazing methods can mitigate haze in certain regions,
residual haze can be observed globally. In addition, the globally illumination remains dark in the
dehazing results. On the other hand, while traditional low-light enhancement methods are capable of
increasing visibility, haze and halo artifacts become severer. It is also noticed that the performances of
dehazing-after-enhancement are not satisfying. Clearly, based on the proposed SIDE, the conventional
daytime dehazing methods can be employed in nighttime dehazing.

Figure 7. Comparisons of conventional dehazing methods and low-light enhancement methods.
From left to right: observed nighttime hazy images, dehazing results using BC [4] directly, enhancement
results using LIME [17], dehazing results after enhancement, dehazing results using BC with the
proposed SIDE.
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4.3. Qualitative Comparisons on Real Nighttime Hazy Images

We also compare the proposed SIDE with existing nighttime dehazing methods on real nighttime
hazy images. In our implementation, Meng’s BC [4] is employed for scene recovery. Figures 8–14 show
seven comparison results on real test images.

(a) (b) (c)

(d) (e) (f)

Figure 8. Comparisons with other nighttime dehazing methods on test image Pavilion. (a): the nighttime
hazy image, (b): Zhang’s Maximum Reflectance Prior (MRP) [11] result, (c): Lou’s Haze
Density Features (HDF) [41] result, (d): Li’s Glow and Multiple Light Colors (GMLC) [13] result,
(e): Yu’s Pixel-wise Alpha Blending (PAB) [9] result, (f): SIDE result.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Comparisons with other nighttime dehazing methods on test image Lake. (a): the nighttime
hazy image, (b): MRP [11] result, (c): HDF [41] result, (d): GMLC [13] result, (e): PAB [9] result,
(f): SIDE result.

(a) (b) (c)

(d) (e) (f)

Figure 10. Comparisons with other nighttime dehazing methods on test image Street. (a): the nighttime
hazy image, (b): MRP [11] result, (c): HDF [41] result, (d): GMLC [13] result, (e): PAB [9] result,
(f): SIDE result.
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(a) (b) (c)

(d) (e) (f)

Figure 11. Comparisons with other nighttime dehazing methods on test image Cityscape.
(a): the nighttime hazy image, (b): MRP [11] result, (c): HDF [41] result, (d): GMLC [13] result,
(e): PAB [9] result, (f): SIDE result.

(a) (b) (c)

(d) (e) (f)

Figure 12. Comparisons with other nighttime dehazing methods on test image Church.
(a): the nighttime hazy image, (b): MRP [11] result, (c): HDF [41] result, (d): GMLC [13] result,
(e): PAB [9] result, (f): SIDE result.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Comparisons with other nighttime dehazing methods on test image Riverside.
(a): the nighttime hazy image, (b): MRP [11] result, (c): HDF [41] result, (d): GMLC [13] result,
(e): PAB [9] result, (f): SIDE result.

(a) (b) (c)

(d) (e) (f)

Figure 14. Comparisons with other nighttime dehazing methods on test image Railway.
(a): the nighttime hazy image, (b): MRP [11] result, (c): HDF [41] result, (d): GMLC [13] result,
(e): PAB [9] result, (f): SIDE result.

As observed in Figure 8, all the compared methods are capable of removing haze for nighttime
hazy images. Although PAB [9] is capable of increasing the contrast of the scene to a certain
degree, apparent halo can be observed in Figure 8e. In addition, the brightness of the result remains
dim. While MRP [11], HDF [41], GMLC [13] and the proposed SIDE can significantly increase the
visibility and suppress halo effect, the proposed SIDE has better contrast improvement in local regions.
Color distortion can be seen in grove regions in MRP [11] and GMLC [13], while it is more natural
in our result. HDF [41] also results in residual haze in the grove region. Although no ground-truth
reference image is available, the result of SIDE has the best subjective performance on color constancy.
In Figure 9, while all the methods are able to remove haze and increase scene visibility, the proposed
SIDE has the best performance on detail recovery. Reflection of the woods in the water is recovered
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well in our result. In Figure 10, it is noticed in MRP [11] result that, over-saturation around lamps
can be observed and halos are also significant in the dehazed result. Although haze is removed in
PAB [9] and HDF [41] results, halo artifacts still exist. Moreover, the result suffers from dim and
distorted illumination. While both GMLC [13] and our SIDE are capable of mitigating halo artifacts
significantly, more details and better visibility are observed in our result. In Figure 11, halo artifacts
are observed in HDF and PAB results. In GMLC [13] result, although halos around illuminants are
well suppressed, structural halos are generated around buildings. Moreover, details in dark regions
are lost. As observed in Figure 11f, our result has the best performance in terms of halo suppression
and detail recovery. Figure 12 shows the comparison on the real test image Church. All the nighttime
dehazing methods are capable of removing haze from the scene effectively. Although GMLC [13]
can suppress halos around artificial illumination, structural halo are noticed around build boundary.
In addition, while all the compared methods have limitation on recovering scene details hiding in the
dark, it is easily noticed that our result has the best performance on halo mitigation and detail recovery.
Figure 13 demonstrates the comparison on the test image Riverside. Since the haze is quite light in
the scene, all the methods ca effectively remove the haze and halos around lights are not significant.
As observed in the comparison, our method can achieve the best visual performance in terms of
detail recovery and globally illumination enhancement. Figure 14 presents a comparison on the test
image Railway, where the color temperature of the illumination is quite warm, and the illumination
is mainly distributed at the top of the image. As observed in the comparison, all the methods can
increase the visibility of the hazy image. Halos are noticed in MRP [11] and GMLC [13] results due
to over-saturation in bright regions. It is observed in our result that halos are well suppressed and
details in foreground regions are significantly enhanced. However, it is also noticed in our result that
lights at the top are slightly over-enhanced due to the illumination enhancement. Figure 15 presents a
comparison on the test image Tomb, where the flashlight was activated. As seen in the comparison,
halos are suppressed in results by GMLC and our SIDE. However, all the compared nighttime dehazing
methods have limitations when recovering details of foreground regions (left bottom corner). Figure 15
shows a comparison on the test image Building, which shows a cityview in a hazy night. As observed in
the comparison, GMLC generates obvious halo artifacts around building boundary, and HDF slightly
increase the visibility.

(a) (b) (c)

(d) (e) (f)

Figure 15. Comparisons with other nighttime dehazing methods on test image Tomb. (a): the nighttime
hazy image, (b): MRP [11] result, (c): HDF [41] result, (d): GMLC [13] result, (e): PAB [9] result,
(f): SIDE result.



Sensors 2020, 20, 5300 16 of 21

Since no ground-truth images are available, the no-reference haze density metric (HDM) and the
no-reference image quality metric for contrast distortion (NIQMC) [64] are employed for evaluation.
The HDM includes three evaluators, namely e, Σ and r, which indicate the rate of newly appeared edges,
the percentage of pure white or pure black pixels and the mean ratio of edge gradients, respectively.
A better dehazed image should have higher values of e, r, NIQMC, and a lower value of Σ, which are
indicated by ↓ and ↓, respectively. Table 1 shows the HDM evaluation results of Figures 8–16 and the
average evaluation result on the real-world dataset by different methods. It is shown that the proposed
SIDE achieved the best performance for most indicators. Due to the illumination enhancement of the
proposed SIDE, it is also noticed that our method achieves absolute advantage in terms of the metrics
r and NIQMC.

Table 1. Quantitative Comparison on Real-world Benchmark Dataset. The bold indicates the best
scores of the quantitative comparisons.

MRP [11] HDF [41] GMLC [13] PAB [9] SIDE

Pavilion

e↑ 0.08 0.13 0.15 0.09 0.17
Σ↓ 0.01 0.01 0 0.03 0
r↑ 4.35 2.97 5.01 4.67 5.08

NIQMC↑ 4.67 4.82 4.93 5.01 5.16

Lake

e↑ 0.03 0.08 0.13 0.19 0.23
Σ↓ 0.01 0.02 0 0 0
r↑ 2.33 3.54 5.28 5.66 7.21

NIQMC↑ 4.91 4.88 5.14 4.99 5.37

Street

e↑ 0.20 0.17 0.11 0.09 0.22
Σ↓ 0.03 0.18 0.05 0.24 0.01
r↑ 4.55 3.82 4.39 1.61 4.74

NIQMC↑ 4.89 4.28 5.32 4.47 5.15

Cityscape

e↑ 0.11 0.13 0.02 0.08 0.19
Σ↓ 0.03 0.44 0.25 0.19 0.05
r↑ 3.69 3.17 2.01 1.87 3.96

NIQMC↑ 3.98 4.96 5.11 4.20 5.03

Church

e↑ 0.11 0.10 0.12 0.18 0.29
Σ↓ 0.07 0.06 0.08 0.03 0.04
r↑ 4.77 3.83 2.98 3.95 5.10

NIQMC↑ 3.97 4.98 5.05 4.19 5.61

Riverside

e↑ 0.06 0.09 0.10 0.14 0.25
Σ↓ 0.09 0.10 0.04 0.05 0.03
r↑ 2.85 3.68 4.17 4.23 6.51

NIQMC↑ 4.71 4.39 4.97 4.85 5.43

Railway

e↑ 0.18 0.13 0.15 0.07 0.27
Σ↓ 0.08 0.12 0.04 0.16 0.02
r↑ 2.68 2.74 2.30 2.87 4.98

NIQMC↑ 4.25 4.19 5.03 5.24 5.48

Tomb

e↑ 0.26 0.18 0.09 0.31 0.45
Σ↓ 0.03 0.07 0.16 0.02 0
r↑ 5.13 4.25 3.97 5.72 7.11

NIQMC↑ 5.04 4.61 4.02 5.26 6.07

Building

e↑ 0.11 0.18 0.09 0.21 0.30
Σ↓ 0.04 0.06 0.29 0.03 0.01
r↑ 3.79 4.05 2.88 3.81 4.74

NIQMC↑ 4.56 4.80 2.73 5.76 6.20

Average

e↑ 0.12 0.16 0.11 0.05 0.29
Σ↓ 0.09 0.13 0.08 0.19 0.04
r↑ 3.29 3.45 2.16 2.37 5.62

NIQMC↑ 4.80 4.93 5.15 5.04 5.86
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(a) (b) (c)

(d) (e) (f)

Figure 16. Comparisons with other nighttime dehazing methods on test image Building.
(a): the nighttime hazy image, (b): MRP [11] result, (c): HDF [41] result, (d): GMLC [13] result,
(e): PAB [9] result, (f): SIDE result.

4.4. Comparisons on Synthesized Nighttime Hazy Images

Besides comparisons on a real image dataset, we also evaluate the performance of the proposed
SIDE objectively on synthetic test image according to Li’s work [13], where the hazy image is generated
using PBRT. Figure 17 demonstrates the comparison of MRP [11], HDF [41], GMLC [13], PAB [9]
and SIDE. Table 2 shows the PSNR and structural similarity (SSIM) evaluation results of different
methods. It is observed that our proposed SIDE achieved the best results in both terms of MSE and
SSIM, comparing with the existing state-of-the-art nighttime dehazing methods.

(a) (b) (c)

(d) (e) (f)

Figure 17. Comparisons on the synthetic test image. (a): the ground-truth image, (b): result of MRP [11],
(c): result of HDF [41], (d): GMLC [13], (e): result of PAB [9], (f): result of SIDE.
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Table 2. Quantitative comparison on the synthetic test image. The bold indicates the best scores of the
quantitative comparisons.

MRP [11] HDF [41] GMLC [13] PAB [9] SIDE

SSIM 0.7133 0.7558 0.7605 0.7591 0.7616

PSNR 17.4122 17.9537 17.2907 17.8926 18.0025

5. Conclusions

In this paper, we propose a novel unified framework, namely SIDE, to simultaneously remove
haze and enhance illumination for nighttime hazy images. Specifically, both halo artifacts caused
by multiple scattering and non-uniformly distributed ambient illumination are considered in our
approach. In addition, we prove that the conventional daytime dehazing approaches can be effectively
incorporated into nighttime dehazing task based on the proposed SIDE. In order to mitigate the halo
artifacts caused by multiple scattering, a robust layer decomposition method is firstly introduced to
separate the halo layer from the hazy image. A Retinex based illumination decomposition method
is then proposed to estimate the non-uniformly distributed ambient illumination. By removing the
ambient illumination, the original nighttime dehazing problem can be effectively solved using various
daytime dehazing methods. Experimental results demonstrate the effectiveness of the proposed
framework for classic daytime dehazing methods under nighttime hazy conditions. In addition,
compared with the state-of-the-art nighttime dehazing methods, both quantitative and qualitative
comparisons indicate the superiority of the proposed SIDE in terms of halo mitigation, visibility
improvement and color preservation.
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