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Abstract: This study proposes a robust depth map framework based on a convolutional neural
network (CNN) to calculate disparities using multi-direction epipolar plane images (EPIs). A com-
bination of three-dimensional (3D) and two-dimensional (2D) CNN-based deep learning networks
is used to extract the features from each input stream separately. The 3D convolutional blocks are
adapted according to the disparity of different directions of epipolar images, and 2D-CNNs are
employed to minimize data loss. Finally, the multi-stream networks are merged to restore the depth
information. A fully convolutional approach is scalable, which can handle any size of input and
is less prone to overfitting. However, there is some noise in the direction of the edge. A weighted
median filtering (WMF) is used to acquire the boundary information and improve the accuracy of
the results to overcome this issue. Experimental results indicate that the suggested deep learning
network architecture outperforms other architectures in terms of depth estimation accuracy.

Keywords: depth estimation; integral imaging microscopy; light-filed microscopy; deep learning;
machine intelligence; 3D convolutional neural network

1. Introduction

Integral imaging (II) is a technique that captures and generates entire 3D information
in a single capture using 2D arrays of lenses. [1–4]. The optical microscope has become the
most widely used tool in a variety of fields, including biomedical [5], medicine [6], and
nanotechnology [7]. Microlens arrays (MLAs) capture and store the depth and the parallax
information about microscopic specimens using an integral imaging microscope (IIM)
system composed of an objective lens, tube lens, MLA, and a traditional camera [8,9]. The
parallax view (i.e., orthographic-view images) is usually reconstructed from the elemental
image array (EIA) to provide a 3D model of the specimen [10].

Traditional 2D microscopy primarily improves resolution and generates 2D data that
do not recognize the parallax or depth information. It is a serious issue when 3D data
are required. Different methods of 3D microscopy have been proposed to overcome this
problem, including confocal [11], stereoscopic [12], integral imaging microscopy (IIM), light
field microscopy (LFM) [13], and integral imaging holographic microscopy [14]. Depth
estimation is a fundamental stage in integral imaging, establishing the way for future
LF applications such as 3D reconstruction [15] and augmented reality [16]. A variety of
techniques can be used to enhance the depth of field for IIM systems, including amplitude-
modulated microlens arrays [17], spatial multiplexing [18,19], bifocal holographic microlens
array [20], and a liquid-crystalline polymer microlens array with switchable bifocals [21].
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These systems have all shown excellent results. However, the limitations of IIM make it
difficult to use various approaches. The image reconstruction is improved by a method that
involves an optical device as well as software-based interpolation methods [22]. Despite
improving the software-based application of reconstructed images, these conventional
methods are not able to produce satisfactory results. Low resolution and inconsistency
of brightness of elemental images (EIs) are the main limitations of IIM systems, as well
as illumination effects and tiny numerical apertures of the microlens array. According
to the theories of geometric and wave-optics, the depth of field (DOF) of the IIM image
is even wider than a conventional optical microscope; it is insufficient for a satisfactory
viewing experience. In IIM system, the DOF and IIM systems need to be improved.
DOF and inconsistency of brightness of EIs have a direct impact on one another. The
depth of a specimen can be obtained from the EIA, but extracting the depth map is quite
challenging. The depth information may be acquired through active methods (such as
depth cameras), passive methods (such as binoculars, muti-view images), or combining
the two approaches [23]. Moreover, an optimal solution for depth information accuracy
needs to be obtained by applying multiple constraints, such as epipolarity, sequencing,
brightness changes, and regularity. Deep learning-based methods have recently been used
in IIM systems. In the case that the depth information is accurately estimated from the
original 2D image of the specimen, reconstructed image quality might be improved. The
purpose of this paper is to propose a method to estimate disparity for IIMs that improves
depth accuracy and quality for 3D reconstruction by combining 3D and 2D convolutional
neural networks (CNNs) based on multiview EPIs. To improve the robustness of current
IIM systems, such as noise and low-quality disparity estimation that result from limited
parallax depth, the learning-based network estimates disparity using effective techniques,
i.e., image adjustment and depth filtering.

2. Background of IIMs and Depth Map
2.1. Integral Imaging Microscopy

The IIM system contains a traditional microscope and a microlens array. Light field
IIM images are used as input in the proposed work. Figure 1 illustrates the schematic
diagram of the IIM system components. A conventional microscopy system lies between
the specimen and the intermediate image plane. An expanded visualization of a specimen
is captured at the intermediate image plane after a light beam reflected from a specimen
passes through the objective and tube lenses. Using the intermediate image plane, MLAs
construct the EIA in front of the camera lens (CL). Since the parallax information varies
slightly between each elemental image (EA), depth estimation requires geometric analysis
to calculate the disparity between the images. EIA is used to reconstruct the orthographic
view image (OVI) from the disparity data.

In Equation (1), an object point (x, y, z) is projected onto the EIA plane through the CL
and elemental lens (EL). fMLA and fC are the focal lengths of the microlens array and CL,
respectively. Furthermore, ϕ is the pitch of the elemental lens, which denotes the distance
between any two elemental lenses. The focal lengths of the objective and tube lenses are
fO and fT , respectively. There is a distance g between the MLA and the camera lens. Lens
positions are indicated by i and j.

XEI(i,j) =
fMLA fC(i×ϕ−x)− fC i×ϕ(z− fMLA)

(g− fMLA)(z− fMLA)

YEI(i,j) =
fMLA fC(j×ϕ−y)− fC j×ϕ(z− fMLA)

(g− fMLA)(z− fMLA)

(1)

In this case, the depth between the EL and the camera lens should be calculated using
Equation (2):

∆XI =
fMLA fC ϕ(i2−i1)

(g− fMLA)(z− fMLA)

∆YI =
fMLA fC ϕ(j2−j1)

(g− fMLA)(z− fMLA)

(2)
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Figure 1. Schematic diagram and image capturing system of an IIM system. Microlens arrays are 
placed in front of the sensor to capture EIs from an object placed in front of the objective lens and 
magnified by the tube lens. 
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where i and j are the lens position, the same as in Equation (1). For each image, this demon-
strates the depth information with the viewpoint. The length and depth information are 
enhanced with an increase in the number of lenses in the MLA. There are a limited number 
of directional images depending on the EIA. Generating OVI from EIA is a little bit com-
plicated. The first pixel of an EI generates a first OVI, the second pixel of an EI generates 
a second OVI, and so on. In the same way, the last pixel of the last EI determines the last 
pixel of the last OVI. 

2.2. Deep Learning-Based Depth Estimation Method 
Deep learning is becoming popular for predicting depth maps from light fields. Gen-

erally, deep learning-based depth estimation is performed using epipolar-based ap-
proaches by studying the structure of synthetic light-field data [24]. Convolutional Neural 
Networks (CNNs) have achieved state-of-the-art performances for segmentation [25], su-
per-resolution [26], depth estimation [27–30], and 3D reconstruction [31] using EPI-based 
methods. Li et al. [32] introduced an end-to-end fully convolutional network (FCN) for 
estimating the depth value as nearby pixels in an EPI have a similar linear structure called 
oriented relation module (ORM). However, these EPI-based approaches only take the EPI 

Figure 1. Schematic diagram and image capturing system of an IIM system. Microlens arrays are
placed in front of the sensor to capture EIs from an object placed in front of the objective lens and
magnified by the tube lens.

where i and j are the lens position, the same as in Equation (1). For each image, this
demonstrates the depth information with the viewpoint. The length and depth information
are enhanced with an increase in the number of lenses in the MLA. There are a limited
number of directional images depending on the EIA. Generating OVI from EIA is a little
bit complicated. The first pixel of an EI generates a first OVI, the second pixel of an EI
generates a second OVI, and so on. In the same way, the last pixel of the last EI determines
the last pixel of the last OVI.

2.2. Deep Learning-Based Depth Estimation Method

Deep learning is becoming popular for predicting depth maps from light fields. Gener-
ally, deep learning-based depth estimation is performed using epipolar-based approaches
by studying the structure of synthetic light-field data [24]. Convolutional Neural Net-
works (CNNs) have achieved state-of-the-art performances for segmentation [25], super-
resolution [26], depth estimation [27–30], and 3D reconstruction [31] using EPI-based
methods. Li et al. [32] introduced an end-to-end fully convolutional network (FCN) for
estimating the depth value as nearby pixels in an EPI have a similar linear structure called
oriented relation module (ORM). However, these EPI-based approaches only take the
EPI features of horizontal and vertical directions, which is insufficient information and
decreases the accuracy of the results. Due to the lack of global information, additional opti-
mization processing is also needed. Luo et al. [33] used a CNN architecture to estimate the
disparity of each pixel after extracting a set of valid EPI patches from a 4D light field. The
output of CNN was processed to post-processing with global constraints. Shin et al. [27]
implemented a multi-stream network using fully CNN-based techniques to extract features
related to epipolar properties of four viewpoints with horizontal, vertical, and both diago-
nal directions. For each branch, they combine three convolutional blocks, each of which is
usually formed up of ‘Conv-ReLU-Conv-BatchNorm-ReLU’ operations. On the last branch,
they apply eight more convolutional blocks of the same type. Heber et al. [28] suggested an
end-to-end deep network architecture that included both encoding and decoding modules
to predict EPI line-based depth estimation. Shi et al. [34] introduced a learning-based depth
estimation system that uses a FlowNet2.0 [35] model to create the initial depth map for
stereo pairings. Feng et al. [36] suggested a learning-based two-stream depth estimation
method based on a CNN network that learns from nearby pixels. A network based on
epipolar segmentation and multi-stream geometry was proposed by Wang et al. [37] for
depth estimation. This network uses a sequence layer ‘Conv-Relu-Conv-BN-Relu’. A
multi-stream depth network combining cost volume and 3D aggregation was presented by
Li et al. [38]. Fsluvegi et al. [39] proposed a fully connected CNN network with two streams
as well as augmentation methods for tackling the overfitting issue. However, this is not
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sufficient to address the occlusion problem. According to Leistner et al. [40], an EPI-Shift
network is applied when light field stacks are shifted from wide to narrow baselines, and
trained models are used to predict depths from narrow baseline datasets. Even though
this method can work for broad-baseline light fields, it is laborious and not suitable for
practical applications.

The above learning-based systems still have limitations. In creating the network, those
methods mainly evaluate the directed epipolar geometry of light field images, resulting in
low depth prediction reliability. In contrast, this paper presents a learning-based network
combing the 3D and 2D CNN to predict the depth values from the corresponding horizontal,
vertical, and diagonal EPIs. A WMF filter enhances depth prediction by reducing noise and
maintaining edge information, which is important for disparity prediction.

3. Depth Estimation Methodology

The entire procedure is separated into three parts: image capture through IIM system
with camera calibration [41], depth estimation using 3D convolutional neural network, and
filtering by weighted median to eliminate depth noise [42]. During the capture process,
the specimen is positioned in front of the microscope objective lens. Each microlens is a
standalone image source that provides a perspective view image referred to as EI. The EI
cannot be applied directly to depth maps. An OVI is constructed using the information
provided by the EIA. Hence, the OVI is generated by the EIA, which includes the directional
view images. The number of directional images and the resolution are the same as the
number of EIs and the resolution, respectively.

A detailed architecture of the proposed IIM depth enhancement system is shown in
Figure 2. The EIA is captured by an objective lens, tube lens, and microlens array of an
IIM capturing system shown in Figure 1. The ‘gear’ sample is taken as a specimen. This
EIA is captured with a camera that is capable of 4028 × 4028-pixel resolution. Using the
EIA, the OVI is recreated using a pixel mapping technique [43]. As shown in Figure 2a,
the OVI images become steadily dimmer from the center outward due to the properties
of the microscopic lighting and MLA. As a result, the images at the boundaries cannot
be used to estimate depth, and camera calibration and the region-of-interest (ROI) with a
2964 × 2964-pixel resolution are considered first. The brightness balance between input
images is reduced when surrounding OVI are included; however, the parallax view is
inadequate to assess depth. In this case, the gap between input directional OVI is taken
into consideration. We choose directional images with four intervals from ROI, rather
than neighboring images, so that a sufficiently large number of directional-view images
can be used. For any object, the brightness distribution of directional images changes
progressively from the center to the outer regions of the OVI. In-depth estimation and
nonuniform luminance between directional images generates errors and noise. To solve
this problem, IIM camera calibration is performed [41]. As a result, the final images are
considerably smoother and brighter than the originals, similar to the reference image. As
shown in Figure 2b, the directional-view images are then fed into a proposed CNN model
that has been pre-trained to evaluate their depth. Finally, postprocessing is necessary for
correcting noise during depth estimation. At this stage, in Figure 2c, the WMF approach [44]
is used to eliminate internal noise of depth map. A central directional view image is used
as a source image in WMF method. In this way, a noiseless depth map can be derived. In
Figure 2d, a depth estimate image is acquired when this operation is completed.

3.1. Data Generalization

In our proposed model, a representative dataset is required to train the network. A
synthetic light-field dataset [24] is applied to the proposed network to reach our goal. Due
to the higher angular resolution, light-field images have included a significantly larger
quantity of data than images captured with traditional stereo cameras. Several traditional
methodologies such as horizontal, diagonal, and multi-direction viewpoint EPIs were
used as input data to estimate local disparities. This experiment employs images with
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four viewpoint angles (0, 90, 45, and 135 degrees) to generate multi-orientation EPIs. The
proposed network accepts EPI cuboids with a size of 9 × height × width × 3 as input,
suggesting that it is parametric and adjustable to the spatial size as training EPIs are 512 by
512 but test EPIs are 75 by 75. Binary data cuboids [39] are used for training, validation,
and testing, where height and width are both 32. During the process of creating the dataset,
we use a stride of 13 to iterate through the original image data. Therefore, 38 × 38 = 1444
EPI cuboids were calculated for each scene. As shown in Figure 3, binary file stores each
EPI cuboid as a piece of data. Then, 1444 binary files are used for training and testing in
each scene.
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3.2. Network Architecture

As stated previously, our aim is to design a simple and fast convolutional model.
The proposed network is divided into four branches as shown in Figure 4. In this design,
horizontal and vertical EPI cuboids are used as inputs for the first two branches, and
diagonal data cuboids for the last two branches. Each of the preprocesses consists of
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two steps. First, zero-mean normalization is implemented in batches to the training dataset,
revealing the differences across EPI lines and making it easier for the network to learn.
Second, when performing 3D convolution, 4 × 4 spatial padding is applied to maintain the
spatial dimension of the feature maps. Each branch of the network has four 3D convolutions
and a 3 × 3 × 3 kernel with ‘VALID’ padding, stride size ‘1’, and ‘ReLU’ activation. The
first convolution generates 32 feature maps, the following two generate 64 feature maps,
and the last convolution generates 128 feature maps.
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The 2D convolution layer sets acquired from the two streams are combined to create a
high-level depiction. The first two and last branches are concatenated and fed into the next
2D convolutional layers to obtain a greater output with minimal loss. The size of the feature
maps representing the number of views is decreased to one after the seven convolutions so
that a squeezing layer can be applied to remove this dimension and produce 3D data with
a size of height × width × 64. As convolutional layers are passed through, the number
of feature maps decreases to 128, 64, 32, 32, 16, 8, and 1, respectively, with the kernel size
being 3 × 3 and the padding being ‘SAME’. Except for the last convoluted layer, each 2D
convoluted layer includes the ‘ReLU’ activation function. A squeezing layer is added at the
end of each layer, so the depth map has the dimensions height × width. Finally, two 2D
convolution branches are merged into an output layer. A batch size of 32 is used to train
the network due to the heavy data and computation involved. For training, set the number
of epochs to 2000, the learning rate to 0.0004, and the epochs per decay to 100 with a decay
factor of 0.9. After that, the output is passed through the weighted median filtering (WMF)
method as shown in Figure 5. The WMF mainly eliminates internal noise while maintaining
boundary information, which is essential for depth estimation. A three-channel RGB image
should be used as a guidance image for the WMF method for the central directional-view
image. A depth estimation image is acquired at the end of this process. A higher-quality
image is produced when the WMF method is applied to the initial depth map.
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3.3. Loss Function

The 4D light-field HCI benchmark [24] dataset contains very precise ground truth
values for disparity and performance evaluation. Therefore, a robust loss function should
ensure accuracy as well as consistency between the ground truth and the network output.
To enforce accuracy for network outputs, most prior studies employed mean absolute error
(MAE) between the predicted value (ŷi) and its ground truth (yi) as loss function:

LossMAE =
1
N

N

∑
i=1
|∆Ei| (3)

where the absolute errors ∆E = |yi − ŷi| and N is the number of errors.

4. Experimental Setup and Quality Measurement Metrics

The experimental setup included an infinity-corrected optical system (Olympus
BX41TF microscope, Olympus Corporation, Tokyo, Japan) with a 10×magnification. For
IIM, a 100 × 100 microlens array is used, with each lens having a diameter of 2.4 mm and a
focal length of 125 µm. The photo was taken with a Sony α6000 camera. This sensor has a
resolution of 6000 × 4000 pixels and can capture 4028 × 4028 pixels of IIM data.

The model was trained using an Intel Core i7-9800X 3.80 GHz processor and 128 GB
memory with an NVIDIA GeForce RTX 2080 Ti GPU running Windows 10 Pro 64-bit. To
train and test this network, we utilize the Python programming language in the Pycharm
environment using the TensorFlow library. As there are no available datasets for IIM,
the network is trained using data from the popular Heidelberg Collaboratory for Image
Processing (HCI) 4D light-field benchmark [24], which has 24 scenes, 15 of which were
used for training, 4 for validation and the rest for testing. Each scene in the HCI benchmark
has 9 × 9 angular view and 512 × 512 spatial resolutions. There are 8 bits of light fields for
every scene (9 × 9 × 512 × 512 × 3), camera parameter, and depth information. Disparities
can range from −1.5 pixels to 1.5 pixels; however, some scenes have disparities of up to
three pixels. Specifically, this benchmark focuses on challenges that present difficulties
for depth estimation such as occlusion of boundaries, structures, smooth surfaces, sensor
noise, and low textures. Blender was used to render the stratified scenes, and Cycles for
the photorealistic scenes. The training loss and validation graph is shown in Figure 6. Tests
are performed using the real light-field IIMs image provided by Kwon et al. [42]. The
experiment was conducted with three types of real object reconstruction of the OVIs, as
shown in Figure 6. Each scene included 53 × 53 directional-view images, with each view
containing 76 × 76 pixels.
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There are various types of image quality measurement methods to compare the original
image and the output image. The root-mean-square error (RMSE) is used to test the HCI
dataset. The discrete entropy and power spectrum density (PSD) values are used to analyze
our IIM data.

4.1. Root-Mean-Square Error

We find the root-mean-square of a set of numbers by squaring them, finding their
arithmetic means, and taking their square root.

RMSE =

√√√√√ n
∑

i=1
y2

i

n
(4)

where y is the number of observation and n is the total number of observations.

4.2. Discrete Entropy

In theory and intuitively, it is possible to measure the natural information entropy
of the image. As an illustration, one way is to consider an image as a collection of pixels.
The discrete entropy (DE) [45] index is used as the quantitative measure of the contrast
improvement, which is calculated as follows:

DE = −
n

∑
i=1

p(xi)× log2 p(xi) (5)

where i is the number of grayscales and p(xi) represents the probability associated with
each grayscale. For a single-channel 8-bit image (256 intensity levels), the p(xi) value can be
computed as follows:

p(xi) =
xi
Tx

(6)

Here, the number of occurrences of intensity level xi and the total number of intensity
levels Tx are displayed.

4.3. Power Spectrum Density

A power spectrum density (PSD) function is a method for assessing image quality
without using any reference image [46]. The power spectrum of a signal shows the intensity
of a signal at a particular frequency. The PSD can be calculated with the 2D Fourier
transform as shown in Equation (7):

PSD = log10|F[x(t)]|
2 (7)

where x(t) is the time-series signal. However, Equation (7) provides continuous spectral
data. The PSD value is quantified by calculating the mean value of each spectral power.
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5. Result and Discussion of the Proposed Depth Enhancement Method

The proposed depth evaluation is carried out using real data from the IIM system.
This experiment was conducted with three different types of real objects: a watch gear
(Figure 7a), a microchip resistor (Figure 7b), and a flower seedpod (Figure 7c). The three EIA
images were created with 76 × 76 EIs, resulting in a resolution of 4028 × 4028 pixels, which
is the same as the resolution of the 2D color images as shown in Figure 7 (second column).
In Figure 7 (third column), reconstruction of the OVIs included 53 × 53 directional-view
images, with each directional-view image being 76 × 76 pixels in size. In this case, the ROIs
were taken for each OVI, with 39 × 39 directional images used for depth calculation. As
input data, nine by nine images of a star shape are selected at four-image intervals in each
of the four directions. Nine images are taken at intervals of four images in each direction to
generate the test data.
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The HCI dataset is used to estimate disparity maps for synthetic data experiments.
To evaluate our method, RMSE values are used. We compared RMSE values with the
state-of-the-art algorithms. In these cases, our method is compared with EPI-ORM [32],
EPINET [27], MANET [38], and 3D-CNN-LF Depth [39]. The results of the qualitative
evaluation (boxes, dino, dots, pyramids, and town) are shown in Table 1.



Sensors 2022, 22, 5288 10 of 15

Table 1. Comparison RMSE * between the state-of-the-art networks and the proposed model.

Test Images EPI-ORM [32] EPINET
[27]

MANET
[38]

3D-CNN-LF
Depth [39] Proposed

boxes 0.9046 0.7707 1.0247 0.6942 0.6851

dino 0.8601 0.6789 0.9286 0.7035 0.6186

dots 0.8484 0.4624 0.5414 0.6552 0.6526

pyramids 0.7748 0.525 0.9285 0.6487 0.6789

town 0.8301 0.6991 1.2327 0.6608 0.6559
* Lower score represents better performance.

According to Table 1, the five network models estimate disparity maps based on
ground-truth data. In comparison with the actual value, the disparity maps (boxes, dino,
and town) of the proposed method are closer to the ground truth. Although the disparity
map of the dots and pyramids dataset is quite noisy, it is closer to the ground truth than
other datasets.

To evaluate our method for estimating light-field depth, we compared it with state-
of-the-art algorithms. In these cases, EPI-ORM [32], EPINET [27], MANET [38], and
3D-CNN-LF Depth [39] were quantified with a discrete entropy (DE) test. All specimens
are shown in Figure 7. Since there are no ground-truth values for real objects, DE index
and PSD values are used to evaluate the enhanced depth quality. In the depth images
(Figure 8), the discrete entropy formula determined that there was better contrast than
existing methods.
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Figure 8. The depth images of three specimen. (a) Central directional view image. Depth images
generated by (b) EPI-ORM [32], (c) EPINET [27], (d) MANET [38], (e) 3D-CNN-LF Depth [39],
(f) proposed methods, from the same input images.

Figure 9 shows quantitative results, with higher values indicating better results. Com-
pared to existing methods, the proposed CNN-based depth images showed a better contrast,
as determined by the discrete entropy formula. The discrete entropy values for the gear,
the microchip, and the seedpod were 6.47, 6.41, and 6.82, respectively. In this case, the
entropy values for the gear, microchip, and seedpod were (3.76, 3.71, 2.83) for the EPI-ORM,
(4.99, 4.76, 5.49) for the EPINET, (5.15, 5.72, 5.85) for the MANET, and (4.66, 5.79, 6.07)
for the 3D-CNN-LF Depth method, respectively. Comparisons show that the proposed
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learning-based disparity calculation method provides a clearer and more accurate 3D depth
map than existing methods.
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Figure 9. Discrete entropy values for gear, microchip, and seedpod using EPI-ORM [32], EPINET [27],
MANET [38], and 3D-CNN-LF Depth [39] proposed depth estimation methods.

Based on estimated depth map and point cloud interpolation, reconstructed 3D point
cloud models were created as shown in Figure 10. Using surface subdivision-based points
interpolation, a 3D point cloud of the gear, microchip, and seedpod was created using
2D images and the proposed depth map. In addition to the gear, the microchip, and
the seedpod were regenerated using 3D point clouds (562,500 object points for the gear,
577,600 object points for the microchip, and 291,600 object points for the seedpod) and a
surface subdivision-based interpolation method [42], which included nearly 10–20-fold
more points than the original generation.
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Table 2 presents the PSD values for 2D images, central image of directional-view
images, and central views for the reconstructed object models in the point cloud of different
methods. Therefore, PSD values of 2D corresponding images at high resolution were used
to check that both reconstructions of the depth map matched the original measurements.
For the gear, microchip, and seedpod, the PSD values of reconstructed 3D images by the
proposed depth method were 6.28 dB, 6.03 dB, and 5.95 dB, respectively. In 2D images,
the PSD values were 6.47 dB (gear), 6.410 dB (microchip), and 6.420 dB (seedpod). For the
central directional view images shown in Figure 6, the PSD values were 5.41 dB, 5.66 dB,
and 5.03 dB. These PSD values confirmed that the proposed method provided a clearer 3D
presentation based on 3D depth measurement of the three specimens. Furthermore, these
results demonstrated that the suggested technique accurately replicated the depth images.
Therefore, the proposed CNN beats previous depth estimation methods for the IIM system.

Table 2. Quantitative evaluation with the PSD * value for 3D reconstructed image.

Serial Specimen 2D Image
Center

Directional
View

Reconstructed Point Cloud

Proposed 3D-CNN-LF
[39]

MANET
[38]

EPINET
[27]

EPI-ORM
[32]

01 Gear 6.64 5.41 6.28 5.92 5.9 5.89 5.91

02 Microchip 6.81 5.66 6.03 5.67 5.66 5.69 5.69

03 Seedpod 6.88 5.04 5.95 5.42 5.43 5.44 5.47

* For all metrics, higher scores represent better performance.

6. Conclusions

This paper presents an effective and efficient deep learning-based depth estimation
method using a 3D and 2D fully convolutional neural network for IIMs. In the proposed
method, geometry structure and edge information are exploited more effectively in the
IIM images. This network has the capability of handling photo-realistic depth images and
reconstructing 3D images that are virtually identical to the original. The network is much
better at resolving noise and occlusion than existing methods. To collect the EIA data, a
camera sensor is used in combination with a lens array and a 2D optical microscope. The
OVI is then generated from the EIA using the pixel mapping algorithm. Observers achieve
a sense of three-dimensionality by viewing directional view pictures of OVI. Multi-stream
three-dimensional CNNs are fed directly from the directional view images. As a result, a
high-quality depth map image can be obtained.

The proposed method outperforms all current state-of-the-art algorithms. The depth
map image generated by this method takes only a few seconds. Furthermore, it indicates
that the enhanced depth quality rarely depends on the number of viewing angles. Future
research will focus on obtaining more detailed images that are faster to generate and with
better depth enhancement. Furthermore, alternative noise reduction approaches will be
employed, and existing deep learning algorithms will be compared to our enhanced deep
learning model. Another key fact to remember is that the IIM dataset is inadequate. In the
future, we will focus on developing algorithms and datasets for the deep learning network.
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Abbreviations

2D Two-dimensional
3D Three-dimensional
CNN Convolutional neural network
DOF Depth of field
EI Elemental image
EIA Elemental image array
EL Elemental lens
EPI Epipolar plane image
FCN Fully convolutional network
II Integral imaging
IIMs Integral imaging microscope system
LFM Light field microscopy
MLA Microlens array
OVI Orthographic-view image
ReLU Rectified linear unit
ROI Region of interest
WMF Weighted median filtering
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