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Introduction: Proteinuria contributes to progression of renal damage, partly by

complement activation on proximal tubular epithelial cells. By pattern recognition,

properdin has shown to bind to heparan sulfate proteoglycans on tubular epithelium

and can initiate the alternative complement pathway (AP). Properdin however, also

binds to C3b(Bb) and properdin binding to tubular cells might be influenced by the

presence of C3b(Bb) on tubular cells and/or by variability in properdin proteins in vitro.

In this study we carefully evaluated the specificity of the properdin – heparan sulfate

interaction and whether this interaction could be exploited in order to block alternative

complement activation.

Methods: Binding of various properdin preparations to proximal tubular epithelial cells

(PTEC) and subsequent AP activation was determined in the presence or absence of

C3 inhibitor Compstatin and properdin inhibitor Salp20. Heparan sulfate proteoglycan

dependency of the pattern recognition of properdin was evaluated on PTEC knocked

down for syndecan-1 by shRNA technology. Solid phase binding assays were used

to evaluate the effectivity of heparin(oids) and recombinant Salp20 to block the pattern

recognition of properdin.

Results: Binding of serum-derived and recombinant properdin preparations to PTECs

could be dose-dependently inhibited (P < 0.01) and competed off (P < 0.01)

by recombinant Salp20 (IC50: ∼125 ng/ml) but not by Compstatin. Subsequent

properdin-mediated AP activation on PTECs could be inhibited by Compstatin (P <

0.01) and blocked by recombinant Salp20 (P < 0.05). Syndecan-1 deficiency in PTECs

resulted in a ∼75% reduction of properdin binding (P = 0.057). In solid-phase binding

assays, properdin binding to C3b could be dose-dependently inhibited by recombinant

Salp20> heparin(oid) > C3b.

Discussion: In this study we showed that all properdin preparations recognize

heparan sulfate/syndecan-1 on PTECs with and without Compstatin C3 blocking
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conditions. In contrast to Compstatin, recombinant Salp20 prevents heparan sulfate

pattern recognition by properdin on PTECs. Both complement inhibitors prevented

properdin-mediated C3 activation. Binding of properdin to C3b could also be blocked

by heparin(oids) and recombinant Salp20. This work indicates that properdin serves as

a docking station for AP activation on PTECs and a Salp20 analog or heparinoids may

be viable inhibitors in properdin mediated AP activation.

Keywords: complement, properdin, C3, Salp20, syndecan-1

INTRODUCTION

Proteinuria is caused by the passage of proteins through the
damaged glomerular filtration barrier and is an independent
prognostic factor for the progression of chronic renal failure
to end stage renal disease (1). Several mechanisms have been
postulated on how proteinuria causes renal damage, one of
them being via tubular complement activation. Evidence for
involvement of the complement system in renal damage was
already shown in 1985 by the finding of C3 deposits on the
proximal tubular epithelial cells (PTECs) of nephrotic patients
(2). Ultrafiltration of complement factors under proteinuric
conditions may lead to alternative pathway activation within the
renal tubules. This may be explained by the absence of a number
of complement regulatory proteins on the apical membrane
including decay accelerating factor (DAF), complement receptor
1 (CR1), and membrane cofactor protein (MCP) (3, 4)
Complement regulatory protein CD59 is present on the brush
border of proximal tubules, albeit weakly expressed (4). As a
result, failure to downregulate the complement cascade might
lead to tubular epithelial damage under proteinuric conditions.

The complement system consists of three pathways; the
lectin pathway (LP), classical pathway (CP) and alternative
pathway (AP). The LP and CP are initiated by pattern
recognition molecules (e.g., MBL and C1q), whereas the current
conception of the AP is thought to be a purely auto-activating
route, via the spontaneous or induced formation of fluid-
phase AP C3 convertase (5, 6). The three pathways merge
at the formation of a C3 convertase, the major enzymes of
the cascade (7, 8). For the CP and LP this is the C4bC2a
complex, whilst in the AP the C3bBb complex is formed. The
C3bBb complex is relatively unstable in plasma and requires
stabilization by properdin, the only known positive regulator
of the complement system (9). Properdin consists of seven
thrombospondin repeat domains TSR0-TSR6 beginning at the
N-terminus (10). However, understanding the complex biology
of properdin has proven to be difficult due to the different
sources of properdin used in biochemical studies and also
its intricate self-associations. Through head-to-tail interactions
of monomeric subunits, properdin can form cyclic dimers,
trimers and tetramers under physiological conditions (11, 12).
Additionally, non-physiological high molecular weight polymers
can also form during long term storage and freeze/thaw
cycles (12, 13). Moreover, stored properdin in the granules
of neutrophils, which is released upon cell stimulation, may
be structurally different than serum properdin either in its

multimeric structure or in its posttranslational modifications
(14, 15).

In the AP auto-activating theory it was thought that stabilizing
the C3bBb complex was the only function of properdin. However,
in the past decade data has accumulated stating that properdin
can act as a pattern recognition molecule on PTECs, apoptotic,
necrotic and bacterial cells (9). As ligands for properdin DNA
and glycosaminoglycans have been proposed (16, 17). However,
this theory was questioned by Harboe et al. since they showed
that properdin binding to granulocyte MPO, endothelial cells
andNeisseriaMeningitidis is completely dependent on initial C3b
binding, raising doubt on the conclusions of formerly published
work (18). Their conclusion was based on properdin binding
experiments in the presence or absence of Compstatin (18), a
circular peptide inhibiting the cleavage of C3 into C3a and C3b.
On the other hand, studies by the group of Van Kooten et al. in
mice demonstrated that properdin can be found in glomeruli of
C3 knockout mice during anti glomerular basement membrane
disease indicating that C3 is not essential for properdin binding
to tissues (19).

In proteinuric patients, AP activation has been linked to
the presence of properdin on the PTEC brush border and
in vitro binding of properdin and subsequent complement
activation on HK-2 cells has also been shown. However,
this is not the case for endothelial cells (20). In addition,
urinary properdin excretion is associated with renal complement
activation and worsening renal function (21, 22). More recently,
our group showed that the binding of properdin to HK-2 cells
is dependent on heparan sulfates (HS), since pretreatment of
the cells with heparitinase abolished the binding of properdin
(23). Moreover, competition experiments with heparin and
non-anticoagulant heparinoids could reduce the binding of
properdin to HK-2 cells, showing the treatment potential of
heparinoids in AP mediated proteinuric damage (24). Co-
localization of properdin with syndecan-1 on PTECs in an
adriamycin induced nephropathy model suggested a role for the
heparan sulfated proteoglycan (HSPG) syndecan-1 in the tubular
binding of properdin (23). Syndecan-1 is a major membrane
spanning HSPG in epithelial cells and has been shown to be
upregulated on tubular epithelium in renal disease (25). Our
group has previously shown that syndecan-1 expression on
tubular epithelium correlates with activation of renal repair
mechanisms (26), and that syndecan-1 deficiency in human
tubular epithelial cells leads to reduced proliferation (25).
However, a direct role for syndecan-1 in complement activation
has never been described.
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Although the AP has been shown to play a role in numerous
diseases, no specific inhibitor for the AP is yet available.
Salp20 is a protein derived from the deer tick Ixodes scapulari
and has been shown to inhibit the AP via the displacement
of properdin from the alternative pathway C3 convertase.
This causes an accelerated decay of the C3bBb complex and
subsequent inhibition of the AP by up to 70% (27, 28). In
vivo, treatment with Salp20 in mice showed a reduction of
AP mediated damage in ovalbumine-induced asthma, elastase-
induced abdominal aortic aneurysm and after intraperitoneal
injections with LPS (29). However, to the best of our knowledge,
no experiments have been performed which assess the inhibition
of the pattern recognition of properdin using Salp20. Therefore,
in this study we investigated the interactions of properdin with
PTECs, followed by AP activation and the inhibitory effects of
Compstatin, Salp20 and heparinoids. To investigate the binding
capacity of properdin from different sources and subsequent
AP activation, experiments were performed with either normal
human serum as a source of properdin, biochemically purified
properdin and recombinant full length properdin.

METHODS

HK-2 Cells
The immortalized human kidney proximal tubular epithelial
cell line HK-2 was obtained from ATCC (Manassas VA, USA).
Cells were cultured in DMEM/F12 medium 1:1 (Invitrogen,
Carlsbad, CA, USA), supplemented with 5µg/ml insulin,
5µg/ml transferrin, 5µg/ml selenium, 36 ng/ml hydrocortisone,
10 ng/ml epidermal growth factor (All purchased from Sigma,
Zwijndrecht, The Netherlands), and 50 U/ml penicillin, 50µg/ml
streptomycin and 25mM Hepes (All purchased from Invitrogen,
Carlsbad, CA, USA).

Syndecan-1 Knockout Cell Line
Production of the syndecan-1 knockout HK-2 cell line by shRNA
technology has been described before (25, 30, 31). To confirm
syndecan-1 knockdown and to evaluate the binding of properdin
to wild type HK-2 cells or syndecan-1 knockout HK-2 cells,
syndecan-1 expression and properdin binding on wild-type and
syndecan-1 deficient HK-2 was determined by flow cytometry.
Cells were plated in 6-wells cell culture plates at 37◦C and
were detached using cell dissociation solution (C5789, Sigma R©,
Zwijndrecht, The Netherlands), 900 µL/well at 37◦C until cells
were detached. Cells were collected in 4.5mL tubes containing
2mL cell medium, centrifuged at 300 × g for 5min at 4◦C and
washed with ice-cold phosphate-buffered saline (PBS)/1% bovine
serum albumin (BSA) (FACS buffer) (Sigma R©, Zwijndrecht,
The Netherlands). Cells were subsequently incubated with Alexa
Fluor R©647 mouse anti-human anti-syndecan-1 (CD138; Bio-
Rad/AbD Serotec, California, USA) antibody in FACS buffer
on ice, or purified properdin (human factor P, Millipore,
Cat 341283-250 1.1mg/mL) followed by rabbit anti-human
properdin, prepared as described before (20), and goat anti-
rabbit FITC (Southern Biotech, Birmingham, USA) in FACS
buffer on ice in the dark. After washing, cells were resuspended
in 300 µL of FACS buffer and analyzed in a FACSCaliburTM

(FACSCalibur, BectonDickinson, New Jersey, USA). The purified
properdin used was stored at −80◦C and thawed only once for
the experiments. Non-relevant mouse IgG served as an isotype
control. Experiments were independently repeated 4 times. The
percentage reduction was calculated as reduction in % = 100–
[(MFI KO× 100)/MFI wild type].

Binding of Properdin to HK-2, Alternative
Pathway Complement Activation and
Inhibition by Compstatin
Properdin binding to the immortalized human kidney proximal
epithelial cell line HK-2 was tested using properdin from various
sources. Normal human serum (NHS) from a healthy volunteer
with normal classical, alternative and lectin pathway activity, as
detected by functional ELISA and determined before, was used as
a serum properdin source (32). Concentrations of 5, 20, and 50%
NHS diluted in DMEM/F12 culture medium were tested. Also
purified properdin (human factor P, Millipore, Cat 341283-250
1.1 mg/mL) and recombinant full length properdin, produced
in HEK E+ cells resulting in the same N-linked glycanation as
plasma properdin, were used. Recombinant properdin had the
physiological 1:2:1 ratio and did not contain non-physiological
aggregates after purification. The recombinant properdin was
aliquoted and stored at −80◦C and thawed only once for the
experiments (33).

Confluent HK-2 were cultured on a 6-well tissue culture
plate and incubated for 36–48 h with 10µg/ml Compstatin that
was not exposed to freeze-thaw cycles before (a kind gift from
professor J. D. Lambris, University of Pensylvania, Philadelphia,
PA, United States) to prevent eventual C3b deposition. Cells
were detached using cell dissociation solution (C5789, Sigma R©,
Zwijndrecht, The Netherlands), 900 µl/1mL at 37◦C, collected in
4.5mL tubes containing 2mL cell medium and centrifuged twice
at 250 g for 6min at 20◦C. For Compstatin mediated inhibition
assays, cells were incubated with heat inactivated NHS in a serial
dilution of 5, 20, or 50%NHS, purified properdin or recombinant
properdin in the presence or absence of 10µg/ml Compstatin
for 30min at 37◦C. Hereafter, cells were centrifuged for 6min at
250 g at 20◦C. To detect bound properdin, cells were incubated
with rabbit anti-human properdin (20), followed by goat anti-
rabbit FITC (Southern Biotech, Birmingham, USA) in FACS
buffer on ice in the dark.

To explore alternative pathway complement activation the
same procedure as described above was followed. Subsequent to
the incubation of properdin from NHS, purified properdin or
recombinant properdin, cells were washed twice at 250 g without
a break for 6min at 20◦C and were incubated in the presence or
absence of 5% serum as a complement source for 45min at 37◦C.
After incubation, cells were washed once with 2mL 20◦C FACS
buffer at 250 g for 6min at 4◦C and once with 2mL 4◦C FACS
buffer at 250 g without a break for 6min at 4◦C.

To detect activated C3, cells were incubated with mouse anti-
human activated C3 recognizing C3b, iC3b, and C3c fragments
(Clone bH6, HM2168S, Hycult biotech, Uden, The Netherlands)
for 30min on ice. Cells were washed twice with ice cold FACS
buffer, centrifuged at 250 g for 6min at 4◦C, and incubated
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goat anti-mouse FITC (Purchased from Southern Biotech,
Birmingham, USA) for 30min on ice in the dark. Propidium
iodide 1µg/ml (Molecular Probes, Leiden, The Netherlands) was
added just before measuring to be able to exclude apoptotic and
necrotic cells. Properdin binding and activated C3 deposition
on viable non-apoptotic cells were analyzed in a FACSCaliburTM

(FACSCalibur, Becton Dickinson, New Jersey, USA). Results are
from six independent experiments.

Inhibition of Binding of Properdin to C3b
Competition ELISA was used to evaluate whether heparin-
albumin (200 kDa), unfractionated heparin (15–18 kDa), low
molecular weight (LMW)-heparin (4.5 kDa), C3b (185 kDa), and
recombinant Salp20 (48 kDa) inhibit the binding of properdin
to immobilized C3b. Heparin-albumin was from Sigma-Aldrich
(Saint Louis, MO, USA). According to the data sheet, this
artificial proteoglycan contained 4.8 moles heparin per mole
albumin, with a protein content of 55%. Maxisorp 96-well
flat bottom microtiter plates (U96 from Nunc International,
Amsterdam, The Netherlands) were coated overnight with
1µg/ml C3b in PBS at 4◦C. C3b was purified as described before
(34). After washing in PBS, wells were blocked with 1% BSA in
PBS for 1 h at 37◦C. A concentration range of heparin-albumin,
unfractionated heparin, LMW-heparin, C3b or recombinant
Salp20 was pre-incubated with 62.5 ng/ml properdin (Millipore,
Billerica, Massachusetts, USA) in PBS, 0.05% Tween and 1% BSA
for 15min at room temperature. Thereafter the co-incubated
heparin-albumin, unfractionated heparin, LMW-heparin, C3b
and recombinant Salp20, together with properdin, was incubated
on the C3b coated plate for 1 h at 37◦C. Binding of properdin
was detected with biotinylated rabbit anti-human properdin
1:3,000 diluted in PBS, 0.05% Tween and 1% BSA. After washing,
streptavidin HRP (DAKO, Glostrup, Denmark) 1:5,000 was
added to the plate and incubated for 1 h. Substrate reaction was
performed with 3.3’,5.5’-tetramethylbenzidine substrate (Sigma,
Zwijndrecht, The Netherlands) for 15min in the dark, and the
reaction was stopped by adding 1.5N H2SO4. Absorbance was
measured at 450 nm in a microplate reader. All incubations were
carried out in a volume of 100 µl/well. The experiment was
independently repeated 3 times.

Dose Dependent Block and Dose
Dependent Competition of Properdin
Binding to HK-2 by Recombinant Salp20
To evaluate whether recombinant Salp20 can inhibit the binding
of properdin to the immortalized human kidney proximal
epithelial cell line HK-2, cells were cultured in 6-well tissue
culture plates. Cells were detached with cell dissociation solution
as described previously, transferred into a 5mL FACS tube
with medium and centrifuged at 200 g for 7min at 20◦C.
After washing, cells were incubated with a serial dilution of
recombinant Salp20 of 0, 125, 250, 500, 1,000, or 8,000 ng/mL
recombinant Salp20 together with 10µg/mL purified properdin
for 30min at 37◦C.

To evaluate whether recombinant Salp20 can dose-
dependently compete off bound properdin and the activation of

C3 and C5b-9 on HK-2, cells were also cultured in a 6-well tissue
culture plates. Cells were detached with cell dissociation solution
as described before, transferred into a 5mL FACS tube with
medium and centrifuged at 200 g for 7min at 20◦C. Cells were
incubated with or without 10µg/mL purified properdin (human
factor P, Millipore, Cat 341283-250 1,1 mg/mL) for 30min at
37◦C. Cells were washed twice at 200 g for 7min at 20◦C and
incubated with a serial dilution of pre-incubated recombinant
Salp20 of 0, 32, 125, and 500 ng/mL together with 5% NHS for
1 h at 37◦C.

To detect bound properdin, activated C3 or neoantigen
C9 (as a measure of C5b-9 formation), cells were incubated
with either rabbit anti-human properdin, mouse anti-human
activated C3 (Clone bH6, HM2168S, Hycult biotech, Uden, The
Netherlands), or with mouse anti-human neoantigen C9 (Clone
WU13-15, HM2264, Hycult biotech, Uden, The Netherlands),
for 30min on ice. Cells were washed with ice cold FACS
buffer, centrifuged at 250 g for 6min at 4◦C, and incubated
with goat anti-rabbit FITC or goat anti-mouse FITC (both
purchased from Southern Biotech, Birmingham, USA) for 30min
on ice in the dark. Propidium iodide 1µg/ml (Molecular Probes,
Leiden, The Netherlands) was added just prior to measurement
in order to exclude apoptotic cells. Properdin binding and
activated C3 deposition on non-apoptotic cells were analyzed in
a FACSCaliburTM (FACSCalibur, Becton Dickinson, New Jersey,
USA). Experiments were repeated independently two times.
The percentage effect was calculated based on the control data
(0 ng/mL Salp20 + 10µg/mL purified properdin) in median
fluorescence intensity (MFI), % inhibition = 100–(MFI test
result/MFI control)× 100.

Statistics
GraphPad Prism version 7.02 was used for statistical analyses.
Data was examined by one-way ANOVA and the Mann-
Whitney-U test and the Wilcoxon rank sum test were used as
appropriate for the different experiments. A P-value <0.05 was
considered statistically significant.

RESULTS

Properdin From Various Sources Binds
With PTECs in vitro and Functions as a
Docking Station for Alternative Pathway
Complement Activation
Properdin binding to PTECs using properdin present in normal
human serum, purified properdin and recombinant properdin
was tested to investigate differences in properdin binding
and complement activation between different preparations.
Incubation for 30min with 50% normal human serum (NHS),
purified properdin and recombinant properdin, resulted in
substantial binding of properdin detected by flow cytometry.
Untreated samples served as a control. Means in median
fluorescence intensity (MFI) were 35, 158, 68, and 7, respectively.
Binding of all preparations was statistically different (P = 0.02,
P = 0.005, P = 0.049, respectively) when compared as fold
change (fold change = MFI treated cells/MFI untreated cells)
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FIGURE 1 | Properdin from various sources bind with PTEC in vitro and functions as docking station for alternative pathway complement activation. (A) Properdin

present in 50% normal human serum (NHS), purified properdin and recombinant properdin show binding with PTEC in comparison to the negative control. Data

presented as fold change compared to the untreated control and analyzed by the Wilcoxon trank sum test (*P < 0.05, **P < 0.01). Asterisks above the capped lines

denote significant differences between the untreated samples and the properdin binding from different sources (n = 10). (B) Representative flow cytometry experiment

for properdin binding from 50% NHS (red line), purified properdin (blue line) and recombinant properdin (purple line) in comparison the untreated sample (green line).

Data represented as % max (data normalized for the peak at 100%). (C) Complement C3 activation via properdin from NHS, purified properdin and recombinant

properdin shows complement activation via the alternative pathway. Data presented as fold change compared to the untreated control and analyzed as described in

(A) (n = 6). (D) Representative flow cytometry experiment for complement C3 activation via NHS (red line), purified properdin (blue line), recombinant properdin (purple

line) and the untreated sample (green line).

to the untreated control. No statistically significant differences
were found between recombinant properdin vs. either purified
properdin or NHS (P = 0.24 and P = 0.11). A significant
difference was found between 50% NHS vs. purified properdin
(P = 0.049) (Figures 1A,B). In the presence of NHS as a
complement source, deposition of activated C3 followed the
same pattern (Figures 1C,D). Means in MFI were 31, 72, 16,
and 6 for NHS, purified properdin, recombinant properdin
and the untreated sample, respectively. Activated C3 deposition
were statistically different (P = 0.005, P = 0.01, P = 0.01,
respectively) when compared as fold change (fold change =

MFI treated cells/MFI untreated cells) to the untreated control
for all preparations. No statistically significant differences were
found for activated C3 deposition between purified properdin
vs. recombinant properdin (P = 0.07), NHS vs. recombinant

properdin (P = 0.06) or NHS vs. purified properdin (P
= 0.17). As properdin may serve as the docking station
for AP complement activation and to unravel the role of
properdin in C3 activation on PTEC, we decided to further
investigate complement activation on PTECwith and without C3
inhibitor Compstatin.

AP Activation but Not Properdin Binding to
PTECs Can Be Inhibited by Compstatin
HK-2 cells were incubated with Normal Human Serum (NHS) as
a source of properdin in increasing concentrations of 5, 20, and
50%. Binding of properdin from serum to HK-2 was not affected
by pre-incubation and co-incubation with the C3 inhibitor
Compstatin, demonstrating that properdin binding with HK-
2 cells is independent of the presence of C3b (5% NHS; P =
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FIGURE 2 | Properdin binding with PTECs in vitro is not mediated via C3b. (A) Properdin binding from serum is not influenced by co-incubation with compstatin. Bars

represent a serial dilution of 5, 20, and 50% NHS. (B) C3 complement activation mediated by properdin from serum is completely inhibited by compstatin.

(C) Properdin binding purified from plasma is not influenced by compstatin. (D) C3 complement activation by purified properdin is completely inhibited by compstatin.

(E) Recombinant properdin binding is not influenced by compstatin. (F) C3 complement activation by recombinant properdin is inhibited by compstatin. All graphs are

normalized by the sample without compstatin but with NHS (A,B) or purified properdin with NHS (C,D) or recombinant properdin with NHS (E,F). Data were analyzed

by the Mann-Whitney U test with an option of multiple comparison (*P < 0.05, **P < 0.01, ***P < 0.001). Asterisks above the capped lines denote significant

differences between the sample without Compstatin but with NHS (A,B) or purified properdin with NHS (C,D) or recombinant properdin with NHS (E,F) and the same

sample with Compstatin. N = 6 for all experiments.

0.82, 20% NHS; P = 0.49 and 50% NHS; P = 0.42) (Figure 2A).
Measurement of activated C3 deposition on HK-2 cells after
incubation with NHS confirmed the functionality of Compstatin,
since no increase in activated C3 deposition was seen during co-
incubation with Compstatin (5% NHS; P = 0.04, 20% NHS; P
= 0.04 and 50% NHS; P= 0.0002) (Figure 2B). This implies that
properdin might act as a pattern recognition molecule on PTECs.

Similarly, when purified properdin or recombinant properdin
was used as a source of properdin, pre-incubation and co-
incubation of properdin with Compstatin did not affect the
binding of properdin on HK-2 cells, further strengthening the
finding that properdin binding to PTECs is independent of
prior C3b deposition (P = 0.23 and P = 0.50, respectively)
(Figures 2C,E). Co-incubation of serum with Compstatin after
incubation of HK-2 cells with purified properdin or recombinant
properdin resulted in the inhibition of activated C3 deposition,
verifying the C3 inhibitory potential of Compstatin (P < 0.0001
and P = 0.002 respectively) (Figures 2D,F). In order to confirm
the absence of C3 components (including C3b) on the PTEC cell
surface to which properdin in NHS can bind, PTEC were stained
for activated C3 (recognizing the cleavage fragments of C3b,
iC3b, and C3c) before and after NHS treatment with and without
pre-incubation with Compstatin (Supplementary Figure 1). C3
components were not detectable on untreated PTEC when
compared to the background staining (P = 0.48). In conclusion,

flow cytometry showed that properdin binds to HK-2 cells
independent of C3b and regardless of properdin source.

Binding of Properdin to Proximal Tubular
Epithelial Cells Is Partly Mediated by
Syndecan-1
In former studies it was shown that heparitinase I
treatment of HK-2 cells obliterated properdin binding, while
immunofluorescent staining showed co-localization of properdin
with syndecan-1 in vivo on tubular epithelium under nephrotic
conditions (23). To identify the binding site of properdin
on tubular cells, we tested properdin binding capacities of
syndecan-1 silenced cells by short hairpin RNA technology.
Stably transfected HK-2 Synd1−/− cells showed∼80% reduction
in syndecan-1 expression (Figure 3A). TheHK-2 Synd-1−/− cells
show a ∼70% reduced properdin binding potential compared to
HK-2 WT cells(P= 0.057) (Figures 3B,C).

AP Activation and Properdin Binding to
PTECs Can Be Inhibited by Recombinant
Salp20
It has been described that Salp20 (a deer tick protein) functions
as a properdin-blocking agent, displacing properdin from the
C3-convertase (27). To evaluate whether Salp20 inhibits the
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FIGURE 3 | Properdin binding with PTEC in vitro is largely via syndecan-1 associated heparan sulfate. (A) A representative experiment showing high expression of

syndecan-1 in PTEC wild type (turquoise) and >80% less expression of syndecan-1 in syndecan-1 KO PTEC (Green). (B) A representative experiment showing strong

properdin binding to PTEC wilde type (turquoise) and ∼75% less properdin binding to syndecan-1 KO PTEC (Green). The purple color represents the antibody binding

of the isotype control. X-axis is a logarithmic scale, MFI noted in the figure. Data represented as % max (data normalized for the peak at 100%). (C) Syndecan-1

deficient cells show a reduction in properdin binding compared to HK-2 WT cells the difference was borderline significant (n = 4, P = 0.057). Data is expressed as

mean ± SEM.

binding of properdin to HSPGs, resulting in inhibition of
properdin’s pattern recognition capacity of HSPGs, we co-
incubated recombinant Salp20 with properdin in absence of
activated C3 and measured the binding of properdin to heparin-
albumin. Increasing concentrations of recombinant Salp20
showed dose dependent inhibition of properdin to heparin-
albumin with an IC50 of 18 ng/ml (Figure 4A). Thus, showing
that Salp20 indeed inhibited the binding of properdin to
an HSPG analog, abolishing pattern recognition of HSPGs
by properdin.

Recombinant Salp20 was also tested for properdin binding
and AP inhibitory potential on HK-2 cells by flow cytometry.
Incubation of 10µg/mL purified properdin, in the absence
of activated C3 conditions, led to properdin deposition on
the HK-2 cells, while recombinant Salp20 led to a dose
dependent reduction in binding of purified properdin to the
cells (Figures 4B,C). An inhibitory effect of 70% was achieved
when incubating the cells with 500 ng/ml recombinant Salp20
(P = 0.01) and an inhibitory effect of 98% (P = 0.0003)
when incubating the cells with>1,000 ng/ml recombinant Salp20
(Figure 4C).

The dose dependent capacity of recombinant Salp20 to
displace cell-bound properdin was also tested by flow cytometry.
After pre-incubation with purified properdin, HK-2 cells were
incubated with an increasing concentration of up to 500 ng/ml
of Salp20 and NHS. Recombinant Salp20 dose-dependently
displaced bound properdin with an inhibitory effect of 90% with

500 ng/ml Salp20 (P = 0.003) (Figure 5A). Recombinant Salp20
was also effective in the inhibition of AP activation, shown by
dose-dependent reduction of activated C3 and C5b-9 deposition.
Concentration dependent reduction of activated C3 and C5b-
9 deposition by recombinant Salp20, showed a similar pattern
compared to properdin binding (Figures 5B,C). The maximum
concentration of recombinant Salp20, 500 ng/ml, resulted in an
inhibition of 80% in activated C3 deposition (P = 0.02) and
90% in C5b-9 deposition (P = 0.006) compared to the non-
inhibited control.

Inhibition of Properdin to C3b by Heparins,
C3b and Recombinant Salp20
In the experiments described up to now we evaluated the
properdin – syndecan-1/HS interaction as a focus point for
intervention. In a last series of experiments, we evaluated the
properdin-C3b interaction as a target point. Thus, we set out
a series of competition experiments using the potential dose-
dependent inhibitory activity of heparins, C3b or recombinant
Salp20 on properdin binding to immobilized C3b. The
results of the binding assay showed that heparin-albumin,
unfractionated heparin, C3b and recombinant Salp20 inhibit
properdin binding to C3b in a dose-dependent manner. (IC50
8.6 ng/mL for heparin-albumin, 63.4 ng/mL for unfractionated
heparin, >1,000 ng/mL for LMW-heparin, 6,484 ng/mL for C3b
and 33.5 ng/mL for recombinant Salp20). Also, the inhibitory
capacity depends on the size of the heparin products (IC50
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FIGURE 4 | Properdin binding to heparin-albumin in ELISA and to HK-2 cells can be dose-dependently blocked by recombinant Salp20. (A) Pre-incubation of

properdin with Salp20 dose-dependently reduced properdin binding to immobilized heparin-albumin. Dotted line in figure A represents the IC50. Experiments were

independently repeated in duplicate. (B) A representative flow cytometry experiment shows that properdin co-incubation with 1,000 ng Salp20 reduces properdin

binding to HK-2 in comparison to properdin incubation with HK-2 without SALP20. (C) Quantitative analysis of multiple experiments (n = 3) shows that recombinant

Salp20 significantly blocks the binding of properdin to HK-2 per dose. Data were analyzed by Mann-Whitney U test with an option of multiple comparison (*P < 0.05,

**P < 0.01). Asterisks above the capped lines denote significant differences between the untreated samples and the recombinant Salp20 inhibition with different

concentrations.

0.000043 nmol/mL for heparin-albumin, 0.004 nmol/mL for
unfractionated heparin, >22.2 nmol/mL for LMW-heparin).
Heparin has a lower IC50 compared to C3b (IC50 0.004
nmol/mL vs. IC50 0.035 nmol/mL). Recombinant Salp20 has
a lower IC50 compared to heparin (IC50 0.0007 nmol/mL vs.
IC50 0.004 nmol/mL, respectively) (Table 1). These data show
that unfractionated heparin and recombinant Salp20 not only
compete for properdin binding with heparan sulfates, but also for
properdin binding with C3b.

DISCUSSION

In this study we provide evidence that properdin functions
as a pattern recognition protein on PTECs where the binding
is largely mediated via syndecan-1 associated heparan sulfate
and is C3b-independent. Furthermore, we show that the
tick protein Salp20 effectively blocks the heparan sulfate
mediated pattern recognition by properdin, pointing toward the

potential for therapeutic interventions at the tubular level in
proteinuric conditions.

It has long been assumed that properdin, next to its
stabilizing role of the alternative C3 convertase, could act as
a pattern recognition molecule. We have shown previously
that during proteinuria, properdin recognizes and binds to
heparan sulfate proteoglycans (HSPG) on tubular epithelial
cells (23). Our results in this study using the C3 inhibitor
Compstatin, show that Compstatin can inhibit complement
activation and therefore C3b deposition, but cannot preclude
the deposition of properdin on PTECs. We display that
this finding does not materially differ between properdin
sources, including recombinant properdin. The latter confirms
that our finding is robust, since different properdin isolates
might differ in purity, conformation, multimerization, post-
translational modifications, and the eventual presence of other
co-purified or properdin-bound proteins. However, properdin
in purified preparations is prone to aggregation which can be
avoided to a certain extend by storage at 4◦C for up to 2
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FIGURE 5 | Recombinant Salp20 dose-dependently competes with HK-2 bound properdin, thereby preventing AP complement activation. (A) PTECs were incubated

with purified properdin followed by incubation with NHS and increasing concentrations of Salp20. Bars show quantitative analysis of multiple experiments (n = 2).

Density plots of a representative experiment show the shift in PTEC-bound properdin in the presence of 500 ng/ml Salp20. (B) C3 activation can be dose dependently

inhibited by recSALP20. The same experimental set up as in (A), but now C3 activation was detected. (C) C5b-9 activation can be dose dependently inhibited by

Salp20. The same experimental set up as in (A,B), but now C5b-9 activation was detected. Data were analyzed by Mann-Whitney U test with an option of multiple

comparison (*P < 0.05, **P < 0.01). Asterisks above the capped lines denote significant differences between the untreated samples and the recombinant Salp20

inhibition with different concentrations.
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TABLE 1 | Inhibition of properdin binding to C3b; IC50, Concentration causing

50% properdin binding inhibition expressed in ng/mL and nmol/mL.

Coating Inhibitor IC50 ng/mL IC50 nmol/mL

C3b Heparin-albumin 8.6 ng/mL 0.000043 nmol/mL

Unfractionated heparin 63.4 ng/mL 0.004 nmol/mL

LMW-heparin >1,000 ng/mL >22.2 nmol/mL

C3b 6,484 ng/mL 0.035 nmol/mL

Salp20 33.5 ng/mL 0.0007 nmol/mL

IC50 was calculated by non-linear regression with curve fitting in GraphPad Prism.

weeks without any additional freeze/thaw cycles (12, 35). Our
properdin preparations were exposed to one freeze/thaw cycle
and our preparations could therefore contain non-physiological
aggregates. However, since unpurified properdin present in
serum essentially showed the same binding to PTECs as
purified and recombinant properdin, it is unlikely that properdin
aggregates importantly contributed to our findings. Therefore,
irrespective of the source, all experiments indicate a real C3b-
independent binding of properdin to heparan sulfates (HS), most
likely present on the PTEC cell membrane as the polysaccharide
side chains of syndecan-1. These findings are in agreement with
experimental studies in C3 knockout mice demonstrating C3
deposition in glomeruli of mice with anti- GBMdisease, although
the authors did not address the glomerular cell type to which
properdin binds (19).

Conversely, Harboe et al. recently showed that properdin
binding on endothelial cells and Neisseria meningitidis is
dependent on initial C3 deposition (18). Consequently, our
findings reopen the discussion whether properdin is a true
pattern recognition molecule of the alternative pathway (AP).
Pattern recognition of properdin has been indicated in other
properdin interactions as well. Properdin binding to DNA and
glycosaminoglycans on late apoptotic cells and necrotic cells
has been suggested to be independent of initial C3 deposition
(16, 17). Glycosaminoglycans and DNA share a strong negative
charge, while properdin is strongly positively charged. Therefore,
the interaction of properdin with glycosaminoglycans (and
DNA), is based on charge - charge interactions, as we previously
analyzed in detail (23).

Syndecan-1 and properdin co-localize on PTECs under
proteinuric conditions (23). We present that syndecan-1 may
be a ligand of properdin, using a syndecan-1 deficient HK-2
strain. Syndecan-1 is a major membrane spanning HSPG in
epithelial cells and the interaction of properdin with sulfated
glycosaminoglycans has been long known. In this study we found
a reduced binding of properdin in syndecan-1 deficient HK-
2 cells when compared to HK-2 wild type cells. It is likely
that properdin not only binds to syndecan-1 but also to other
epithelial HSPGs of which syndecan-1 is the most important
properdin binding HSPG. Properdin consists of seven non-
identical trombospondin-1 repeats (TSR), and literature has
shown that a fragment consisting of TSR 4 & 5 forms the binding
site for glycosaminoglycans, but also for C3b (30). Earlier work
already showed that trypsin treatment of properdin, cleaving
the TSR5 in half, results in an inability to bind C3b while

the glycosaminoglycan binding remains intact. This suggests
that TSR5 is the principal C3b binding site for properdin
that receives a co-operative contribution from TSR4 (30, 36).
Recent structural studies revealed TSR5 to be the dominant C3b
binding domain with some contribution of TSR6 (33). Taken
together, these studies showed that the binding site for C3b and
glycosaminoglycans on properdin could be different, but are
more likely very close. We show that inhibition of properdin
to C3b by different heparinoid products is size dependent;
the bigger the better, suggesting that larger heparins sterically
hinder the C3b binding site on properdin as well. We also
show that the deer tick protein Salp20 can inhibit both the
binding of heparin-albumin and C3b to properdin. Salp20 has
previously been shown to displace properdin from the alternative
C3 convertase, resulting in accelerated decay of the convertase
(27). Our results confirm that recombinant Salp20 can inhibit
the binding of properdin to C3b and thereby reduce the AP
activation on PTECs. However, we also show that recombinant
Salp20 can inhibit the binding of properdin to heparin-albumin
and to HS on PTECs, indicating a double inhibitory role for
Salp20 in properdin mediated AP activation, namely inhibition
of the active C3 convertase and inhibition of the initial pattern
recognition function of properdin. The results further strengthen
the data shown by others that C3b and glycosaminoglycans have
a closely related binding epitope on properdin (27). Nevertheless,
further molecular docking studies are needed to unravel the exact
glycosaminoglycan-binding domain of properdin.

It has been demonstrated before that Salp20 can inhibit the
AP of complement in multiple disease models (29, 37). This
could be of major importance in the development of therapeutic
modalities for tubular damage in proteinuric renal diseases. Our
results demonstrate that in this setting, recombinant Salp20 may
not only block the binding of properdin to proximal tubular
epithelial cells, but also compete off properdin that was already
bound to the cells and avoid AP activation, even when the initial
pattern recognition step had already formed. Since properdin-
deficient humans do not show a severely compromised immune
function, apart from an increased risk for meningitis for which
vaccination is possible, blocking properdin seems a relatively safe
approach (38, 39). There are some in vitro and ex vivo studies
describing properdin competing composites and properdin
blocking antibodies in humans, however unexpected results in
animal models teach us that not all lessons have yet been learned
(30, 40–45). Bansal-Gupta et al. described a properdin targeting
monoclonal antibody, showing exclusive AP blocking activity by
influencing the interaction of C3 with properdin in an in vitro
model (40). In addition, Pauly et al. reported the development
of an anti-properdin monoclonal antibody that showed up to
fifteen times more efficiency in blocking the complement cascade
when compared to anti-Ba or anti-C5 antibodies in human
blood samples (41). Currently one anti-properdin antibody is
at the stage of a phase 2 clinical trial (42). However, properdin
doesn’t spill the beans that easily. In contrast to the studies
described above, a protective role for properdin was described
in two separate C3 glomerulopathy (C3G) mouse models. This
is remarkable, as C3G occurs as a result of overactivity of the
AP, leading to glomerular injury. Nonetheless, mice knocked
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FIGURE 6 | Proposed mechanism on a tubular epithelial level of properdin binding to syndecan-1/heparan sulfate and interruption of AP complement activation by C3

cleavage inhibiting peptide Compstatin and properdin inhibitor Salp20. (A) Properdin is depicted in its trimeric form since this is the most abundant form of properdin.

The binding of syndecan-1 is most likely to the trombospondin-1 repeat (TSR) 4 domain of properdin, receiving a cooperative contribution of TSR5. C3b most likely

binds to TSR5, with a cooperative function of TSR4 and TSR6. (B) In the presence of Compstatin, C3 cleavage is inhibited. However, properdin is able to bind to

heparan sulfate proteoglycan syndecan-1. (C) In the presence of Salp20, C3b cannot bind to the TSR5 domain of properdin, nor can properdin bind to syndecan-1.

Figure created with BioRender.com.

out for properdin (and small amounts of truncated factor H)
showed an injury exacerbation with increased accumulation of
C3 along the glomerular basal membrane (44, 45). In conclusion,
discovering the role of properdin remains challenging and not
fully elucidated.

Salp20 is a new kid on the block in the field of properdin
inhibition and since Salp20 is a tick protein, it would be expected
to be strongly immunogenic. Therefore, prior to testing in
animal models, small non-immunogenic molecule analogs of
the Salp20 binding region should be produced and tested in
vitro and in vivo for their AP inhibiting potential. Next to the
inhibitory effect of Salp20, we have also shown in previous work
that heparinoids compete for properdin binding with heparan
sulfates on PTECs (24), and in that study we showed that
non-anti-coagulant heparins also compete for properdin binding
with C3b. This is promising for AP-driven diseases such as
tubular activation secondary to proteinuria. Finally, we also show
that Compstatin does not inhibit the binding of properdin to
PTEC, but does prevent subsequent AP complement activation.
Therefore, Compstatin holds promise in blocking undesired
complement activation in numerous pathogenic conditions. A
possible mechanism of AP complement inhibition on a tubular
level by Compstatin and Salp20 is depicted in Figure 6. Overall,
our study demonstrates the inhibitory effects of Compstatin,
non-coagulant heparins and recombinant Salp20 at the level of
proximal tubular epithelial cells. These results might be of great
importance for reducing proteinuria induced AP activation and
tubular injury.
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