
Frontiers in Immunology | www.frontiersin.

Edited by:
Raphaela Goldbach-Mansky,

National Institutes of Health (NIH),
United States

Reviewed by:
Yogesh M. Scindia,

University of Florida, United States

*Correspondence:
Jun Liang

Liangjun1976@medmail.com.cn
Jinhua Xu

jinhuaxu@fudan.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 15 January 2022
Accepted: 22 March 2022
Published: 21 April 2022

Citation:
Chen Q, Wang J, Xiang M, Wang Y,

Zhang Z, Liang J and Xu J (2022) The
Potential Role of Ferroptosis in

Systemic Lupus Erythematosus.
Front. Immunol. 13:855622.

doi: 10.3389/fimmu.2022.855622

MINI REVIEW
published: 21 April 2022

doi: 10.3389/fimmu.2022.855622
The Potential Role of Ferroptosis in
Systemic Lupus Erythematosus
Qian Chen†, Jie Wang†, Mengmeng Xiang, Yilun Wang, Zhixiong Zhang,
Jun Liang* and Jinhua Xu*

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China

Systemic lupus erythematosus (SLE) is an autoimmune disease that is accompanied with
autoantibody production and inflammation. Other features of SLE pathogenesis include
iron accumulation, oxidative stress, and lipid peroxidation, which are also major
biochemical characteristics of ferroptosis, a novel non-apoptotic regulated form of cell
death. To date, ferroptosis has been demonstrated to be an important driver of lupus
progression, and several ferroptosis inhibitors have therapeutic effect in lupus-prone mice.
Given the emerging link between ferroptosis and SLE, it can be postulated that ferroptosis
is an integral component in the vicious cycle of immune dysfunction, inflammation, and
tissue damage in SLE pathogenesis. In this review, we summarize the potential links
between ferroptosis and SLE, with the aim of elucidating the underlying pathogenic
mechanism of ferroptosis in lupus, and providing a new promising therapeutic strategy
for SLE.
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INTRODUCTION

Systemic lupus erythematosus (SLE), an autoimmune disease, is characterized by autoantibody
production, persistent inflammation, and multiple tissue damage. This condition is induced by
accumulation of cell remnants from various cell death pathways (1). Ferroptosis, a regulated necrosis
process driven by iron-dependent lipid peroxidation, was first coined by Dixon et al. in 2012 (2, 3).
Ferroptosis has been associated with various physiological and pathological processes, including
autoimmunity [e.g., multiple sclerosis (4)], cutaneous diseases [e.g., melanoma (5, 6)] and skin
wounds (7). Li et al. reported that neutrophil ferroptosis contributes to neutropenia and disease
manifestations in SLE (8). The study by Li et al. is the first and only one to directly associate ferroptosis
Abbreviations: SLE, Systemic lupus erythematosus; ROS, reactive oxygen species; LOXs, lipoxygenases; DFO, deferoxamine;
LN, lupus nephritis; NGAL, neutrophil gelatinase-associated lipocalin; MDA, malondialdehyde; HNE, hydroxynonenal; CD,
conjugated dienes; GSH, glutathione; GPX4, glutathione peroxidase 4; AMPK, AMP-activated protein kinase; CoQ10,
coenzyme Q10; ATP, adenosine triphosphate; PBMCs, peripheral blood mononuclear cells; NK cells, natural killer cells;
iNOS, inducible nitric oxide synthase; NETs, neutrophil extracellular traps; pDCs, plasmacytoid dendritic cells, IFN,
interferon, DAMPs, damage-associated molecular patterns; PRRs, pattern recognition receptors; HMGB1, high-mobility
group box 1, AGER, advanced glycosylation end-product specific receptor; UV, ultraviolet; COXs, cyclooxygenases; LDL, low-
density lipoprotein; RTEC, renal tubular epithelial cells; oxLDL, oxidized low-density lipoprotein; HDL, high-density
lipoprotein; FSP1, ferroptosis suppressor protein 1; GCH1, GTP cyclohydrolase-1; BH4, tetrahydrobiopterin; Se, selenium;
TfR, transferrin receptor; PUFA, polyunsaturated fatty acid; PL-PUFA, phospholipid containing polyunsaturated fatty acid
chain; IPP, isopentenyl- pyrophosphate.
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with lupus. Based on evidence from the existing limited number
studies, we postulate that ferroptosis is a missing link in the vicious
cycle of immune dysfunction, inflammation, and clinical
manifestations in lupus. In this review, we elucidate on the
significance of ferroptosis in lupus and how it may lead to
inflammation and clinical manifestations.
THE ROLE OF IRON AND ROS IN
FERROPTOSIS AND SLE

Ferroptosis, a non-apoptotic form of cell death, is characterized by
two major biochemical characteristics: iron accumulation and lipid
peroxidation (9). Iron can directly generate reactive oxygen species
(ROS) through the fenton reaction or increasing the activity of iron-
dependent enzymes such as lipoxygenases (LOXs) or prolyl-
hydroxylases, which are responsible for synthesis of lipid
peroxidation, finally leading to ferroptosis (9). This process can be
suppressed by deferoxamine (DFO), an iron chelator, implying that
iron-dependent ROS is the major cause of ferroptotic cell death (2).

Interestingly, it has been documented that iron metabolism and
lipid peroxidation play crucial roles in autoimmunity (10, 11). Iron
deposition was observed within the kidneys of lupus nephritis (LN)
mice models and during human auto-inflammatory diseases (12,
13). Multiple proteins with abilities to modulate iron homeostasis
have been identified to be urinary SLE biomarkers (12). The
proteins mentioned above include the iron carrier proteins
neutrophil gelatinase-associated lipocalin (NGAL) (14), the iron
storage protein ferritin and the iron transfer protein transferrin (15).
Besides, the end products of lipid peroxidation cascades are
generally recognized as lipid oxidative stress biomarkers, such as
malondialdehyde (MDA), 4-hydroxynonenal (HNE), conjugated
dienes (CD), and isoprostanes (16). These biomarkers were found to
be significantly increased and positively correlated with disease
activity in SLE (17, 18), strongly implicating the important role of
lipid peroxidation in immunomodulation and autoimmunity.
Unregulated oxidative stress in SLE leads to immune dysfunction,
abnormal cell death signals, autoantibody production, and fatal
comorbidities (19, 20).

Importantly, the successful treatment of ferroptosis inhibitors in
lupus-prone mice models provided direct evidence for the role of
ferroptosis in lupus pathogenesis. Hepcidin, a major ironmodulator
and the endogenous protective molecule against ferroptosis (21),
has been shown to decrease free iron availability, reduce the renal
infiltration of macrophages and T cells, and further ameliorate
kidney inflammation, thereby attenuating the severity of LN in
lupus-prone mice models (22). Another ferroptosis inhibitor,
liproxstatin-1, was shown to efficiently suppress lipid ROS levels
in neutrophils and significantly attenuate lupus in mice models (8).
REGULATORY PATHWAYS
OF FERROPTOSIS

The mechanisms and genetic networks regulating ferroptosis are
complex, and are still being elucidated. The glutathione (GSH)-
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glutathione peroxidase 4 (GPX4) antioxidant axis is the core
redox mechanism involved in ferroptosis inhibition. GSH acts as
a necessary cofactor for the normal function of GPX4, an
antioxidant enzyme that scavenges lipid peroxides (23).
Inactivation of GPX4 by GSH depletion results in lipid
peroxidation, ultimately leading to ferroptotic cell death.
Systemx−c (SLC7A11 and SLC3A2) is the most upstream player
in the GSH/GPX4 signaling cascade. Notably, suppressed
intracellular GSH and GPX levels in lupus patients are
correlated with disease severity (24, 25). Reversal of GSH
depletion attenuated disease severity in lupus-prone mice
models (26). GPX4, a selenoprotein family member, requires
selenium, a micronutrient, for its biosynthesis (27). And
selenium deficiency is a risk factor for inflammation and
autoimmunity, conditions that are prevalent in autoimmune
diseases patients (28). GSH-GPX activity could be upregulated
in lupus patients after selenium supplementation (29).

Apart from the GSH-GPX4 axis, various signaling pathways
with the ability to modulate ferroptosis have been identified and
associated with immune modulation and autoimmunity
(Figure 1). AMP-activated protein kinase (AMPK), a sensor of
cellular energy status, plays an energy stress-mediated protective
role against ferroptosis (30), also as a key role in immune related
diseases (31). AMPK activation exerts functions in metformin
treatment of lupus by inhibiting B cell differentiation into
germinal center and plasma cells (32). Another powerful
antioxidant, coenzyme Q10 (CoQ10), which has shown
beneficial effects in autoimmune diseases (33), can suppress
lipid peroxidation and ferroptosis (34). The CoQ10 analog
idebenone has been demonstrated that can attenuate murine
lupus by modulating mitochondrial biology and reducing
inflammation (35).
THE POTENTIAL ROLE OF FERROPTOSIS
IN LUPUS IMMUNITY

Most immune cell types are implicated in SLE pathogenesis,
beyond the activation of B cells (36). The significance of
ferroptosis in immune systems has been reported by various
studies. During maturation, activation, and differentiation of
immune cells, iron metabolism and lipid peroxidation are
important signaling molecules (10, 37). These processes can be
regulated by antioxidant molecules such as GSH and GPX4 (38).
Therefore, we discussed the relationship between ferroptosis and
immunity, with a focus on SLE-associated immune cells.

T cells in lupus patients have been correlated with abnormal
mitochondrial hyperpolarization and adenosine triphosphate
(ATP) depletion, which cause predisposition to death by
necrosis (39). Swollen lymph nodes of lupus patients harbor
increased numbers of necrotic T cells, leading to inflammation
and tissue damage in SLE (39–41). GSH levels are lower in T cells
from patients with SLE, and the reduction degrees of GSH are
associated with mitochondrial hyperpolarization and increased
reactive oxygen intermediates production (42). In particular,
April 2022 | Volume 13 | Article 855622
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increased intracellular iron has been found in lupus CD4+ T cells
compared with healthy controls (43). Based on these findings,
the possibility of ferroptosis, one of the regulated necrosis, to
contribute in lupus T cells can be proposed. Besides, both CD4+

and CD8+ T cells that lack GPX4 would rapidly accumulate
membrane lipid ROS, and undergo ferroptosis, leading to their
inability to expand and protect against viral and parasite
infections (44).

B cells are the central elements of humoral immunity and
protection due to their ability to produce antibodies. Aberrant
activation and differentiation of B cells with pathogenic
autoantibody production are recognized as pivotal roles in the
immunopathogenesis of SLE (45). Compared to hepcidin-treated
lupus mice models, as previously stated, the spleens of vehicle
Frontiers in Immunology | www.frontiersin.org 3
treated group contained anomalous dense iron deposits in B-cell
regions (22). Iron plays an important role in B cell maturation,
germinal center formation and immune responses (46). Higher
ROS levels are essential for the process of B cell activation and
differentiation (37). Lipid peroxidation induced by erastin, the
classical ferroptosis activator, can promote the proliferation and
differentiation of human peripheral blood mononuclear cells
(PBMCs) into B cells and natural killer (NK) cells (47). These
findings imply that ferroptosis may govern B cell differentiation
and activity through lipid peroxidation. Nevertheless, the roles of
ferroptosis in B cells remain unclear. Current research
demonstrated that GPX4 is indispensable for innate-like B cells
rather than follicular B2 cells to prevent ferroptosis (48).
Given the importance and complexity of B cells in lupus
FIGURE 1 | Regulatory pathways of ferroptosis. The figure briefly shows the representative pathways of ferroptosis, which are also involved in immune response and
autoimmunity. GSH-GPX4, FSP1-CoQ10, and GCH1-BH4 pathways are considered as the three major stand-alone mechanisms modulating ferroptosis. The micronutrient
selenium is required for biosynthesis of GPX4. CoQ10 is another important antioxidant molecule which can be reduced to CoQ10H2 by FSP1 and hence protect the cells
from ferroptosis. The GCH1-BH4 axis suppresses ferroptosis by regulating the antioxidant BH4, CoQ10, and lipid peroxidation. In addition, AMPK plays an energy stress-
mediated protective role against ferroptosis. Further, the mevalonate pathway can generate anti-ferroptotic biomolecules such as CoQ10 and IPP to participate in ferroptosis
regulation. FSP1, ferroptosis suppressor protein 1; GCH1; GTP cyclohydrolase-1; BH4, tetrahydrobiopterin; Se, selenium; TfR, transferrin receptor; PUFA, polyunsaturated fatty
acid; PL-PUFA, phospholipid containing polyunsaturated fatty acid chain. IPP, isopentenyl-pyrophosphate.
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development, there is a need to establish the significance of
ferroptosis in B cells.

The function of macrophages is to eliminate pathogens and
maintain immune homeostasis. Activated macrophages are
traditionally classified into two main subsets: the pro-
inflammatory subset (classically activated macrophages, M1) and
the anti-inflammatory subset (alternatively activated macrophages,
M2). Monocytes from SLE patients exhibit a remarkable pro-
inflammatory (M1-like) profile, which is skewed towards the anti-
inflammatory (M2-like) phenotype after recovery (49). Compared
to M2 macrophages, M1 macrophages express higher levels of
inducible nitric oxide synthase (iNOS), leading to higher resistance
to ferroptosis (50). It may explain the imbalance in macrophage
polarization during lupus progression: M1 phenotypes display
significant defiance against ferroptosis, yet they can survive,
release proinflammatory cytokines, and fulfill their functions as
“destroyers”; while M2 phenotypes are vulnerable to ferroptotic cell
death induced by the loss of GPX4 activity (51).

Neutrophils are the first responders of immune defense against a
broad range of pathogens (52). Currently, the research about the
link between neutrophils and lupus is mainly focused on neutrophil
extracellular traps (NETs), the fibrous networks protruding from
activated neutrophils in response to infection or inflammation (53).
However, recent study by Li et al. demonstrated that neutrophil
death is majorly associated with ferroptosis in SLE, instead of
NETosis, the process of NET release. Through downregulated
expression of GPX4 and elevated lipid ROS levels, neutrophil
ferroptosis leads to stimulation of autoreactive B cells and
plasmacytoid dendritic cells (pDCs), autoantibody and type I
interferon (IFN) production, finally contributing to disease
manifestations (8). Therefore, ferroptosis promotes lupus
progression through immune system regulation.
THE POTENTIAL ROLE OF FERROPTOSIS
IN LUPUS INFLAMMATION AND
TISSUE DAMAGE

Ferroptosis occurs in various immune cells and affects immune
response as it has been described earlier. Further, ferroptosis
regulates on how immune system deals with dying cells and
remnants, through the release of damage-associated molecular
patterns (DAMPs) or lipid oxidation products (9). DAMPs bind
to cellular receptors such as pattern recognition receptors
(PRRs), upregulate stress response mechanisms, and release
various cytokines and chemokines, finally leading to tissue
injury and inflammation (54). For example, the signals of
high-mobility group box 1 (HMGB1), one of prototypical
DAMPs released by ferroptotic cells, can be integrated by
advanced glycosylation end-product specific receptor (AGER)
to trigger inflammation and amplify immune responses (55).
HMGB1 released by ferroptosis is implicated in multiple tissue
damage, including ultraviolet B (UVB)-induced keratinocyte
death (56), and high glucose-exposed mesangial cell death (57).
Interestingly, HMGB1 activity plays a markable role in a variety
of lupus phenotypes, including LN, neuropsychiatric lupus (58),
Frontiers in Immunology | www.frontiersin.org 4
and skin lesions (59). HMGB1 exerts its causative effects in SLE
through both innate and adaptive immunity (58, 60), including
macrophage polarization, pro-inflammatory cytokines secretion,
and autoantibodies generation. Besides, iron accumulation can
directly polarize macrophages to pro-inflammatory profile (61),
promote pro-inflammatory cytokine secretion to induce
autoimmune diseases (13); ROS facilitates inflammatory
disease via pro-inflammatory change (62). Massive lipid
oxidative mediators released by ferroptosis directly promote
the activity of cyclooxygenases (COXs) and LOXs, which
convert arachidonic acid to inflammatory mediators; this
process can be suppressed by GPX4 (63). Therefore, it is
speculated that ferroptosis may exert its pathogenic effect in
SLE by excessive inflammation, which enhances immune
response, leading to organ damage and clinical manifestations.
A potential model is proposed for the role of ferroptosis in lupus
inflammation and induced comorbidities (Figure 2).

With respect to skin, keratinocyte death by ferroptosis plays a
remarkable role in driving skin inflammation after UVB exposure
(56). Skin lesions suffered from UVB irradiation shows elevated iron
content (64), excessive accumulation of lipid peroxides, and GSH
depletion, therefore undergoing ferroptosis in keratinocytes, and then
leads to cutaneous necroinflammation and injury (56). Furthermore,
UVB-induced skin damage can be protected by GSH and GPX4
through suppressing oxidant stress, inflammation responses, and cell
death (65). Based on the lupus photosensitivity, and ROS
accumulation in all cutaneous subtypes of lupus (66), the cutaneous
lesions may be associated with dysregulation of iron metabolism and
the consequent ferroptosis induced by UV irradiation.

LN is one of the most severe organ manifestations of lupus,
which most patients would develop within 5 years of SLE
diagnosis (67). Tubulointerstitial damage is recognized as one of
the pathological features of the lupus kidney, and tubulointerstitial
inflammation is important in the assessment and prognosis of LN
(68, 69). Within this local microenvironment, renal tubular
epithelial cells (RTEC) are central effector cells, driving
interstitial inflammation and renal damage (70). As mentioned
above, renal iron accumulation occurs in LN and contributes to
the development of albuminuria (12). RTECs reabsorb the
majority of filtered iron (71), and these cells have been shown to
undergo ferroptosis under pathological conditions (72, 73).
Treatment of lupus mice models with iron metabolism
regulators, such as deferiprone and hepcidin, could mitigate
kidney inflammation and delay lupus progression (12, 22).
Besides, uncontrolled ROS accumulation in RTECs results in
inflammation and fibrosis, leading to renal damage and chronic
kidney disease progression (74). Thus, it could be speculated that
iron accumulation in RTECs may exacerbate inflammatory
responses by ROS formation, and synergistically accelerate
progression to renal failure. Meanwhile, inflammation and
oxidative stress can upregulate the expression of iron carriers
and transporters, possibly causing excessive uptake of iron in the
renal tubules and consequent iron-induced kidney injury (75).

For cardiovascular system, the oxidation of low-density
lipoproteins (oxLDL) by ROS and the activation of endothelial
cells in the artery, are recognized as initiation of atherosclerosis in
April 2022 | Volume 13 | Article 855622
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SLE (76). Endothelial cells stimulated by oxLDL release
inflammatory cytokines, induce chronic inflammation, finally
leading to endothelial dysfunction and cardiovascular injury
(76). In addition, lupus patients with progressive atherosclerosis
exhibit decreased levels of high-density lipoprotein (HDL) and
dysfunctional HDL (77). HDL is a natural antioxidant agent and
act as a protective mechanism of atherosclerosis in SLE, protecting
LDL from oxidation by ROS in the arterial intima (76, 78).
Recently, a study by Bai et al. used ferroptosis inhibitor,
ferrostatin-1, to treat high-fat diet-induced atherosclerosis (79).
They found that Fer-1 could alleviate atherosclerosis lesion and
rescue endothelial dysfunction, through inhibition of iron
accumulation and lipid peroxidation, and upregulation the
expression of SLC7A11 and GPX4. Compelling evidence links
ferroptosis to the initiation and progression of atherosclerosis.
CONCLUSION AND PERSPECTIVES

In conclusion, ferroptosis is speculated to be an integral component
in the vicious cycle of immune dysfunction, inflammation, and tissue
damage in lupus. This review article indicates that ferroptosis has
Frontiers in Immunology | www.frontiersin.org 5
outstanding research prospects in the progression of SLE. However,
it is suggested that more future studies should be conducted to fill the
knowledge gaps of the relationship between ferroptosis and SLE,
shed more light on the pathogenesis of SLE, as well as provide a new
perspective on ferroptosis-based immunotherapy for SLE.
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FIGURE 2 | The potential model of ferroptosis in lupus inflammation and manifestations. (A) Ferroptosis releases DAMPs to trigger inflammation. Iron and ROS
accumulation promote a pro-inflammatory environment. Massive lipid ROS released by ferroptosis helps to convert arachidonic acid to inflammatory mediators.
GPX4 suppresses inflammation by inhibiting arachidonic acid oxidation and lipid peroxidation. (B) Ferroptotic cell death and induced inflammation exert causative
effects in SLE through pro-inflammatory cytokines secretion, and autoantibodies generation, finally leading to cell dysfunction and tissue damage.
(C) (a) Inflammation induced by UV irradiation amplifies inflammatory and immune responses, eventually causing cutaneous lesions. UVB-exposed skin lesions exhibit
iron accumulation, excessive ROS and GSH depletion, leading to keratinocytes ferroptosis. (b) Persistent inflammation and immune complexes deposition accelerate
lupus progression to renal failure. Kidneys uptake excessive iron in the renal tubules and undergo ferroptosis under pathological conditions. (c) Lipid peroxidation and
induced inflammation contribute to endothelial dysfunction and cardiovascular injury. Lupus patients with progressive atherosclerosis show decreased HDL and
increased oxLDL, which may further promote ferroptosis in aortic endothelial cells.
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