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Neuroplasticity, limbic neuroblastosis and 
neuro-regenerative disorders 

Introduction
Neuroplasticity has expediently been intended to the innate 
adaptability of the brain to restructure its biological reso-
nance towards the personal experience, environmental stim-
uli and disease throughout life (Cramer et al., 2011; Fuchs 
and Flügge, 2014). The structural and functional alterations 
of the brain can proceed via cellular events, biochemical 
pathways, synaptic remodeling and behavioural aspects in 
order to maintain the cerebral homeostasis and to facilitate 
neurological rehabilitation (Cramer et al., 2011). The regu-
lation of neuroplasticity has been linked to variable factors 
like nutrition, education, physical activity, enriched envi-
ronment, sensory inputs, emotion, and fecundity. In con-
trast, abnormal lifestyle, genetic variants, ageing, infirmity 
or injury appear to exacerbate neuroplasticity leading to 
movement symptoms, behavioural disorders and dementia 
(Mufson et al., 2015). Historically, William James (1842–
1910) introduced the term neuroplasticity as a key biological 
module of psychological process (Berlucchi and Buchtel, 
2009). Eugenio Tanzi (1856–1934) proposed that the neuro-
biology of learning might be constituted at potential vicinity 
between nerve endings in the brain (Peccarisi et al., 1994). 
Ernesto Lugaro (1870–1940) identified an intermediary type 
of neuron (Lugaro Cells) and emphasized that a bidirec-

tional communication between nerve cells might be liable 
for the neuroplasticity of the brain (Berlucchi and Buchtel, 
2009). Otto Dieters’ (1834–1863) illustration of the axon, 
dendrites, and non-neuronal cells went largely unnoticed 
until Max Schultze (1825–1874) reasserted it (Deiters and 
Guillery, 2013; Voogd, 2016). Ramón y Cajal (1852–1934) 
ardently consolidated the neuron doctrine and insisted 
that the mature brain is an organ of obstinacy (Stahnisch 
and Nitsch, 2002). His ideology of neuroplasticity remains 
uncertain, though he noticed that learning could change mi-
crocircuits of the adult brain (Stahnisch and Nitsch, 2002). 
Richard Semon (1859–1918) proposed a term engram to a 
possible psychological interface between an intrinsic process 
and external stimuli, accountable for the neurobiochemical 
basis of learning (Poo et al., 2016). Karl Lashley (1890–1958) 
extrapolated the engram that neural substratum of learning 
might be collectively dynamic and distributed throughout 
cortices of the brain (Bruce, 2001). While Jerzy Konorski 
(1903–1973) recognized that the pre-existing circuits could 
reversibly be swapped between neurons upon sensory inputs 
(Zieliński, 2006), Charles Sherrington (1857–1952) devel-
oped the concept of synapse formation for the integrative 
action of the neurons during muscle contraction and reflex 
(Molnár and Brown, 2010). Donald Hebb’s (1904–1985) 
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postulate of cell assemblies through synaptic remodeling 
termed synaptic plasticity laid a sturdy foundation for the 
neurobiology of learning and memory (Brown and Milner, 
2003; Josselyn et al., 2017). Henry Dale (1875–1968) and 
Otto Loewi (1873–1961) have identified that synaptic trans-
mission at nerve terminals act via potential chemical mes-
sengers known as neurotransmitters (Tansey, 2006; McCoy 
and Tan, 2014). Theodor Bethe (1872–1954) and Paul Bach-
y-Rita (1934–2006) supported the idea that neuroplasticity 
can be exchanged between different regions of the normal 
brain thereby the functional loss of a brain area can be indem-
nified by a physiologically intact region (Bach-y-Rita, 2001, 
2003; Stahnisch, 2016). During 1980s, Eric Kandel provided 
the experimental proof for a reciprocal relation between the 
biochemical alteration, neuronal gene expression and synaptic 
plasticity along learning and behavioural outcome (Kandel, 
1981; Kandel and Schwartz, 1982; Siegelbaum et al., 1982). 
While the adult brain had earlier been considered a stagnant 
organ, neuroplasticity had majorly been focused on the chang-
es that occur at the synaptic connections. Indeed, there had 
generally been a great scientific challenge in understanding the 
structural and functional changes of the brain as it required a 
dynamic cellular process in response to the learning process 
and environmental stimuli (Ming and Song, 2011). However, 
there has been a gradual paradigm shift in the understanding 
of neuroplasticity due to a widespread recognition and valida-
tion of the generation of new neurons from neural stem cells 
in the adult brain. Moreover, the acceptance of the functional 
role of new neurons in the adult brain has revolutionized the 
concept of neuroplasticity and neurobiology of behaviour, 
learning and memory functions.
 
The Neuroplasticity Role of Adult 
Neurogenesis 
In 1960s, Joseph Altman (1925–2016) and Gopal Das (1933–
1991) provided an initial evidence for the mitotic activity 
of neural precursors in the adult brain thereby scintillated a 
possibility for the generation of new neurons in adulthood 
(Altman and Das, 1965). It took several years to accept this 
notion, while the neuropoiesis in the mature brain, namely 
adult neurogenesis, has long been challenged, validated, 
attributed to cognitive functions and neural regeneration. 
Adult neurogenesis originates in the hippocampus and SVZ 
through the generation of neuroblasts or immature neurons 
(neuroblastosis) from neural stem cells (NSCs) in the brain 
(Figure 1) (Ming and Song, 2011; Couillard-Despres et al., 
2005). Besides, the occurrence of adult neurogenesis has also 
been recognized in the cortex, amygdala, hypothalamus, 
and striatum that are known to functionally be associated 
with the limbic system and basal ganglia of the brain (Gould 
et al., 1999; Jhaveri et al., 2018; Paul et al., 2017; Kohl et al., 
2010; Ernst et al., 2014; Kandasamy et al., 2015; Kandasamy 
and Aigner, 2018). Several lines of evidence support that 
adult neurogenesis can compromise key features of neu-
roplasticity hence 1) it appears to be regulated by various 
intrinsic factors and extrinsic stimuli (Kempermann et al., 
1997; Ming and Song, 2011), 2) it provides cellular founda-
tion for the pattern separation, social adaptation, regulation 

of mood, desire, olfaction, learning and memory (Zhao et al., 
2008; Gonçalves et al., 2016) and 3) it denotes the regenera-
tive potential of the brain against late-onset brain disorders 
(Kandasamy and Aigner, 2018). However, the molecular 
and cellular process associated with adult neurogenesis has 
not been completely understood. While the knowledge on 
regulation of adult neurogenesis at the level of NSCs main-
tenance and proliferation has been significantly improved 
(Kandasamy et al., 2010), underlying regulatory mechanisms 
of the generation, maintenance and fate of neuroblasts and 
their functional significance in the adult brain remains to be 
fully established. 

Functional Significance and Types of 
Neuroblasts in the Adult Brain 
The role of the hippocampus has been implemented to cog-
nitive functions whereas irreversible failure in hippocampal 
neurogenesis has been attributed to dementia (Hollands et 
al., 2016). Of the abundant number of neural precursor cells 
produced in the adult brain, a very low number of new neu-
rons are likely to be integrated into the hippocampus (Spal-
ding et al., 2013). Why does the adult brain need to support 
the generation of the surplus amount of neuroblasts in the 
neurogenic niches? There has been an enormous amount of 
evidence suggesting that 1) neuroblasts are heterogeneous in 
nature with multipotential capacity (Moody, 1998; Walker 
et al., 2007), 2) neuroblasts have a robust migratory poten-
tial (Khlghatyan and Saghatelyan, 2012; Kaneko et al., 2017), 
3) neuroblasts appear to be modulated by sensorimotor in-
puts (van Praag et al., 1999; Kandasamy and Aigner, 2018), 
4) neuroblasts represent limbic-motor interface (Kandasamy 
and Aigner, 2018), 5) neuroblasts can generate action po-
tential (Shuang Liu et al., 2009; Spampanato et al., 2012), 6) 
neuroblasts can provide neurotrophic support (Platel et al., 
2008) and 7) neuroblasts acquire immunological signatures 
upon brain diseases and injury (Unger et al., 2018). Taken 
together cellular events of neuroblasts appears to be a mul-
tifaceted process to harmonize and contributes to diverse 
functions of the brain. Moreover, neuroblasts may provide 
an ideal model to generate, integrate, store, mobilize and 
carry forward the substratum of the brain resulting from 
various inputs including learning. 

It can be speculated that neuroblasts might be comprised 
of isogenic cell populations in the adult brain. Thus, three 
different major classes of neuroblasts can be proposed 
namely, a) housekeeping neuroblasts, b) neurogenic neu-
roblasts and c) intermediary or immunogenic neuroblasts 
(Figure 1). Hypothetically, these distinct isogenic neuro-
blasts may represent different forms of neuroplasticity and 
respond differentially to different learning paradigms, sen-
sorimotor inputs, pathogenesis, and treatment (Kandasamy 
and Aigner, 2018). Since running wheel exercise has been 
known to induce mitogenesis of neuronal precursors (van 
Praag et al., 1999), survival of new neurons in the hippocam-
pus appears to be supported by the enriched environment 
in quadruped animals (Kempermann et al., 1997). Physical 
exercise-mediated sensorimotor input may specifically act 
on the housekeeping neuroblasts to discharge neurotrophic 
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factors leading to the integration of neurogenic neuroblasts 
with electrophysiological properties. Likewise, the enriched 
environment based socio-psychological wellness may exert a 
different mode of a molecular signature for neuronal surviv-
al in which changes in neurotransmitter levels may facilitate 
the integration of neurogenic neuroblasts in the hippocam-
pus. However, prolonged and redundant sensorimotor inputs 
resulting from learning or exercise may predispose the house-
keeping or intermediary neuroblasts to apoptotic cell death in 
order to assist the turnover of the neuroblast population. This 
could partly explain the previous observation of Nora Ar-
bours’ group indicating the specific elimination of early phase 
neuroblasts in the hippocampus during water maze based 
spatial learning in rodents (Döbrössy et al., 2003). This could 
also partly address the interpretation of Pasko Rakic that the 
adult brain may eliminate new neurons to prevent abnormal 
neural circuitry (Rakic, 2002) while it may not be excluded 
that integration of neurogenic neuroblasts may represent the 
synaptic replacement upon neuronal loss. 

Role of Neuroblasts in the Cognitive Function 
of Non-rodent Mammals 
Notably, the turnover of hippocampal neurogenesis ap-
pears to be very marginal in Chiroptera (bats) (Amrein et 
al., 2007) and cetaceans (dolphin and whale) (Patzke et al., 
2015). These animals are highly sensitive to seasonal varia-
tion, habitat disturbance, and predators. Therefore, they are 
likely to undergo a high-level chronic stress. The reproductive 
physiology and circadian rhythm are completely different in 
Chiroptera and cetaceans compared to other animals. While 
these creatures exploit ultrasonic echolocation for navigation, 
it may demand high-level energy expenditure and abnormal 
sensorimotor inputs (Moss and Surlykke, 2010; Martens et al., 
2015). While sheep brain has been shown to sustain the neu-
roblasts without terminal neuronal differentiation (Piumatti 
et al., 2018), recent reports suggest that non-newly generated 
neuroblasts may represent the neuroplasticity of the brain 
in mammals (Palazzo et al., 2018; Snyder, 2018). Though the 

brains of cetacean have been characterized by less turnover 
of neurogenesis, they have been found to have high cognitive 
ability and social behaviour (Marino et al., 2007). While dol-
phin-assisted ultrasound therapy has been known to yield posi-
tive effect on cognitive function in human (Fiksdal et al., 2012), 
transcranial focused ultrasound appears to promote cognitive 
function in human (Legon et al., 2014). Considering the afore-
mentioned facts, it can be presumed that ultrasound-mediated 
cognitive improvement may be facilitated through neuroblasts 
of the adult brain. Thus neuroblasts in the adult brain might 
play a major role in learning and memory process. However, 
future studies directed towards understanding the effects of 
ultrasound on the regulation of adult neurogenesis and inves-
tigation of the role of neuroblasts in cognitive functions may 
provide valid clues to improve neuroregenerative plasticity for 
the betterment of ageing human society. 

Reactive Neuroblastosis in Diseased Brains 
Hippocampal neurogenesis appears highly vulnerable to 
ageing, chronic stress, drug abuse and disease, especially 
in human. The current understanding of the regulation of 
adult neurogenesis indicates neotrophy (a rapid non-ma-
lignant cell division subjected to apoptosis) of neuroblasts, 
recognized as reactive neuroblastosis, in response to early 
pathogenesis of a diverse range of neurological disorders 
(Kandasamy and Aigner, 2018). Among them, stroke, ep-
ilepsy, Huntington’s disease, Alzheimer’s disease, Parkin-
son’s disease, Amyotrophic Lateral Sclerosis, brain injuries 
and affective disorders collectively share reactive neuroblas-
tosis as a potential hallmark at the early phase of the disease 
(Kandasamy et al., 2010, 2015; Kandasamy and Aigner, 
2018). The observed reactive neuroblastosis parallel to ab-
errant neuroimmune response has been proposed to result 
in mitotic inactivation of NSCs, thereby predisposing the 
adult brain to abate neurogenic process leading to dementia 
in the late phase of diseases (Kandasamy et al., 2010, 2015; 
Kandasamy and Aigner, 2018). In 1998, Fred Gage’s group 
provided evidence for ongoing hippocampal neurogenesis in 

Figure 1 Schematic representation of stem cells, progenitors, neuronal and glia population of the hippocampus including microglia. 
The overall figure indicates neural stem cell (NSC) derived neurogenesis and gliogenesis through neuronal progenitor cell (NPS) in hippocampal 
stem cell niche of the adult brain. The bidirectional arrow indicates the self-renewal of NSC and Unicode arrows point out the differentiation of 
NPC. In the gliogenic program, astroglial precursor cell (APC) give rise to astrocytes and oligodendroglial precursor cell (OPC) give rise to oligo-
dendrocyte respectively. The rectangle represents three different types of neuroblasts namely, housekeeping neuroblast, immunogenic (or interme-
diary) neuroblast and neurogenic neuroblast. The background represents the granule cells of the dentate gyrus of the hippocampus.
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the adult human brain (Eriksson et al., 1998). Though a re-
cent report from Alvarez-Buylla team found no hint for ab-
solute neurogenesis in hippocampus of ageing human brain 
(Sorrells et al., 2018), a subsequent report by Boldrini M et 
al., provided again a conclusive evidence of neurogenesis in 
the adult human brain (Boldrini et al., 2018). The controver-
sial observation from Alvarez-Buylla group has been highly 
debated as the negative data on neurogenesis which assumed 
to be originating from a methodological, technical point or 
result of a disease and treatment affecting the analyzed adult 
human brains (Snyder, 2018; Kempermann et al., 2018). The 
existing knowledge on adult neurogenesis in humans has 
largely been derived from post-mortem studies that may not 
represent the actual status of the brain, for example, due to a 
long post-mortem delay until the brain gets fixed. Besides, the 
expression of glial cell markers in immunogenic neuroblasts 
and their dispersal in the brain might represent an indication 
for a neuropathology. The doublecortin (DCX) positive neu-
roblasts have been shown to express ionized calcium-binding 
adapter molecule 1 (IBA1) and oligodendrocyte transcription 
factor 2 (OLIG2) in 13-year-old human brain (Sorrells et al., 
2018). Surprisingly, the OLIG2 and IBA1 are known to be 
markers for entirely different glial cell lineages. While the ex-
pression of OLIG2 has been proposed as a negative modula-
tor of neurogenesis, it represents a potential marker of brain 
tumours. Microglia has been shown to express IBA1 thus the 
observed DCX/IBA1 double positive neuroblasts indicates a 
clear sign of immunological response against a neuropatholo-
gy (Unger et al., 2018). Considering the unpredictable nature 
of mental status, comorbidity and limitations of the brain im-
aging tools, it will be difficult to monitor and demonstrate the 
complete scenario of neurogenesis in the adult human brain. 
Thus, the mechanism underlying the regulation and terminal 
fate of adult neurogenesis acting via neuroblastosis remains 
indefinable. However, depending upon the situation, the neu-
roblastosis event might signify the differential role of adult 
neurogenesis in the brain (Kandasamy and Aigner, 2018).

Conclusion
Functional regeneration is one of the prerequisites for the 
homeostasis of organisms accountable for the normal lifespan 
and species conservation. Although regeneration has been im-
plemented to the functional recovery against pathogenesis and 
injury, ageing poses a fundamental challenge to the regenera-
tive competence of organism. However, the degree of regen-
eration may differ to a great extent among different biological 
systems along the lifestyle and environmental factors. In gen-
eral, ageing has been a primary risk factor for many metabolic, 
vascular, malignant and neurocognitive disorders in humans. 
Among them, the prevalence of dementia is expected to in-
crease many fold in elderly population due to increase in life 
expectancy worldwide. In general, neurodegeneration is often 
considered the most common biological cause of dementia. 
However, we would like to put forward that neuroregener-
ative failure might be more critical for dementia regardless 
of neurodegeneration. Further, we would like to introduce a 
term “neuroregenerative disorder” as an additional variable 
for dementia-related syndromes that may potentially antago-
nize the manoeuvre of neuroplasticity. Eventually, abnormal 

ageing, neurodevelopmental, movement, neuropsychiatric, 
neuroimmune disorders, stroke, seizure, infectious neurologi-
cal symptoms, chronic stress, depression, obesity, diabetes and 
hormonal imbalances that show abnormal neurogenesis can 
be categorized under neuroregenerative disorders. Directive 
of any therapeutic strategies towards symptomatic manage-
ment for these brain diseases without considering the neu-
roregeneration would be an incomplete attempt to restore the 
neuroplasticity. Thus, elucidating the neurobiological basis for 
neuroregenerative failure using advance non-invasive scientif-
ic tools may provide insight into the functional recovery of the 
human brain. However, the existence of unanimous putative 
markers and alternate forms of adult neurogenesis underlying 
the neuroplasticity cannot be completely excluded. Besides, 
mammals including cetaceans tend to exhibit a high degree of 
cognitive function and social behaviour. Recently, neuroblasts 
have been suggested to compensate the immunogenicity and 
neuroplasticity of the adult brain thus the ultrasound-medi-
ated precognitive effect may be mediating via circulation of 
neuroblasts in the mammalian brains. While identification of 
a non-invasive strategy to boost cognitive function has been 
a great scientific thrust, understanding the biological effect of 
ultrasound on the regulation of neuroblasts may signify a po-
tential treatment for dementia. 
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