
Ecology and Evolution. 2019;9:6665–6677.	 		 	 | 	6665www.ecolevol.org

1  | INTRODUC TION

Organisms are frequently released into natural environments inten‐
tionally or inadvertently, such as via ship's ballast water or escapees 
from aquaculture facilities (Laikre, Schwartz, Waples, & Ryman, 2010; 

Swan, McPherson, Seddon, & Moehrenschlager, 2016). Human‐me‐
diated translocations have been reported for a wide range of taxa 
including seaweeds, invertebrates, and vertebrates (see reviews by 
Geller, Darling, & Carlton, 2010, Thomas, 2011). Despite its potential 
for species conservation, the risk of becoming invasive, as well as the 
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Abstract
Translocation of organisms within or outside its native range carries the risk of modi‐
fying the community of the recipient ecosystems and induces gene flow between 
locally adapted populations or closely related species. In this study, we evaluated the 
genetic consequences of large‐scale translocation of cleaner wrasses that has be‐
come a common practice within the salmon aquaculture industry in northern Europe 
to combat sea lice infestation. A major concern with this practice is the potential 
for hybridization of escaped organisms with the local, recipient wrasse population, 
and thus potentially introduce exogenous alleles and breaking down coadapted gene 
complexes in local populations. We investigated the potential threat for such ge‐
netic introgressions in a large seminatural mesocosm basin. The experimental set‐
ting represented a simulated translocation of corkwing wrasse (Symphodus melops) 
that occurs on a large scale in the Norwegian salmon industry. Parentage assign‐
ment	analysis	of	mesocosm's	offspring	revealed	30%	(195	out	of	651	offspring)	inter‐
breeding between the two populations, despite their being genetically (FST	=	0.094,	
p < 0.05) and phenotypically differentiated. Moreover, our results suggest that re‐
productive fitness of the translocated western population doubled that of the local 
southern population. Our results confirm that human translocations may overcome 
the impediments imposed by natural habitat discontinuities and urge for immediate 
action to manage the genetic resources of these small benthic wrasses.
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ecological and genetic interactions between native and exogenous 
populations, remains a common topic of debate for managers and 
conservationists (Araki & Schmidt, 2010; Laikre et al., 2010; Thomas, 
2011). Putative deleterious genetic risks, associated with large‐scale 
releases and translocations, include the loss of genetic variation and 
adaptations as well as alterations in genetic profiles and population 
structure	(Geller	et	al.,	2010;	Hӓnfling,	2007;	Laikre	et	al.,	2010).

Experimental studies assessing reproductive fitness between ex‐
ogenous and locally adapted populations have drawn contradictory 
results. While many studies suggested lower fitness performance 
in nonlocal (hatchery‐released, unintentionally escaped and trans‐
located) organisms (Araki, Cooper, & Blouin, 2009; Christie, Ford, 
&	Blouin,	 2014;	 Eldridge	&	Naish,	 2007;	Glover	 et	 al.,	 2017),	 oth‐
ers have reported no fitness disadvantage (Berejikian, Van Doornik, 
Scheurer, & Bush, 2009; Blanco Gonzalez, Nagasawa, & Umino, 
2008;	Delgado	&	Glazer,	2007;	Hess	et	al.,	2012).	Pedigree	recon‐
struction in offspring for stocking has often revealed significant vari‐
ation in the number of parental contributors and their family sizes, 
and consequently, in their effective population sizes and rate of in‐
breeding (Blanco Gonzalez, Taniguchi, & Umino, 2010; Jeong, Blanco 
Gonzalez, Morishima, Arai, & Umino, 2007). Currently, our knowl‐
edge on reproductive fitness of nonlocal populations is highly biased 
toward studies conducted on salmonids, with very little information 
on strictly marine fish species (Araki & Schmidt, 2010). The large 
population sizes and extensive geographic areas commonly occupied 
by most marine fish make these studies very challenging (see refer‐
ences in Araki & Schmidt, 2010; Blanco Gonzalez, Aritaki, Knutsen, 
& Taniguchi, 2015). Large‐scale mesocosm facilities may offer an 
alternative to overcome these limitations (Blanco Gonzalez et al., 
2010; Jeong et al., 2007). Although such seminatural experimental 
setup may not fully resemble processes taking place in the wild, it 
will at least provide a good indication of the spawning performance 
as	compared	to	laboratory	culture	conditions	(Leggatt	et	al.,	2014).

Sea lice infestation is a major burden for the aquaculture industry 
causing high salmon mortalities and large economic losses (Blanco 
Gonzalez & de Boer, 2017; Iversen, 2016). The use of wrasses as 
cleaner fish has been proposed to be the most economical and 
environmental friendly solution to combat sea lice infestation (Liu 
&	 Bjelland,	 2014),	 despite	 high	 mortalities	 at	 low	 temperatures	
(Bjelland, Simensen, & Kvenseth, 1996; Costello, 1991; Sayer, 
Reader, & Davenport, 1996). As result, translocation practices have 
been undertaken in several European countries, where wild wrasses 
are sex‐ and size‐selectively fished and transported alive from areas 
of high abundance to salmon farms located in areas where local sup‐
ply cannot cope with their high demand (Blanco Gonzalez & de Boer, 
2017; Riley, Jeffery, Cochrane‐dyet, White, & Ellis, 2017). In the UK, 
for example, up to one million wrasses, mainly ballan wrasse Labrus 
bergylta, are translocated from the southwest coast to Scottish 
farms annually (Riley et al., 2017). In Norway, the largest farmed 
salmon producer in the world, several millions of wild‐caught adult 
wrasses, mainly goldsinny Ctenolabrus rupestris and corkwing wrasse 
Symphodus melops, from southern regions of Norway and Sweden 
are translocated to salmon farms located further north in the west 

coast (Blanco Gonzalez & de Boer, 2017). Several cleaner wrasse 
species display a strong regional and latitudinal variation in sexual 
size dimorphism (Halvorsen et al., 2016; Sayer, Gibson, & Atkinson, 
1996). Human‐mediated translocation may facilitate crossing the 
geographical boundaries delimited by natural barriers and evolu‐
tionary processes (Geller et al., 2010) and could therefore pose a 
major threat to local wrasse populations if a significant number of 
wrasses are released from the net pens unintentionally or intention‐
ally (Espeland et al., 2010).

Recent genetic studies of cleaner fishes in northern Europe 
have revealed marked large‐scale population genetic structure, with 
reduced genetic variability in northern populations (Almada et al., 
2017; Blanco Gonzalez, Knutsen, & Jorde, 2016; Jansson et al., 2017; 
Knutsen	et	al.,	2013;	Robalo	et	al.,	2012).	The	northern	Scandinavian	
populations have shown a further pattern of isolation by distance 
in the goldsinny (Jansson et al., 2017) and a genetic discontinuity 
(“break”) between southern and western Norwegian populations in 
the case of corkwing wrasse (Blanco Gonzalez et al., 2016). Moreover, 
apparent translocated individuals of goldsinny (Jansson et al., 2017) 
and corkwing wrasse (Faust, Halvorsen, Andersen, Knutsen, & 
André,	2018)	have	been	 found	 in	 the	proximities	of	 salmon	 farms	
in Norway, with indication of hybridization with locals for the latter 
species. Little is known about how translocated individuals fare in 
their new environment, their mating preferences versus local con‐
specifics, and potential isolation mechanisms between translocated 
and local wrasse populations. Hence, the risk of spreading of exoge‐
nous genes in these cleaner fishes is presently unclear, despite their 
large‐scale deployment in the industry.

In the present study, we addressed several critical questions con‐
cerning the reproductive behavior of translocated fish: (a) Do local 
and translocated wild‐caught marine fish interbreed? (b) Do locally 
adapted populations present reproductive fitness advantage over 
translocated individuals? (c) Do specimens display any mating pref‐
erence regarding origin or phenotypic traits?

2  | MATERIAL AND METHODS

2.1 | Study species and experimental setting

Rising sea water temperatures registered in the last decades have 
favored the increase in abundance of corkwing wrasse in Norway 
(Barceló, Ciannelli, Olsen, Johannesen, & Knutsen, 2016; Knutsen 
et	 al.,	 2013).	 The	 species	 is	 nest‐building	 and	 displays	 alternative	
reproductive tactics (Halvorsen et al., 2016; Sayer, Gibson, et al., 
1996). Large nesting males build and defend nests from sneaker 
males	(Potts,	1984).	These	different	life‐history	tactics	are	particu‐
larly pronounced in the west coast of the Scandinavian Peninsula 
where nesting males show a delay in maturation time and faster 
growth rates compared to females and sneaker males (Halvorsen et 
al., 2016).

The present experimental study was conducted at the re‐
search facilities of the Institute of Marine Research at Flødevigen 
in Arendal, on the south coast of Norway. The mesocosm basin 
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has a capacity of approximately 2,000 m3, a surface area of 
660 m2, a maximum depth of 5 m, and the seawater is pumped 
up	from	75	m	depth	(Moksness,	1982).	The	geographical	location	
and suitability of these facilities for the study justify moving spec‐
imens from the west coast to the south, instead of in the opposite 
direction which is the one most commonly used by the salmon 
industry	 (Blanco	Gonzalez	&	de	Boer,	 2017).	On	 June	24,	2014,	
167 adults from Norheimsund, on the west coast of Norway (for 
location in a map see Blanco Gonzalez et al., 2016), were collected 
using baited wrasse pots by a local fisherman and transported 
alive to Flødevigen. After arrival, all individuals were measured 
in total length (cm), weighted (g; see Table 1 for details on wrasse 
samples). The sex of every adult was determined by examination 
of the urogenital papilla (only present in females and sneaker 
males but not in nesting males) and inspecting an ejaculate sample 
of egg/sperm obtained by applying gentle pressure on the abdo‐
men. Following these procedure, we confirmed that all individuals 
were sexually mature, and they were classified as nesting male, 
sneaker male, and female. In addition, a small piece of the tail was 
clipped	and	stored	 in	95%	ethanol	for	DNA	analysis	before	they	
were released into the mesocosm basin. These individuals repre‐
sent the group of translocated specimens of nonlocal west origin. 
On	July	1,	2014,	a	second	group	of	151	adult	fish	were	collected	
from Arendal, close to Flødevigen, using baited wrasse pots by a 
local fisherman and transported to Flødevigen. They were sub‐
jected to the same measurements and handling as the earlier sam‐
ple, except that the ventral side of their bodies was tagged with 
pink visible implanted elastomer. These specimens comprise the 
group of breeders of local south origin of the study and were re‐
leased into the mesocosm basin together with the western group. 
The two group of wrasses were maintained at the mesocosm for 
a full year and allowed to spawn naturally during the upcoming 
spawning season in spring–summer. At the end of the spawning 
season,	between	July	30	and	August	19,	2015,	a	total	of	651	off‐
spring were collected with small aquarium nets along the edges of 
the spawning basin. Offspring were weighted (g) and measured in 
total length (cm) after the image analysis of the digital photogra‐
phy taken with a Tucsen CMOS IS1000 camera (Tucsen) attached 
to a Leica MZ16a stereomicroscope (Leica). A small piece of the 

juvenile's	 tail	 was	 clipped	 and	 stored	 in	 95%	 ethanol	 for	 DNA	
analysis.

2.2 | Microsatellite genotyping

Total genomic DNA was extracted from ethanol‐preserved tail sam‐
ples using E.Z.N.A® Tissue DNA kit (Omega Bio‐Tek), resuspend‐
ing the DNA in TE buffer. The ability of microsatellite loci to resolve 
parentage assignment depends on their number as well as their 
degree of polymorphism (Villanueva, Verspoor, & Visscher, 2002). 
The analysis was conducted on eleven polymorphic microsatellites 
characterized in previous studies on corkwing wrasse: SMD121, 
SMA11,	 SMA103,	 SMD131,	 SMD110,	 SMD112,	 SMB11,	 SMC8,	
SMB101,	SMC5,	SMD118,	SMB101,	SMC5,	and	SMD118,	following	
the same multiplex PCR protocols and dye labeling as previously de‐
scribed	(Blanco	Gonzalez	et	al.,	2016;	Knutsen	et	al.,	2013;	Knutsen	
& Sannæs, 2009). PCR amplifications were carried out in a multiplex 
reaction of 10 μl volume including 10 pmol of each primer and 1 μl 
of	 template	DNA,	corresponding	 to	30–50	ng.	PCR	conditions	 for	
the multiplex reaction of three new primers consisted of an initial 
denaturation	step	at	94°C	for	5	min,	followed	by	35	cycles	of	95°C	
for	30	s,	annealing	at	56°C	for	60	s	and	72°C	for	60	s,	with	a	final	
extension	at	72°C	 for	15	min.	One	microliter	of	PCR	product	was	
mixed	with	10	µl	of	Hi‐Di	formamide	and	0.8	µl	of	GeneScanTm—600 
Liz	(Applied	Biosystems)	and	run	on	an	ABI	3130XL	automated	se‐
quencer. Individual genotypes were assessed with GENEMAPPER v. 
4.0	 (Applied	Biosystems).	As	 a	 guard	 against	 potential	 genotyping	
errors, all samples were run with the same size standard and on the 
same	machine.	 In	addition,	approximately	5%	of	 the	samples	were	
randomly subjected to repeated genotyping.

2.3 | Genetic diversity and differentiation

Genetic variation was assessed by counting observed alleles (A), and 
calculating allelic richness (Ar), observed (HO), and expected hete‐
rozygosity (HE), both within samples and for the total over all sam‐
ples (HT),	based	on	Nei	and	Chesser	 (1983),	using	FSTAT	v.2.9.3.2.	
(Goudet, 1995) and the divBasic function in diveRsity package 
v.1.9.90	 (Keenan,	 McGinnity,	 Cross,	 Crozier,	 &	 Prodöhl,	 2013)	 in	

TA B L E  1   Summary of corkwing wrasse samples analyzed in this study

Sample ID Origin Collection date Tag color Sex Sample size
Total length range 
(mean ± SD)

Body weight range 
(mean ± sd)

Breeder south Wild 24.06.2014 Yellow Male 64 10.5–20.5	(14.0	±	2.6) 16.2–108	(39.8	±	22.6)

Sneaker 9 11.5–12.5	(11.8	±	0.3) 18.2–27	(21.1	±	2.6)

Female 76 10.5–20	(14.4	±	2.4) 14.6–103.8	(44.5	±	22.0)

Breeder west Wild 01.07.2014 Pink Male 59 10.5–17.0	(12.8	±	1.3) 16.4–59.3	(30.1	±	8.6)

Sneaker 24 10.5–14.5	(12.3	±	0.9) 17.1–37.2	(25.7	±	5.0)

Female 86 10.5–19.5	(12.9	±	1.3) 16.5–101.7	(30.0	±	11.2)

Offspring Mesocosm 30.07–19.08.2015  Immature 651 0.4–3.5	(1.7	±	0.5) 0.8–0.1	(0.1	±	0.1)

Note:	Sample	ID,	origin,	collection	date,	tag	color,	sex,	sample	size,	total	length	range	(mean	±	standard	deviation,	SD) in cm, and body weight range 
(mean	±	standard	deviation,	SD) in g.
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R	 (R	 Development	 Core	 Team,	 2011).	 GENEPOP	 package	 v.4.7.0.	
(Rousset,	 2008)	 in	 R	was	 used	 to	 estimate	 the	 inbreeding	 coeffi‐
cient FIS (Weir	&	Cockerham,	1984)	and	to	test	for	deviations	from	
Hardy–Weinberg (HW) equilibrium by the Markov chain procedure 
with 100,000 demorization steps, 1,000 batches, and 50,000 itera‐
tions per batch. The false discovery rate (FDR) approach (Benjamini 
& Hochberg, 1995) was adopted when interpreting the signifi‐
cance of p	 values	 in	situations	of	multiple	 tests.	GENEPOP	v.4.7.0	
was also used with the same Markov chain parameters to test for 
linkage disequilibrium (LD) among all pairs of loci for each sample. 
MICROCHECKER v.2.2.1 (Van Oosterhout, Hutchinson, Wills, & 
Shipley,	2004)	was	employed	to	investigate	the	presence	of	null	al‐
leles, stuttering errors, or technical artifacts. The presence of null 
alleles was further assessed by estimating null allele frequencies (fn) 
with	CERVUS	v.3.0	(Kalinowski,	Taper,	&	Marshall,	2007).

The discrimination power of the set of microsatellite loci for 
parentage analysis was determined by the polymorphic information 
content (PIC) and the exclusion probability (Q)	with	CERVUS	v.3.0	
(Kalinowski et al., 2007). We also used GenAlEx (Peakall & Smouse, 
2012) to estimate the probability of identity index (I), an index rep‐
resenting the probability of finding two individuals sharing a multi‐
locus genotype. In addition, we determined the cumulative success 
rate of parentage allocation ranking the markers according to the ex‐
clusion probability of both parents, Excl. P2 option, based on 1,000 
offspring	simulations	using	the	PFX_Mchoice	macro	implemented	in	
PARFEX	v1.0	(Sekino	and	Kakehi	2011).

Genetic differentiation among samples was conducted by 
Wright's FST,	using	Weir	and	Cockerham's	(1984)	estimator	θ applied 
to all samples and between pairs of samples. The statistical signif‐
icance of p values was examined by G tests in GENEPOP package 
v.4.7.0.	 (Rousset,	 2008)	 with	 100,000	 demorization	 steps,	 1,000	
batches, and 50,000 iterations per batch. The FDR approach pro‐
posed by Benjamini and Yukutieli (2001) was adopted to correct for 
multiple tests in pairwise tables.

2.4 | Pedigree reconstruction and effective 
number of breeders

Parentage assignment was performed in PAPA v.2.0 (Duchesne, 
Godbout,	&	Bernatchez,	2002)	and	corroborated	in	CERVUS	v.3.0	
(Kalinowski et al., 2007). Pedigree reconstruction in PAPA v.2.0 
requires a closed system where all putative breeders have been 
sampled (Duchesne et al., 2002) as was the case in the present 
study. The analysis was performed with a uniform error of 0.02 
on all loci. The assignment analysis in CERVUS is based on the log‐
likelihood (LOD) score, inferring parental pairs to those breeders 
with the highest likelihood. The analysis was conducted consider‐
ing known broodstock sexes. Allocation was considered correct 
only when trio (offspring and a parental pair) showed no mismatch 
at any locus, and PAPA and CERVUS showed consistent paren‐
tal pair assignments. In both programs, prior to offspring assign‐
ment, parentage estimates were simulated for 10,000 offspring. 
In order to minimize any genotyping errors and ensure a reliable 

parental‐offspring assignment, we examined those offspring not 
allocated to any parental pair and those allocated to more than 
one pair (called as “ambiguous” in PAPA). A new assignment test 
was performed allowing a maximum mismatch at two loci. Allele 
scoring for trios was revised at all loci and corrected accordingly. 
Parental assignment of the few remaining offspring was success‐
fully resolved by repeated genotyping at all loci and re‐running 
the analysis. Based on these results, offspring were classified as 
“south” when both parents were of south origin, “west” when both 
parents were from the west coast, or “hybrid” when parents were 
of different origins.

Once all parental pairs were identified, we estimated the in‐
breeding effective number of breeders, Nb (Araki, Waples, Ardren, 
Cooper, & Blouin, 2007; Crow & Kimura, 1970; Waples, 2002), with 
and without taking parental origin into consideration. This was cal‐
culated from the Nb (N), the average number of offspring (k̀), and the 
variance in the number of offspring (Vk) from contributing breeders, 
as assessed from the parental assignments (above):

This was calculated separately for male (m) and female (f) parents 
and combined to obtain the inbreeding effective Nb:

We further investigated whether the presence of sneaker 
males would contribute to increase Nb or not. The analysis was 
performed by comparing the estimates when offspring from all 
breeding pairs were included (regardless nesting or sneaking male 
behavior) to those obtained excluding the offspring produced by 
sneaker males.

2.5 | Assortative mating and reproductive fitness

We used parentage assignment results to test the hypothesis of non‐
random mating between south and west breeders using a 2 × 2 con‐
tingency table with Yates correction. The analysis was performed 
taking into account parental origin (south and west) and sex (female 
and male). In this analysis, nesting and sneaker males were pooled 
together due to the small number of sneakers in the samples (see 
Table 1 for details).

Results of the parentage assignment test were also used to an‐
alyze causes of variance in reproductive fitness. For each possible 
breeding pair, we considered whether offspring were produced or 
not, parental origin (south and west), sex (nesting males, females and 
sneaker males), and whether both parents were from same origin or 
not. Furthermore, we also considered the effects of parental weight/
length ratio (both for males and females) to analyze reproduction 

Nbf,m=
k̀N−2

k̀−1+
Vk

k̀

.

Nb=
4∗Nbf ∗Nbm

Nbf+Nbm
.
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success. Since most possible male–female pair combinations did not 
produce	 offspring	 (243	 identified	 successful	 parental	 pairs	 out	 of	
25,272 possible breeding pair combinations from 162 females and 
156 males, Table 1), we constructed a statistical model where the 
success/failure (producing offspring or not) was analyzed based on 
all possible breeding pairs, and another model where the number 
of offspring was analyzed based only on successful breeding pairs.

The analysis of success/failure was analyzed using a logistic re‐
gression model in R (R Development Core Team, 2011):

In the formula above, pij is the probability that the breeding pair 
consisting of the i'th male and the j'th female will produce any off‐
spring. β are the regression coefficients or effects of the respective 
variables. Oi and Oj represent male and female parents' origins and 
take on a value of 1 if the i'th male is from western Norway and 
0 if it is from southern Norway and similar for the j'th female. Oij 
represents the case when parents have the same origin, in which 
case has the value of 1, or not (value 0). The variables Li and Lj are 
the weight/length ratio of the ith male and jth female, respectively. 
The variable Si is a factor variable considering the effect of sneaker 
behavior on the mating success and takes on a value of 1 if the i'th 
male is a sneaker and 0 if it is a nesting male. The εij is an indepen‐
dent, identical distributed error term for each breeding pair of the 
i'th male and j'th female. The coefficients were estimated using max‐
imum likelihood estimation.

For those breeding pairs that actually produced at least one sam‐
pled offspring, we further analyzed the number of offspring in the 
sample, by using a general linear model with a poison distributed 
response variable:

In the formula Equation (2), Nij is the number of offspring pro‐
duced by the breeding pair of the i'th male and the j'th female. 
Similarly to model Equation (1), � are the regression coefficients 
or effects of the respective variables. All variables have the same 
meaning as in the logistic model Equation (1) while the estimates co‐
efficients are of course unique for each model.

3  | RESULTS

3.1 | Genetic diversity and differentiation

We	scored	the	complete	genotypes	of	318	adults	and	651	offspring	
at eleven microsatellite markers with no missing genotypes. A total 
of	193	alleles	were	scored,	and	overall	total	gene	diversity,	HT, was 
0.750 (Table 2). Locus SMB101 displayed the highest levels of ge‐
netic	variability	segregating	for	40	alleles	with	HT = 0.917 in the total 

material,	while	SMA103	only	showed	four	alleles	while	 the	 lowest	
total gene diversity was shown at locus SMA11, HT	=	0.537.	Overall,	
breeders of west origin displayed higher level of genetic variability, 
both expressed as allelic richness (Ar	 =	 14.3)	 and	 heterozygosity	
(HE	=	0.740),	than	those	from	the	south	(Ar = 11.5 and HE = 0.670). 
Average genetic difference between the two parental groups from 
different origins (FST	 =	0.094,	p	 <	0.05;	Table	3),	with	 single	 locus	
pairwise FST	estimates	ranging	from	0.009	at	locus	SMD110	to	0.240	
at locus SMB11 (Table 2), again closely resembling natural conditions 
(Blanco Gonzalez et al., 2016).

Deviation from HW expectations (FIS) was observed in 10 of 
the	3*11	cases	generated	 from	the	 two	parental	groups	and	 the	
offspring at 11 loci, with eight of them remaining statistically sig‐
nificant	at	the	5%	level	after	the	FDR	correction	(Table	2).	Four	of	
these eight cases were attributed to excess of heterozygotes in 
the offspring sample while three of the four cases corresponded 
to	deficiency	of	heterozygotes	at	locus	SMB118	in	both	offspring	
and each of the parental samples. The presence of null alleles at 
this locus was suggested by CERVUS (estimated null allele fre‐
quency	=	0.073)	and	MICROCHECKER	analyses	(data	not	shown).	
Therefore, this locus was only used to resolve parentage assign‐
ment for a few “ambiguous” offspring allocated by PAPA (for de‐
tails, see “Pedigree reconstruction and effective Nb” section under 
section 22), but it was omitted for further analysis. The other case 
of heterozygote deficiency was found in the offspring sample at 
locus SMB11.

Over	30%	(41	of	135)	of	pairwise	tests	for	LD	were	statistically	
significant	after	the	FDR	correction	(at	the	5%	level,	data	not	shown).	
Except for the locus pair SMD121‐SMB101 in the breeders from the 
west coast, all significant pairwise tests were detected in the off‐
spring samples. As deviations from HW and from LD are expected 
in the heterogenous offspring group, representing a mix of parental 
stocks and hybrids, no action was taken in response to these find‐
ings,	except	as	noted	above	for	locus	SMB118.

3.2 | Pedigree reconstruction and effective 
number of breeders

High PIC and Q estimates, and low I index, were observed for the set 
of microsatellite loci (Table 2) and indicating high statistical power 
to assign true parental pairs to the offspring with this set. Ranking 
markers	based	on	Excl.	P2,	PARFEX	estimated	100%	accumulative	
success rate of parentage allocation using 11 microsatellites. The 
pedigree	reconstruction	of	all	651	offspring	identified	123	putative	
breeders	out	of	318	(i.e.,	39%):	71	females	and	52	males	(Table	4).	
The total number of parents to the sampled offspring of west origin 
was	85	 (out	of	a	total	167	western	 individuals	released	 in	the	me‐
socosm	basin):	22	nesting	males,	46	females,	and	17	sneaker	males.	
On	the	other	hand,	only	38	breeders	from	south	origin	(out	of	151	
released)	 were	 found	 to	 contribute	 to	 the	 sampled	 offspring:	 13	
nesting males and 25 females, with no sneaker male contribution 
(Table	4).	 The	 individuals	 that	 contributed	 the	greatest	number	of	
offspring	were	of	west	origin:	males	M435,	M300,	and	M447	with	

(1)log

(

pij

1−pij

)

=�0+�1Oi+�2Oj+�3Oij+�4Li+�5Lj+�6Si+�ij.

(2)log
(

Nij

)

= �0+�1Oi+�2Oj+�3Oij+�4Li+�5Lj+�6Si+�ij.
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138,	 133,	 and	 122	 offspring,	 respectively;	 and	 females	 F405	 and	
F408	with	54	and	50	offspring,	respectively	(identified	by	individual	
IDs along the perimeter of Figure 1). Sneaker male contribution was 
limited	to	those	of	west	origin,	with	S309	and	S323	as	the	main	con‐
tributors	with	16	offspring	each.	As	result,	a	total	of	438	offspring	
represented	139	families	that	had	both	parents	of	west	origin,	195	
hybrid	offspring	represented	93	pairs	of	different	origins,	and	only	
17 offspring represented 11 families with both parents of south ori‐
gin	(Table	4).	The	largest	family	identified	in	this	study	comprised	31	
offspring,	and	 it	was	assigned	to	the	west	origin	pair	M300‐F403.	
The parental pair M075‐F276 contributed to the largest family of 
south origin with just six offspring (Figure 1). Meanwhile, the larg‐
est	hybrid	family	comprised	12	offspring	from	the	pair	M435‐F219.	
These large differences in number of offspring resulted in high vari‐
ance in family sizes (Vk), up to more than 2,000 for western nesting 
males (Table 5) and, together with skewed contribution of the two 
sexes, resulted in low inbreeding effective Nb of only 17.6 for the 
total (west + south) spawning population when sneaker males were 
not considered. Although none of the sneaker males of south origin 
contributed to the offspring, the participation of 17 sneaker males 

from the west coast reduced the variance in family size and resulted 
in an increase in Nb to 22.9 (Table 5).

3.3 | Assortative mating and reproductive fitness

Mating between corkwing wrasse breeders of south and west origin 
appears to occur randomly with no evidence for assortative mating 
by population origin (χ2 = 0.27, p = 0.60 after Yates correction df = 1). 
The logistic regression gave an intercept of the model equaling a basic 
probability	of	exp(−5.361)/(1	+	exp(−5.361))	=	0.0047	for	any	random	
breeding pair to produce at least one offspring. Parameter estimates 
(in logit) are presented in Table 6. The parameter effects are additive on 
the response scale, and thus, having a western male in a breeding pair 
increased	the	chance	of	producing	offspring	to	exp(−5.361	+	1.133)/
(1	+	exp(−5.361	+	1.133))	=	0.0144.	Having	a	breeding	pair	with	both	
parents from the western population increased the chance of having 
offspring	to	exp(−5.361	+	1.133	+	1.083)/(1	+	exp(−5.361	+	1.133	+	1.
083))	=	0.0412,	but	since	the	same	pattern	was	not	apparent	in	breed‐
ing pairs of southern origin, the effect of the variable “same origin” 
was not significant. Parameter estimates (in log) for the analysis of 
the number of offspring are shown in Table 7. The average number of 
offspring produced by an average‐sized male mating with an average‐
sized	female	was	exp(−2.620	+	(0.180*12.806)	+	(0.055*13.194))	=	1.5
2.	This	value	increased	to	exp(−2.620	+	(0.180*12.806)	+	(0.055*13.1
94)+0.599)	=	2.7	if	the	female	was	from	western	origin.	On	the	other	
hand, neither male origin nor mating between breeders of same origin 
showed significant increase in offspring production. An average‐sized 
breeding pair where the male displays sneaking behavior will on aver‐
age	produce	exp(−2.620	+	(0.180*12.806)	+	(0.055*13.194)	−	0.752)	
= 0.71 offspring.

TA B L E  3   Pairwise FST estimates and corresponding p values 
at 10 microsatellite loci after the false discovery rate correction 
(Benjamini & Yekutili, 2001)

Sample pair FST p value

Breeder south versus breeder 
west

0.094 <0.05

Breeder south versus offspring 0.068 <0.05

Breeder west versus offspring 0.012 <0.05

TA B L E  4  Total	number	of	parents	contributing	to	the	offspring	(%	of	total),	number	of	parents	contributing	to	the	offspring	of	south/
hybrid/west	origin	(%	of	total),	total	number	of	offspring	(%	of	total),	number	of	offspring	of	south/hybrid/west	origin	(%	of	origin),	number	
of	offspring	of	south/hybrid/west	origin	(%	by	origin),	number	of	families	of	south/hybrid/west	origin	(%	of	total),	and	largest	family	size	of	
south/hybrids/west	origin	(mean	±	SD)

 

South West

Nesting male Female Sneaker Nesting male Female Sneaker

Total number 
of parents

13	(20.3) 25	(32.0) 0 22	(37.3) 46	(54.8) 17	(70.8)

Number of 
parents per 
origin

7/11/0 (10.9/17.2/0) 6/23/0	(7.9/30.2/0) 0 0/9/18	
(0/15.2/30.5)

0/26/41	
(0/30.2/48.8)

0/11/17	(0/47.7/70.8)

Total number 
of offspring

108	(16.6) 122	(18.7) 0 433	(66.5) 529	(81.2) 110 (16.9)

Number of 
offspring per 
origin

17/91/0	(15.7/84.3/0) 17/105/0	(13.9/86.1/0) 0 0/78/355	
(0/18.0/82.0)

0/91/438	
(0/17.2/82.8)

0/27/83	(0/24.5/75.5)

Number of 
families per 
origin

11/43/0	(4.5/17.7/0) 11/50/0	(4.5/20.6/0) 0 0/29/80	
(0/11.9/32.9)

0/43/139	
(0/17.7/57.2)

0/21/59	(0/8.6/24.3)

Largest family 
size per origin

6	(0.3	±	0.9)/11	
(1.7	±	2.1)/0

6	(0.3	±	0.9)/12	
(1.7	±	2.9)/0

0 0/12 
(0.8	±	1.9)/31	
(3.5	±	5.0)

0/11 
(0.5	±	1.4)/31	
(2.4	±	4.1)

0/3	(0.3	±	0.6)/1	
(2.4	±	0.9)
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4  | DISCUSSION

This study represents one of the few examples evidencing interbreed‐
ing between native and translocated wild populations of non‐salmonid 
marine	fish	species	(Hӓnfling,	2007;	Swan	et	al.,	2016).	The	parental	
analysis conducted here, in addition to resolving the pedigree of two 
corkwing wrasse population from south and west Norway, evidenced 
successful mating between two genetically distinct cleaner fish popu‐
lations with no evidence for nonrandom mating between them. Thus, 
there appears to be no intrinsic mechanism against interbreeding and 

translocated wrasse from the south to salmon hatcheries in western 
Norway may be expected to mate freely with their western (local) 
conspecifics. These findings are in line with the recent observations 
of escaped translocated wrasses in the proximities of salmon farms 
in the west coast of Norway and putative hybridization with the local 
population	(Faust	et	al.,	2018).	We	thereby	confirm	that	human‐me‐
diated translocations may facilitate gene flow and break the barriers 
to interbreeding that are imposed by natural habitat discontinuities 
on coastal species (Andreakis, Costello, Zanolla, Saunders, & Mata, 
2016; Blanco Gonzalez et al., 2016). This reinforces general concerns 

F I G U R E  1   Pedigree reconstruction of 651 offspring collected from the mesocosm basin. Each point of the node represents one parental 
breeder of south (orange) and west (blue) origin who contributed with at least one offspring to the sample. The lines connecting two nodes 
represent the offspring of a particular pair or breeders; their color represents whether the offspring were classified as south (blue), west 
(orange), or hybrid (green); and the line thickness is proportional to the number of offspring comprising each family. The IDs of the nesting 
male (black), sneaker (gray), and female (red) breeders who contributed to at least 15 offspring are shown in the graph
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regarding the admixture of genetically distinct populations (Araki & 
Schmidt, 2010; Geller et al., 2010; Laikre et al., 2010).

Paternal care marine fish species, such as corkwing wrasse, often 
display territorial behavior during the spawning season when large 
nesting males show aggressive behavior to guard their nests against 
small	sneakers	 (Myhre,	Forsgren,	&	Amundsen,	2012;	Potts,	1984;	
Sinopoli	et	al.,	2018;	Stiver	et	al.,	2018).	At	high	population	densities,	
frequent aggressive encounters may interrupt courtship interactions 
and reduce the occurrence of mating episodes (Myhre et al., 2012). 
Despite the considerable size of the mesocosm basin (2,000 m3), 
such aggressive encounters between males have likely occurred in 
the present experimental setting (Halvorsen et al., 2017). Moreover, 
high population densities may induce higher variance in mating suc‐
cess	 (Aronsen,	Berglund,	Mobley,	Ratikainen,	&	Rosenqvist,	 2013;	
Stiver	et	al.,	2018)	and	alter	relative	fitness	performance	(Kokko	&	
Rankin, 2006). The significantly larger contribution of breeders of 
west	origin	compared	to	those	from	the	south	(Table	4)	suggests	pu‐
tative fitness advantage in western populations, who are typically 
found at higher densities in nature (Halvorsen et al., 2016). The fact 
that all breeders employed in this study were wild fish without prior 
experience in captivity may have offset any disadvantage related 
to	domestication	selection	(Araki	et	al.,	2009;	Christie	et	al.,	2014).	
The offspring evidenced significant differences in their genetic pro‐
file compared to either of the two putative parental populations 
(Table	4).	How	 these	differences	may	 affect	 their	 fitness	 parame‐
ters and impact local adaptation is yet to be determined. Although 
the offspring genotyped here were randomly collected from the 
mesocosm	basin	over	a	3‐week	period,	 they	only	 represent	a	por‐
tion of the total offspring born in the basin and we cannot dismiss 
the possibility of some unintentional sampling bias in the offspring. 
Furthermore, the experimental settings and the absence of informa‐
tion regarding the age of the offspring prevent us from investigating 
other important factors which have been previously correlated to 
reproductive fitness, such as timing of spawning or habitat complex‐
ity	(Blanco	Gonzalez	et	al.,	2010;	Bose	et	al.,	2018;	Moginie	&	Shima,	
2018;	Myhre	et	al.,	2012;	Sinopoli	et	al.,	2018).

TA B L E  5   Census of breeders contributing to the offspring (N), average number of offspring (k̀), variance in reproductive success (Vk), 
inbreeding effective number of breeders after accounting for variance in family sizes (Nbf,m) and also including sex ratio (Nb) for each sample 
origin separately and for the whole dataset

 

Including sneaker males Excluding sneaker males

South West All South West All

Male Female Male Female Male Female Male Female Male Female Male Female

N 13 25 39 46 52 71 13 20 22 41 35 61

(k̀) 8.3 4.9 13.9 11.5 12.5 9.2 8.3 4.8 19.7 10.9 15.5 8.9

Vk 177.9 61.4 1,196.4 215.8 939.3 169.9 177.9 51.7 2,063.8 170.4 1,368.6 138.3

Nbf,m 3.7 7.3 5.5 18.0 7.5 24.3 3.7 6.4 3.5 17.4 5.3 26.9

Nb 9.8 16.8 22.9 9.3 11.6 17.6

Note: Calculations in the left part of the table include families between females and males combining both nesting and sneaker males. Calculations in 
the right side of the table only consider families formed by nesting males, and families involving sneaker males were excluded in the estimates.

TA B L E  6   Parameter estimates from the logistic regression 
model Equation (1) to evaluate the effects on offspring produced 
of phenotypic traits of the breeders (weight/total length both for 
males and females), behavior (either nesting or sneaker male), and 
parental origin (either south or west for both males and females)

Parameter ID
Parameter 
description Estimate SE p value

β0 Intercept −5.361 0.850 <0.001

β1 Male origin 1.133 0.193 <0.001

β2 Female origin 1.083 0.198 <0.001

β3 Both parents of 
same origin

−0.167 0.188 0.376

β4 Male length −0.026 0.043 0.551

β5 Female length −0.029 0.041 0.469

β6 Sneaker male 0.372 0.144 0.010

Note: Bold values represent statistically significant results (p < 0.05).

TA B L E  7   Parameter estimates from the regression model 
Equation (2) to evaluate the effects of phenotypic traits of the 
breeders (weight/total length both for males and females), behavior 
(either nesting or sneaker male), and parental origin (either south 
or west for both males and females) on the number of offspring 
produced by breeding pairs

Parameter ID
Parameter 
description Estimate SE p value

γ0 Intercept −2.620 0.525 <0.001

γ1 Male origin 0.270 0.156 0.084

γ2 Female origin 0.599 0.152 <0.001

γ3 Both parents of 
same origin

0.009 0.144 0.952

γ4 Male length 0.180 0.027 <0.001

γ5 Female length 0.055 0.024 0.023

γ6 Sneaker male −0.753 0.119 <0.001

Note: Bold values represent statistically significant results (p < 0.05).
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Intraspecific latitudinal variance in life‐history traits generally 
is strongly correlated to environmental gradients (Munch & Salinas, 
2009). Corkwing wrasse populations display strong regional and 
latitudinal variation in sexual size dimorphism (Halvorsen et al., 
2016; Sayer, Gibson, et al., 1996). Populations inhabiting colder 
areas along the west coast of Norway appeared to present higher 
proportion of sneaker males, slower growth rates, and delayed mat‐
uration (Halvorsen et al., 2016). Despite such differences in life‐
history traits, we found no evidence for assortative mating in the 
mesocosm. The presence of sneaker males had positive effects on 
offspring production (Table 5 and 6) and the effective Nb (Table 7). 
These results support previous studies suggesting an important role 
of sneaker males in sexual size dimorphism and for reproductive suc‐
cess	 (Perrier,	 Normandeau,	 Dionne,	 Richard,	 &	 Bernatchez,	 2014;	
Stiver	et	al.,	2018;	Weir,	Kindsvater,	Young,	&	Reynolds,	2016).	The	
shorter life span advocated for southern populations (Halvorsen et 
al., 2016) may have led to high mortalities of wrasses of south or‐
igin prior to the spawning event. However, this hypothesis seems 
unlikely to explain the low contribution of the southern population 
considering the facts that (a) several breeders of both west and 
south origin were found alive 2 years after the spawning event took 
place, when the basin was emptied; and (b) many breeders of south 
origin only mated with fish from the west coast but not with their 
southern counterparts (Figure 1).

Our findings provide information on the mating behavior of cork‐
wing wrasse and insight into the putative consequences of inten‐
tional large‐scale wild fish translocations on non‐salmonid marine 
species. We confirmed that translocated wrasses with significantly 
different phenotypic and genetic profiles to local populations can 
and	 do	 interbreed	 with	 local	 specimens.	 Faust	 et	 al.	 (2018)	 sug‐
gested that the proportion of translocated‐origin wrasses neighbor‐
ing a salmon farm in the west coast of Norway may reach almost 
40%	and	our	findings	provide	highly	relevant	information	pertaining	
to the issue of hybridization and introduction of exogenous genes 
in such situations. Similarly to corkwing wrasse, intraspecific geo‐
graphic variance in genetic and phenotypic traits has been also re‐
ported on goldsinny and ballan wrasse, the other two main cleaner 
wrasses used by the salmon industry (Halvorsen et al., 2016; Jansson 
et	al.,	2017;	Leclercq,	Grant,	Davie,	&	Migaud,	2014;	Sayer,	Gibson,	
et al., 1996). Hence, considering that millions of cleaner wrasses are 
annually translocated in Norway (Iversen, 2016) and the UK (Riley 
et al., 2017) and released inadvertently and intentionally when the 
net pens are emptied (Blanco Gonzalez & de Boer, 2017), our re‐
sults should bring awareness of the putative threat pose by wrasse 
translocations on fitness performance and the long‐term evolution‐
ary potential of recipient populations (Araki, Cooper, & Blouin, 2007; 
Araki et al., 2009; Eldridge & Naish, 2007; Glover et al., 2017; Laikre 
et al., 2010).
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