
Recent Advances in Chitosan and its
Derivatives in Cancer Treatment
Jingxian Ding1 and Yonghong Guo2*

1Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, China,
2Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China

Cancer has become a main public health issue globally. The conventional treatment
measures for cancer include surgery, radiotherapy and chemotherapy. Among the various
available treatment measures, chemotherapy is still one of the most important treatments
for most cancer patients. However, chemotherapy for most cancers still faces many
problems associated with a lot of adverse effects, which limit its therapeutic potency, low
survival quality and discount cancer prognosis. In order to decrease these side effects and
improve treatment effectiveness and patient’s compliance, more targeted treatments are
needed. Sustainable and controlled deliveries of drugs with controllable toxicities are
expected to address these hurdles. Chitosan is the second most abundant natural
polysaccharide, which has excellent biocompatibility and notable antitumor activity. Its
biodegradability, biocompatibility, biodistribution, nontoxicity and immunogenicity free
have made chitosan become a widely used polymer in the pharmacology, especially in
oncotherapy. Here, we make a brief review of the main achievements in chitosan and its
derivatives in pharmacology with a special focus on their agents delivery applications,
immunomodulation, signal pathway modulation and antitumor activity to highlight their role
in cancer treatment. Despite a large number of successful studies, the commercialization
of chitosan copolymers is still a big challenge. The further development of polymerization
technology may satisfy the unmet medical needs.
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1 INTRODUCTION

Cancer has been becoming a life-threatening disease and a major public health problem all over the
world, which is one of the leading causes of death. It is reported that the probability of people with
invasive cancer is about 40 and 25% in the United States and China, respectively (Chen et al., 2016;
Pan et al., 2017; Cao et al., 2020; Siegel et al., 2021; Sung et al., 2021). Cancer treatment depends on
the type of cancer, the stage at diagnosis and the patient’s tolerance. The available anticancer
therapies include surgery, chemotherapy, radiotherapy, and immunotherapy and so on (Miller et al.,
2019). Among the various available therapies, chemotherapy is still one of the most important
treatment measures for most cancer patients, which is regarded as one of the main treatment
approaches to prevent cancer cell proliferation. However, the active chemicals used to treat cancer
usually do not distinguish cancer cells from healthy cells because both are exposed to cytotoxic
chemotherapeutic drugs, which results in a high rate of severe adverse reactions and limits its
therapeutic effect (Grosso and De-Paz, 2021). To improve therapeutic potency andminimize the side
effects, more targeted therapies are highly needed (Perez-Herrero and Fernandez-Medarde, 2015).
Under this circumstance, researchers around the world have explored a variety of new nanocarriers
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and targeted modification systems to overcome these
shortcomings and improve the therapeutic outcomes (Ghaz-
Jahanian et al., 2015; Bai et al., 2021; Shakeran et al., 2021;
Dubey et al., 2022). Because nanotechnology provides a
suitable means for the targeted and time-controlled delivery of
drugs and other bioactive agents, it has been widely studied in
drug delivery and has potential application prospects in cancer
treatment (Sabra et al., 2017; George et al., 2019; Ion et al., 2021;
Maspes et al., 2021; Sohrabi and Packirisamy, 2021; Li et al.,
2022). Drug delivery systems (DDSs) refer to the methods of
delivering drugs to the targeted tissues, organs, cells or subcellular
organs through various drug carriers for controlling drug release
and absorption, so as to improve the pharmacological activity,
overcome the limited solubility, low bioavailability, poor
biological distribution and lack of selectivity, or to minimize
the adverse effects (Li et al., 2019). Polymer based DDSs may
potentially improve current disease treatment because they can
pass through a variety of biological barriers to overcome the
shortcomings of insoluble drugs, increase half-life and suppress
the side effects of toxic drugs. Among them, chitosan-based
nanocarriers were probably the most interesting, flexible and
bio-compatible systems (Lin et al., 2017; Zhao et al., 2017; Naskar
et al., 2019; Monteiro et al., 2021).

As a natural polysaccharide, chitosan can be found in some
types of seafood, such as shrimp, crab and crayfish, and the
content is particularly high in their shell. The main properties of
chitosan are biocompatibility, biodegradability and non-toxicity
(Herdiana et al., 2021; Zhu et al., 2021; Zivarpour et al., 2021).
Chitosan has a high concentration of reactive free protonable
amino groups along the chitosan backbone, and due to the
protonation of amino groups, it presents higher solubility in
acid environment. These groups can be chemically modified in a
variety of chemical reactions to enhance its solubility,
biocompatibility and targeting activity (de Sousa Victor et al.,
2020; Ding et al., 2020). Consequently, chitosan has the potential
to use in a variety of fields (Aranaz et al., 2021). The positive
charge of chitosan allowing for non-covalent interactions with
biological tissues has been used in drug delivery, which may assist
to overcome the inadequacy of the existing chemotherapy. Some
kinds of therapeutic agents conjugated with chitin or chitosan
derivatives have displayed wonderful anticancer potency with less
adverse effects than the original drugs due to targeted distribution
into the cancer and sustainable release (Jia et al., 2014; López-
Barrera et al., 2021; Tang et al., 2021). Normally, there are two
traits in cancer tissue: acidic pH and the reductive environment,
which have been heavily studied as internal trigger for the drug
release in smart DDSs (Friedl and Alexander, 2011).

Additionally, chitosan may accumulate in the tumor site,
initiate the polarization of M1 macrophages and transform the
immunosuppressive tumor microenvironment to
immunosupportive state, thus exerting an antitumor effect and
promoting the efficacy of cancer immunotherapy (Ding et al.,
2020; Zeng et al., 2021). What’s more, chitosan can also activate
innate immune responses to exert its anticancer effect
(Chakrabarti et al., 2014; Li et al., 2018; Yang et al., 2019a;
Wu et al., 2019; Chen et al., 2020; Van Hees et al., 2020;
Liang et al., 2021; Lima et al., 2021).

Last but not least, Chitosan itself may also inhibit tumor cell
growth, tumor induced angiogenesis and tumor metastasis.
Consequently, chitosan and its derivatives may have high
performances in cancer treatment fields. There are varieties of
publications in this quite fantastic field over last decade. Herein,
in this review, based on the current tumor epidemiology and
treatment dilemma, we gathered the state-of-the-art publications
on chitosan to show its application in anticancer drug-delivery,
innate immune stimulation, cancer cell inhibition and signal
modulation, providing more information about its characteristics,
chemical modifications, and applications in cancer treatment.
Finally, we briefly prospected the future trends and challenges of
chitosan nanoparticles in cancer treatment.

2 CANCER AND ITS EPIDEMIOLOGY

Cancer is not only the main cause of death, but also a vital
obstacle to longevity all over the world. Based on estimates from
the World Health Organization (WHO) in 2019, cancer has
become the most common cause of death before the age of
70 years in most countries (Sung et al., 2021). From here we
see that cancer has become a major public health issue to be
solved urgently worldwide. WHO newly updates the 10 most
common causes of disease burden by cause-specific disability
adjusted life years (DALYs), which is shown in Figure 1.

In general, cancer has become the highest clinical, social, and
economic burden among all human diseases. The economic
burden associated with cancer has a profound impact on the
health and non-health outcomes of cancer survivors. American
Cancer Society and International Agency for Research on Cancer
provide recent information on 10 most frequent types of cancers
worldwide in Figure 2.

GLOBOCAN 2020 has summarized the most recent changes
of cancer burden all over the world. It is reported that there were
nearly 20 million new cases of cancer and about 10 million deaths
from cancer in 2020 globally. The top three common cancers
were female breast cancer, lung cancer and prostate cancer
worldwide. While, lung cancer, liver cancer and stomach
cancer are the three of cancer death in general population,
lung and breast cancers are most common causes of cancer
related-mortality in men and women, respectively (Sung et al.,
2021). Figure 3 illustrates the top 10 mortality cancer worldwide.
Relatively, China has a lower cancer incidence but higher cancer
mortality compared with the developed countries, such as
United States and United Kingdom. The high mortality rate in
China may be due to the different cancer spectrum, the low
diagnosis rate of early cancer and the inconsistent clinical cancer
treatment strategies implemented among different regions.
Overcoming cancer has become a big global challenge.

3 CANCER TREATMENT: PROSPECTS AND
DILEMMAS

Cancer is one of the most deadly and life-threatening diseases in the
world, causing about 13% of deaths every year. Traditional cancer
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treatment strategies, such as surgery, chemotherapy, radiotherapy,
hyperthermia and immunotherapy, have been developed for cancer
therapy. However, these treatment measures often inevitably have
their shortcomings, such as low inhibition efficiency and no targeting
to cancer cells, which eventually lead to treatment failure. For example,
surgical procedures may affect various pathophysiological processes,
thereby promoting cancer cell proliferation and tumor recurrence.
What’smore, surgicalmanipulationmay increase the dissemination of
cancer cells to the circulation and induce local or systemic
immunosuppressive responses, which finally increase the chance of
colonization in target organs (Narmani and Jafari, 2021).
Chemotherapy is the most commonly used measure in the existing
cancer treatments. However, chemotherapeutic drugs may lead to
serious problems, such as detrimental side effects, drug resistance and
heavy financial burden. Similarly, both chemotherapy and
radiotherapy cannot differentiate cancer cells from normal healthy

cells in patients, and thus both are damaged by treatment. Although
significant progress has been made in cancer treatment, the
therapeutic effects and overall survival for patients with cancer are
still unsatisfactory, especially for patients with advanced cancer. In
order to reduce the rate of adverse events, improve therapeutic efficacy
and patient’s compliance,more targeted therapies are urgently needed.

Cancer immunotherapy is under the spotlight recently, which is
completely different from traditional cancer treatment. It is now
considered to be a potentially effective way to conquer cancer.
Cancer immunotherapy regulates the immune system rather than
focusing on the cancer cells (Esfahani et al., 2020; Mu et al., 2020).
However, immunotherapy has encountered a number of challenges
in some kinds of cancer, including resistance of immune checkpoint
inhibitors, weak immunogenicity of therapeutic vaccines, serious
immune related side effects, and off-target effects and so on.
Chemoimmunotherapy is a combination of chemotherapy and

FIGURE 1 | World Health Organization (WHO) Global Health Estimates 2019 on the 10 leading causes of disease burden, estimated as cause-specific Disability
Adjusted Life Years (DALYs). Cancer has become the leading causes of disease burden by cause-specific disability adjusted life years.

FIGURE 2 | The prevalence of the top 10 most common cancers according to the GLOBOCAN 2020. Breast cancer has replaced lung cancer as the most
common cancer worldwide.
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immunotherapy, which provides synergistic effect for improving
anticancer potency. It is a promising cancer treatment method, with
the advantages of cooperating two kinds of treatment mechanism
(Nowak and Lesterhuis, 2014). The very recent studies demonstrated
that nanoparticles could remodel immunosuppressive tumor
microenvironment, holding great promise for
chemoimmunotherapy (Xu et al., 2022). Moreover, nanobased
delivery systems have exhibited excellent properties, such as
targeted drug delivery, tumor microenvironment modulation,
targeted and time-controlled release of conjugate drugs, so as to
improve the pharmacokinetics and stability of drugs in vivo.

In the journey of exploring new cancer treatment measures, the
development of nanobased drugs is expected to become a promising
method to overcome the current shortcomings of traditional
chemotherapy drugs (Nazir et al., 2014). So far, many nanobased
anticancer drugs have been developed and extensively studied both
in vitro and in vivo, some of which have been under clinical trials in
the past few decades. The antitumor effect of nanocarriers is achieved
by delivering drug selectively to the tumor cells. Based on the source,
drug carriers can be classified into two types: chemosynthetic and
natural. Natural biopolymers such as chitosan, collagen, cellulose, and
fibrin, are vastly investigated in the field of pharmacology owing to
their unique characteristics. In particular, chitosan based nanoparticles
have drawn considerable attention as chemotherapeutic drug delivery
carriers because of their easy accessibility, terrific stability, toxicity free,
and modification friendly (Zhang et al., 2019).

4 CHITOSAN: SOURCE, STRUCTURE,
PHYSICOCHEMICAL PROPERTIES AND
APPLICATION IN ONCOTHERAPIES
4.1 Source, Structures and
Physicochemical Properties
4.1.1 Source of Chitosan
Chitosan, a unique alkaline polysaccharide in nature, is found in
the invertebrate shelves (Farhadihosseinabadi et al., 2019).

Shrimp, crabs, lobster, crayfish and oyster are the most
common origins for chitosan preparation (Marsili et al., 2021).
However, chitosan for industrial scale application is normally
derived from chitin by a process of deacetylation. Chitin, one of
the richest natural polymers, is a polymer of N-acetyl-D-
glucosamine. When deacetylation is carried out, the repeating
units in the chitin normally do not contain β-1,4-D-glucosamine
functional groups, and this chitin is called chitosan. The mole
fraction of the N-acetylated repeating units is regarded as the
degree of acetylation (DA), on the contrary, the percentage of the
repeating units of β-1,4-D-glucosamine in the polysaccharides is
defined as the degree of deacetylation (DD). Although there are
no universal agreement on the cut-off values for DD between
chitin and chitosan, the DD values of most commercial chitosan
are between 70 and 90% (Younes and Rinaudo, 2015; Shahbaz,
2020; Kou et al., 2021).

4.1.2 Structures of Chitosan
The molecular structure of chitosan was first resolved comprising
of β-1,4-D-glucosamine and N-acetyl-D-glucosamine units in
1950 (Zhang et al., 2019). The molecular weight (MW), DD,
degree and site of substitutions carry heavy weight on
physiochemical properties of chitosan and its derivatives as
well as the antitumor potency of chitosan-based nanoparticles.
The average MW of commercially produced chitosan varies from
3,800 to more than 300,000 Da (Bhavsar et al., 2017; Adhikari and
Yadav, 2018). Chitosan can be classified as low MW chitosan,
mediumMW, and highMW chitosan depending on the DD. Low
MW chitosan has been proved to be more effective in size
reduction, solubility enhancement and nanocrystal
formulations’ stability, thereby being considered as a
promising nanocarrier to formulate oral sustainable release
drugs to improve the bioavailability (Naqvi and
Moerschbacher, 2017).

Generally, the chitosan with MW up to 10 kDa is known as
chitosan oligosaccharide, which obtains from degradation of
chitosan, and exhibits a lot of exciting molecular weight-

FIGURE 3 |Distribution of top 10 deaths of Cancers according to the GLOBOCAN 2020. Lung cancer remains themost common cause of cancer related-mortality
all over the world.
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dependent biological traits, especially antitumor activities (Bonin
et al., 2020). Therefore, extensive studies have been conducted to
convert chitosan to chitosan oligosaccharides with specific
molecular weight in order to find more effective nanocarriers
with both economy and environment friendly properties.
Tremendous efforts have been made to produce chitosan
oligosaccharides in the past decades. Generally, all of these
methods come from chemical or enzymatic approaches. Based
on chemical approach, acidic hydrolysis has been widely applied
for chitosan oligosaccharides production (Salehinik et al., 2021).

4.1.3 Physicochemical Properties of Chitosan
Chitosan is generally considered as a safe and biocompatible
polymer material. Based on most studies, chitosan has no toxicity
or little toxicity, so it is widely considered to be a safe biomaterial.
Chitosan shows several biomedical properties, such as
antimicrobial, antitumor and hemostatic activities, which is
dependent on the chitosan MW and DD (Park et al., 2011).
Molecular weight is a vital factor influencing the physical and
chemical properties of chitosan based nanoparticles. Normally,
high MW increases both the stability of chitosan-based
complexes and circulation time of nanoparticles in blood
stream but delays their dissociation and subsequent effect in
cells, which subsequently guarantees the high tumor selectivity,
while lower MW has the opposite effects.

The DD represents free amino groups in the chitosan structure
which can be determined by different methods, also carries out a
vital role in physical, chemical and medical properties (Rodrigues
et al., 2021). It determines the positive charge density and the
ability to bind with DNA/siRNA. Higher DD helps to improve
the efficiency of transfection by escaping from the endolysosomal
compartment. According to the percentage of DD, chitosan can
be categorized into low DD of chitosan, medium DD of chitosan,
high DD of chitosan and ultra-high DD of chitosan four different
forms, which with DD values between 55 and 70%, 70 and 85%,
85 and 95% and between 95 and 100%. Generally, high DD will
make nanoparticles with high surface charge density, thus
enhancing cell uptake and antitumor effect. In traditional
method, the DD of chitosan obtained is nearly 80%, while
ultra-high DD chitosan is still difficult to obtain for medical
application scale.

What’s more, the degree and site of substitutions grafted onto
chitosan also affects the physical, biochemical traits and the
antitumor potency. The abundance of deoxycholic acid and
hydrophobic group affects nanoparticle size, entrapment
efficiency and drug loading content significantly. The site of
carboxymethylation on chitosan can influence the stability and
deformability of nanoparticles, which is also strongly correlated
with the antitumor activity and cellular uptake of carboxymethyl
chitosan conjugates. Furthermore, the abundance of protonated-
NH2 groups on the chitosan structure determines its solubility in
acid medium, since its pKa value is about 6.5. However, the
solubility window of chitosan can be changed by use of hydrogen
bond disruptors such as urea or guanidine hydrochloride. In fact,
a wide range of solubility can be achieved through the chemical or
physical destruction of hydrogen bonds. Though the
characteristics of chitosan and its derivatives have great

influence on the biochemical effect of chitosan particles, it
should be noted that these factors do not work alone, but have
a comprehensive impact on the chitosan conjugates. Thus, to
ensure the superior in vivo tumor targeting efficiency, solubility,
stability and deformability of nanoparticles should be balanced.
Selecting appropriate chitosan as nanocarriers needs to
comprehensively consider the relationship between the above
factors and payload properties, preparation methods of
nanoparticles, targeted diseases and so on (Narayanan et al.,
2014).

In addition, from a technical point of view, the viscosity of
polymer is another very important parameter because high
viscosity solutions are difficult to manage. Viscometry is a
powerful tool for determining the molecular weight of
chitosan because it is a simple and rapid method, although it
is not the only method (Wang and Xu, 1994). Glycosidic bonds
and acetylamine groups can also be regarded as functional
groups, which allow a large number of modifications to
produce polymers with new properties and behaviors. One of
the most important properties of chitosan is its cationic property.
Because electrostatic interaction enhances the adhesion to the
negatively charged mucosal surface, chitosan plays an advantage
as an ideal drug carrier, which improves the internalization of
drugs into target cells (Kurakula et al., 2015). On the other hand,
the cationic nature of chitosan also makes it possible to prevent
anionic rich nucleic acids from degradation by nucleases in
serum, improving the efficiency of gene therapy.

In order to improve the properties of chitosan or introduce
new functions or properties to chitosan, many chitosan
derivatives have been produced, among which hydrophobically
modified ethylene glycol chitosan is one of the most commonly
used derivatives for the preparation of self-assembled
nanoparticles. The abundant amino and hydroxyl groups on
the chitosan skeleton represent more target parts of chemical
modification, which improves water solubility and endow
chitosan with some new functions, such as targeted and
environmentally sensitive drug release, and enhances
therapeutic effect and minimize side effects. The most
common chitosan derivatives used as drug carriers include
thiochitosan, trimethyl chitosan, carboxymethyl chitosan,
ethylene glycol chitosan and so on (Hu et al., 2020; Grosso
and De-Paz, 2021; Li et al., 2021).

4.2 Applications of Chitosan in
Oncotherapies
4.2.1 Chitosan-Based Delivery System
Tremendous efforts have been made to maintain long-term
therapeutic levels of drug concentration in the targeted site,
administration time span, and decrease side effects for disease
treatment. The search for novel controlled drug release systems is
closely related to the establishment of more effective treatment
approaches that can be administered more safely and with few
side effects. Chitosan with good biocompatibility and
biodegradability is one of the most functional natural
biopolymers widely used in the pharmaceutical field. The
properties of chitosan make it a promising nanocarrier, which
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has been used to deliver variously therapeutic agents such as
chemotherapeutic drugs, peptides/proteins, vaccines, DNA/
siRNA, and so on (Shikhi-Abadi and Irani, 2021).

4.2.1.1 Chemotherapeutic Drugs Delivery
Various nanocarriers have been used to deliver chemotherapeutic
drugs to tumor sites. These nanocarriers normally can evade the
immune surveillance system, achieve target selectivity, gain access
into the interior of cancerous cells, evade endosomal entrapment
and release the drugs in a sustainable manner (Wang et al., 2021).
Chitosan has attracted the attention as a promising candidate for
the drug carrier and has been vastly exploited in the last decade
because of its innate favorable properties (Dousti et al., 2021; Du
Q et al., 2021). Basically, there are three categories of chitosan
nanoparticles namely self-assembled nanoparticle, ionic cross-
linked nanoparticle and polyelectrolyte complex, depending on
different preparing methods (Zhang et al., 2019).

Classical chemotherapeutic drugs, such as doxorubicin,
paclitaxel, cisplatin and so on, have made tremendous
contributions to cancer treatment in last nearly half a century.
However, these drugs also bring too many severe side effects,
which restrict the intensively clinical use to cure cancer. A large
number of studies have been conducted to solve these severe side
effects of chemotherapeutic drugs. DDSs are introduced to
targeted and sustained release of drugs in a controllable
manner to minimize the adverse effects. Chitosan-based
nanoparticle is a useful DDS, which can encapsulate and
deliver various antitumor drugs to specific tumor tissues (Fathi
et al., 2018; Pornpitchanarong et al., 2020; Ryu et al., 2020).

In addition to being encapsulated, chemotherapeutic drugs can
also be covalently bound to hydrophilic polymers and self-
assembled to form nanoparticles, which are called polymer drug
conjugates. The conjugates of some anticancer drugs with chitosan
and its derivatives selectively accumulate in tumors and prolong
retention time in the blood circulation, thus show excellent
anticancer effects with much milder adverse effects than that of
the original drug due to cancer site-specific distribution and
sustained release characteristics. Based on the cationic
properties of chitosan, ionic cross-linked chitosan nanoparticles
were prepared by electrostatic interaction, in which the amino
group on the main chain interacts with polyanionic cross-linking
agents such as tripolyphosphate (TPP), CaCl2, Na2SO4 and so on
(Babu and Ramesh, 2017; Nemati et al., 2021). The process of
ionically cross-linking requires more simple and mild preparation
conditions with no toxic reagents, which is completely different
from the chemical cross-linking. Furthermore, the biochemical
properties of ionically cross-linking nanoparticles, such as size and
surface charge, can be easily modified by adjustment of processing
parameters, which changes drug encapsulation potency and time
controlled release profile. However, the ionic cross-linked chitosan
based particles are weak. It is reported that ionic cross-linked
chitosan nanoparticles can improve tumor targeting of some
ligands, such as folic acid, herceptin antibody and glycyrrhetinic
acid (Tian et al., 2010; Arya et al., 2011; Hefnawy et al., 2020).
Table 1 lists a few examples of chitosan based chemotherapeutic
agents nanoparticles and their application in oncotherapies.

4.2.1.2 Chitosan-Based Systems as Therapeutic Genes
Carriers
Gene-based therapy has become an indispensable part of
comprehensive tumor therapy, which is achieved by delivering
exogenous nucleic acids (DNA/siRNA) that can regulate gene
expression of tumor cells (Senapati et al., 2019). Small interfering
RNA (siRNA) system has been used for down-regulation of
targeted gene and subsequent inhibition of cancer progression,
which is a promising strategy in cancer treatment (Ashrafizadeh
et al., 2021; Ferdows et al., 2022). SiRNA is a category of double
stranded oligonucleotides containing 20–25 pairs of nucleotides,
which is used to knock down targeted messenger RNA (mRNA)
to induce gene silencing. However, its off-targeting property and
degradation by enzymes in serum and the extracellular matrix
prevent it application in cancer therapy.What’s more, therapeutic
nucleic acids can be degraded by endonucleases in serum and
extracellular matrix easily. Therapeutic nucleic acids are easily
degraded by endonucleases in serum and extracellular matrix.
Therefore, the development of effective vectors is the vital to
successful gene therapy. Chitosan has attracted large attention as
a promising polymer vector for delivery gene products because of
its minimal toxicity, low immunogenicity, terrific
biodegradability and its cationic property. The negatively
charged gene products can bind to protonated cationic amino
groups on chitosan backbone via electrostatic interaction, which
shield them from being degraded by nucleases. Hence, the
delivery of siRNA in chitosan-based nanocarriers is an
important way to enhance its efficacy in gene silencing.
However, due to the instability in vivo and insufficient cell
release of natural chitosan, its transfection efficiency is
relatively low. Therefore, it is most necessary to chemically
modify natural chitosan to develop a more powerful chitosan
based delivery system (Ragelle et al., 2013). Moreover, chitosan
can also provide a platform for the co-delivery of siRNA and
antitumor agents. In the past several years, a large number of
studies have reported a lot of different chitosan-based delivery
systems with terrific antitumor effects for a variety of therapeutic
gene silencing nucleic acids. These systems achieved successful in
vivo delivery of therapeutic genes siRNA with desirable tumor
specificity and transfection efficiency, which suggested that
adjusting the binding strength between vector and siRNA is
very important to improve both transfection efficiency and
antitumor activity. For instance, applying stimulation
responsive chitosan based nanoparticle to co-deliver
sgVEGFR2/Cas9 plasmid and Ca2+ channel siRNA
demonstrated markedly increasing tumor targeting and
therapeutic efficacy both in vitro and in vivo (Zhao et al.,
2020; Li et al., 2021). Table 2 lists a few examples of chitosan
based gene delivery nanoparticles and their application in
oncotherapies.

4.2.1.3 Chitosan-Based Nanosystems as Carriers of Other
Therapeutic Agents
Photodynamic therapy (PDT) is one of the most promising research
fields in oncotherapy, which combines a light source with a
photosensitizing agent preferably located within the tumor to
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destroy cancer. Photosensitizers are activated by light and transfer
energy to molecular oxygen to produce reactive oxygen species
(ROS), resulting in the death of targeted cells (Sun et al., 2022). PDT
rapidly increases in cancer treatment due to its minimal toxicity.
However, selectively deliver water-insoluble photosensitizers into
target tissues is still a big challenge, more intelligent chitosan-based
nanoparticles are urgently needed. It is reported that the pH-
dependent conjugates exhibited photo toxicity against tumor cells.
Furthermore, chlorin e6 (Ce6) and glycol chitosan self-assembled
into nanoparticles attenuated its cytotoxicity but improved its
therapeutic efficacy by preventing the nanoparticles from serum
absorption and prolonged the blood circulation time (Ding et al.,
2018). These chitosan-based nanosystems have been successfully
applied to photodynamic therapy and photothermal therapy for
breast cancer with minimal side effects (Liu et al., 2018).

Chitosan and its derivatives as drug carriers are also applied
for cancer immunotherapy (Yang et al., 2021). Interleukin-12 (IL-

12) is a heterodimeric pleiotropic cytokine with
immunomodulatory activities, which has been intensively
studied either as an antitumor agent or a vaccine adjuvant.
However, the severe systematic toxicities hinder its clinical
applications. Nevertheless, IL-12 conjugates with chitosan
nanoparticles have marked effect on inhibiting growth of liver
metastatic tumors of colorectal cancer with no obvious toxicity
(Xu et al., 2012).

Moreover, it is reported that a chitosan coated copper sulfide
(CuS) nanoparticles incorporated with immunoadjuvants which
exerted antitumor activity. The chitosan coated nanoparticles are
decomposed after laser excitation and then reassemble into
chitosan CpG complex, which activates host anti-tumor
immunity eventually. The chitosan coated copper sulfide (CuS)
nanoparticles therapy shows a more effective effect than
immunotherapy or photothermal therapy alone, resulting in
synergistic effects against both primary treated and distant

TABLE 1 | A few examples of chitosan based chemotherapeutic drugs nanoparticles and their application in oncotherapies.

Drugs Application Results References

Docetaxel Lung cancer Ameliorated the immunosuppressive microenvironment to promote the antitumor effects Zhu et al. (2021)
MMC Hepatocellular

carcinoma
Achieved high accumulation at the tumor site and more efficiently suppress the tumor cells growth Jia et al. (2014)

Gemcitabine Breast cancer Minimized the side effects, improving therapeutic potency Karuppaiah et al. (2021)
Cisplatin Ovarian cancer Showed controlled release of cisplatin, and enhanced therapeutic efficacy Khan et al. (2020)
MTX Cervical cancer Targeted tumor extracellular drug release Naghibi et al. (2017)
Norcantharidin Hepatocellular

carcinoma
Prolonged retention time in blood circulation and reduced biodistribution in heart and kidney tissues Chi et al. (2019)

Dox Breast cancer Selective and sustainable release of free doxorubicin site-specific to the breast tumor
microenvironment

Helmi et al. (2021)

5-Fu Breast cancer Released the drug in a controlled manner Zavareh et al. (2020)
Ara-C Leukemia Displayed a good pH-dependent release in an acid tumor environment Chen et al. (2021)
Camptothecin Ovarian cancer Maximized the anticancer and antimetastatic effects and reduce its toxicity Zhou et al. (2010)

MMC, mitomycin C; MTX, methotrexate; Dox, doxorubicin; 5-Fu, 5-fluorouracil; Ara-C, cytarabine.

TABLE 2 | A few examples of chitosan based therapeutic genes nanoparticles and their application in oncotherapies over the last decades.

DNA/siRNA Application Results References

PD-L1-siRNA Breast cancer and
melanoma

Showed a significant inhibitory effect on proliferation and migration in vitro, angiogenesis and tumor
growth in vivo

Nikkhoo et al. (2020)

RRM2-siRNA Ovarian cancer Effectively inhibited tumor growth in nude mice models of subcutaneous transplantation of tumor
cells

Xue et al. (2019)

Snail-siRNA Prostate cancer Inhibit the proliferation and migration of PC-3 cells in vivro Afkham et al. (2018)
Survivin-
siRNA

Breast cancer Significantly inhibited tumor cell growth and enhanced cellular uptake nanoparticles to reduce the
growth of xenograft tumors

Sun et al. (2016)

HMGA2-
siRNA

Hepatocellular carcinoma More effectively induced tumor cell death and significantly reduced the expressions of HMGA2 Siahmansouri et al.
(2016)

STAT3-
siRNA

Lewis lung cancer Resulting in a significant reduction in STAT3 expression and successfully transferring macrophages
from M2 phenotype to M1 phenotype

Senel and Ozturk,
(2019)

IGF-1R
siRNA

Non-small cell lung cancer Significantly decreased the motility of A549 cells and inhibited the expression of MMP9, VEGF and
STAT3

Shali et al. (2018)

BCL2-siRNA Non-small cell lung cancer Inhibited tumor growth effectively by down regulating BCL2 Zhang et al. (2019)
MDR1-siRNA Cervical cancer Prevented siRNA from degrading and produced a chemosensitized phenotype of the multidrug

resistant cancer cells
Heidari et al. (2021)

Ang2-siRNA Melanoma Efficiently inhibited Ang-2 expression, tumor angiogenesis, and induced the melanoma cells
apoptosis through the mitochondrial apoptotic pathway

Shan et al. (2020)

PD-L1, programmed death ligand 1; RRM2, ribonucleotide reductase regulatory subunit M2; HMGA2, high mobility group AT-hook 2; STAT3, signal transducer and activator of
transcription 3; IGF-1R, insulin like growth factor 1 receptor; MDR1, multidrug resistance gene; Ang2, angiopoietin 2
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untreated tumors (Guo et al., 2014; Niu et al., 2021).Table 3 lists a
few examples of chitosan based other therapeutic agents
nanoparticles and their application in cancer treatment.

4.2.2 Effects of Chitosan and its Derivatives on Innate
Immune Response in Cancer Therapy
Chitosan may activate dendritic cells (DCs) to enhance the
antitumor activity of natural killer (NK) cells by upregulating
IFN-γ production. Moreover, it is reported that chitosan
enhances NK cell activity to kill leukemia cells (Li et al.,
2018). Chitosan has also been used as a vaccine adjuvant for
regulating tumor microenvironment (TME). The TME plays a
vital role in cancer control and elimination (Katsuta et al., 2020).
Currently, immune cell becomes a promising candidate for drug
delivery and has very broad spectrum tumor-targeting properties.
However, the off-target problems and effective release strategies
stand in front of us when using immune cells as drug carrier. It is
reported that co-delivery of chitosan and IL-12 resulted in high
inhibition of tumor growth (Yang and Zaharoff, 2013; Eslahi
et al., 2021). Additionally, chitosan based nanoparticle is a
potential delivery system for DNA vaccine and IL-12 is an
effective gene adjuvant, which can induce strong antitumor
immune response. It is reported that chitosan suspension or
nanoparticles have immunostimulatory activities and inhibit
tumor growth by inducing polarization of macrophage to
enhance antitumor activity (Nandgude and Pagar, 2021).
Taking chitosan solution as an adjuvant intervention for
patients with lung cancer can improve immunity during
radiotherapy (Ma et al., 2015). Chitosan also shows a
biological activity for activating macrophages for tumoricidal
activity and for production of interleukin-2 (Yang et al.,
2019b; Lima et al., 2021).

4.2.3 The Directed Effects of Chitosan and its
Derivatives on Cancer Progression
Chitosan is a relatively low toxic and compatible polysaccharide.
It is reported that administration of chitosan or oligochitosans

can shield body from cancer induced oxidative stress. While, their
anti-metastatic activity is mainly due to enhancing penetration
properties (Kadry et al., 2018; Amirani et al., 2020). The
migration of MDA-MB-231 human breast carcinoma cells
weakened with elevated concentration of chitosan (Nam and
Shon, 2009). Increasing the biodistribution of drugs is another
mechanism for anticancer functionality of chitosan. The
accumulation of the drug in tumor cells is due to chitosan
improving cell permeability and drug retention time to low
toxicity (Adhikari and Yadav, 2018).

Self-assembled microparticles from chitosan (SAMC) shows
anticancer effect in human breast cancer cell lines and exhibits
tumor growth inhibition in Ehrlich ascites tumor (EAT) bearing
mice model. What’s more, SAMC decreases VEGF secretion in
ascites, which is accompanied with reduction in neovessel
formation. Consequently, SAMC may be another potential
antitumor dietary supplement (Punarvasu and Prashanth,
2022). Modification of chitosan through its amino, acetamido,
and hydroxy groups can give a veriety of derivatives with
enhancing solubility and remarkable anticancer activity. Both
chitosan and its various derivatives have been reported to show
anticancer activity involving different cellular apoptotic pathways
(Jiang et al., 2011; Jiang et al., 2015).

4.2.4 Effects of Chitosan and its Derivatives on the
Signal Pathway in Cancer Therapy
Phosphatidylinositol 3-kinase (PI3K)-AKT pathway is an
important kinase signaling networks in carcinogenesis. The
abnormal activation of PI3K-AKT signaling pathway has been
implicated in numerous malignancies including endometrial,
hepatocellular, breast, colorectal, prostate and cervical cancer
(Franke, 2008; Amirani et al., 2020). Thus regulation and
blockage of this kinase and its key molecules may be a
potential approach in cancer therapy, and tremendous efforts
have been made to achieve this goal. It is reported that chitosan
and its derivatives down-regulate AKT phosphorylation in a
dose-dependent manner and being used to block AKT

TABLE 3 | A few examples of chitosan based other therapeutic agents nanoparticles and their application in oncotherapies over the last decades.

Agents Application Results References

FA-CS Breast cancer Improved delivering capacity to cancer cells through ligand-receptor dependent and
independent cellular engulfment

Nemati et al. (2021)

GA-CS Hepatocellular
carcinoma

Through enhancing intracellular delivery and uptake to improve both antitcancer efficacy and
safety

Hefnawy et al. (2020)

HER2-Gem-CS Pancreatic cancer Showed superior anti-proliferative activity and enhanced S-phase arrest due to higher cellular
binding and prolonged intracellular retention

Arya et al. (2011)

CNPs-Ce6 Lung cancer cells Attenuated its cytotoxicity but improved its therapeutic efficacy by preventing serum absorption
and prolonging the blood circulation time

Ding et al. (2018)

CS-TPP/IL-12 Colorectal cancer Attenuated the toxicity of IL-12 and inhibited tumor metastasis by inducing NK cells and T cells
infiltration

Xu et al. (2012)

HMSNs-CS-
DOX- CuS

Breast cancer Site-specific release of DOX under the tumor microenvironment, preventing release into
circulation

Niu et al. (2021)

Erlotinib- CNPs Lung cancer cells Released erlotinib slowly in comparison to the marketed tablet formulation Saravanakumar et al.
(2020)

Gd-CS-OA/Ce6 Breast cancer Demonstrated promising application in situ 4T1 tumor model Zhao et al. (2020)

FA-CS, folic acid conjugated chitosan nanoparticle; GA-CSNPs, glycyrrhetinic acid-conjugated chitosan nanoparticle; HER2-Gem-CS, herceptin (HER2)-conjugated gemcitabine-loaded
chitosan nanoparticle; CNPs-Ce6, Chlorin e6 chitosan nanoparticles; CS-TPP/IL-12, chitosan-tripolyphosphate interleukin-12; HMSNs-CS-DOX-CuS, hollow mesoporous silica
nanoparticles chitosan doxorubicin and copper sulfide; Gd-CS-OA/Ce6, gadopentetic acid chitosan octadecanoic acid/chlorin e6.
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activities in different cancer types (Liu et al., 2011; Xiong et al.,
2018; Amirani et al., 2020; Fang et al., 2021).

Additionally, chitosan could induce apoptosis through
increasing the concentration of calcium ion, level of ROS and
mitochondrial membrane potential. Too many Fas/FasL pathway
associated proteins were expressed abnormally in cancer (Gao
et al., 2020). Chitosan may regulate the expression of apoptosis
associated proteins, subsequently activated the cleavage of
caspase-9 and caspase-3, which finally induced apoptosis in
mitochondrial pathway (Wu et al., 2018; Wu et al., 2020).

Furthermore, chitosan oligosaccharide may inhibit the
abnormally up-regulated programmed cell death ligand 1 (PD-
L1) after chemotherapy in various tumors via the MAPK
activation and STAT1 inhibition to improve efficacy of T cell
mediated immune killing in tumors, which indicates that
chitosan oligosaccharide may be used to improve the efficacy
of existing chemotherapies (Chen et al., 2022).

5 CONCLUSION AND PERSPECTIVES

Cancer is a major contributor to the global disease burden and is
likely to continue in the next 20 years. Though great efforts have
been made on cancer treatment in the past decades, cancer
associated motality is still the leading cause of death. Intensive
studies on chitosan have made it to be one of the most important
and potential polymers for cancer treatment. Chitosan-based
nanoparticles have exhibited exciting antitumor efficacy both
in vitro and in vivo, which indicates that there is vast scope of
clinical application. The favorable properties of chitosan have
made it an ideal nanocarrier for drug controlled-release.

Chitosan-based vehicle can be used for the encapsulation or
conjugation of chemotherpeutic drugs, therapeutic gene
nucleic acids, photosensitizers and cytokines and so on,
achieving a more reliable targeted therapy for cancer. What’s
more, chitosan itself also exhibits inhibitory effects on tumor cells
through different signal pathways.

However, the clinical use of chitosan still confronts with
some major obstacles. First, few studies have tested the safety of
chitosan in vivo. Secondly, the chemical versatility of chitosan
makes it more difficult to identify each entity. Last but not the
least, it is unclear whether the nanoparticle targeting
mechanism shown in rodent tumor models works the same
in cancer patients. Consequently, the clinical application of
antitumor chitosan nanoparticles should still be done with
much caution, and an in-depth further clinical translation
studies are urgently needed.
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