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Abstract: Previous studies have shown an association between mortality and ambient air pollution
in South Korea. However, these studies may have been subject to bias, as they lacked adjustment
for spatio-temporal structures. This paper addresses this research gap by examining the association
between air pollution and cause-specific mortality in South Korea between 2012 and 2015 using a
two-stage Bayesian spatio-temporal model. We used 2012–2014 mortality and air pollution data for
parameter estimation (i.e., model fitting) and 2015 data for model validation. Our results suggest
that the relative risks of total, cardiovascular, and respiratory mortality were 1.028, 1.047, and 1.045,
respectively, with every 10-µg/m3 increase in monthly PM2.5 (fine particulate matter) exposure. These
findings warrant protection of populations who experience elevated ambient air pollution exposure
to mitigate mortality burden in South Korea.

Keywords: air pollution; mortality; cardiovascular disease; respiratory disease; spatio-temporal
model; Poisson model; Bayesian approach

1. Introduction

Air pollution has been viewed as a threat to human health since the onset of rapid industrialization.
It is widely known that air pollutants, including particulate matter with an aerodynamic diameter
less than 10 µm (PM10) or 2.5 µm (PM2.5; fine particulate matter), is linked to total, cardiovascular,
and respiratory mortality [1]. Since air pollution is particularly detrimental to vulnerable people,
such as senior citizens and infants, understanding how ambient air pollution affects health is very
important for making relevant policy [2,3]. Several studies have been conducted regarding the
association of PM10 and health in South Korea. One study [3] showed that post-neonatal infants are
most susceptible to PM10 in terms of mortality, especially respiratory mortality. Post-neonatal mortality
increased by 14.2% for each 42.9-µg/m3 rise in PM10. Another study [4] showed that with a 43.12-µg/m3

increase in PM10 concentration, daily non-accidental, respiratory, cardiovascular, and cerebrovascular
mortality increased by 3.7%, 13.9%, 4.4%, and 6.3%, respectively.

Numerous epidemiological studies have investigated the associations of PM10 and PM2.5 with
mortality worldwide [5–9]. One study [5] concluded that PM10 concentration is associated with

Int. J. Environ. Res. Public Health 2019, 16, 2111; doi:10.3390/ijerph16122111 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/1660-4601/16/12/2111?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph16122111
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2019, 16, 2111 2 of 11

total, cardiovascular, and respiratory daily mortality in 16 cities in China using a Poisson regression
model. Another study [6] showed how air pollutants affect human health in 25 European cities
across 12 countries. They determined that a decrease in PM2.5 level could have led to a gain in life
expectancy, postponing many deaths in the city. A European study [7] determined that the daily
total mortality rose as PM10 and black smoke concentrations increased with a Poisson regression
model. The study [8] investigated the short-term positive effects of PM10 and PM2.5 on all-cause,
cardiorespiratory, and other-cause mortality in the United States using a Bayesian hierarchical model.
Another study in the United States [9] showed that increases in PM10 and PM2.5 concentrations led to
increased numbers of post-neonatal infant deaths in 96 cities with populations greater than 250,000.
Most of the domestic and foreign studies mentioned above focused on the effects of air pollutants on
health outcomes in specific locations. However, to establish national-level air pollution control policy,
a study should consider the entire spatial domain of a country.

Spatio-temporal modeling of the association between air pollution and health has recently received
attention in environmental epidemiological studies [10,11]; however, there are some challenges in this
domain. First, there is frequently a misalignment problem, due to the different dataset sources. This is
because air pollution monitoring data are collected at monitoring stations, while health data are collected
at an aggregated areal level. There are several approaches to overcome this problem. For example,
after spatial modeling of air pollution data, spatial kriging can be conducted, and areal-level air
pollution estimates can be produced [12–15]. Alternatively, one study [16] proposed a Markov Cube
Kriging method to improve computational efficiency. In this paper, we applied a commonly used
numerical interpolation method to obtain areal-level air pollution data. Second, there is a spatial
confounding bias because space-time varying air pollution covariates and space-time random effects
are simultaneously included in space-time health modeling [17]. For example, air pollution may be
related to space-time random effects, which would bias the estimate on the effects of air pollution.
In this paper, to better estimate air pollution effects without the influence of spatial confounding bias,
we adopted the two-stage model proposed in [15].

Until now, most of the epidemiologic studies of air pollution conducted in South Korea have
focused on how temporally varying air pollutant concentrations affected mortality in individual
cities [18,19], but such studies should be conducted over entire areas of Korea to establish national-level
air pollution control policy for health improvement. No studies have examined the relationship
between temporally varying air pollutants and mortality throughout South Korea. Additionally, there
have been almost no studies on the link between mortality and PM2.5 in South Korea [18]. Herein,
we investigated the associations of PM10 and PM2.5 with mortality throughout South Korea from 2012
to 2015. A two-stage Bayesian spatio-temporal hierarchical model was employed to better estimate the
effects of air pollution on mortality outcomes, as well as to better predict the mortality associated with
ambient air pollution.

2. Data and Methods

2.1. Study Domain

This study was conducted over the entire area of South Korea and accounted for the period
from 2012 to 2015. There are 250 administrative districts in South Korea (Figure 1) and, because
some administrative districts changed during the study period, we conducted analyses based on the
administrative areas as of 2012. We used the data from 2012–2014 for model fitting, and data from 2015
for forecasting and evaluation.
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Figure 1. Map of administrative districts in South Korea as of 2012. 
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We obtained monthly mortality data for 250 administrative districts using the Micro Data 
Integrated Service (MDIS) from Statistics Korea [20]. We used three types of mortality data: total 
mortality (all deaths except ICD codes V01–Y98), cardiovascular mortality (I00–I99), and respiratory 
mortality (J00–J99). 

We acquired monthly average concentrations of PM10 and PM2.5 and meteorological data 
(temperature, humidity, and wind speed) for 250 districts for the years 2012–2015. The district-level 
air pollution data were produced based on Pun’s interpolation method [21], a data-assimilation 
method that combines data from monitoring stations and numerical model outputs. 

The regional deprivation index (RDI) was also added to the covariates to control for socio-
economic status effects. Because there was little temporal variation in the regional deprivation index, 
we only used data from 2010. Higher index values indicated that the area was more economically 
deprived. Because deaths occur more often in areas with relatively large elderly populations, we used 
the number of people over the age of 65 as an offset. Table 1 shows the summary statistics for the 36 
months of data (2012–2014) and 250 administrative districts. 

Table 1. Summary of variables (2012–2014). 

Type Variable Unit Mean SD Med Q1 Q3 Min. Max 

Mortality 
Total person 78.8 43.2 73 44 106 2 236 

Cardiovascular person 19.3 11.4 17 11 26 0 80 
Respiratory person 7.7 4.8 7 4 10 0 35 

Air pollutant PM10 µg/m3 37.7 12.1 36.8 28.8 46 3.7 83.2 
PM2.5 µg/m3 29.4 10.5 28.3 21.5 36.7 1.6 69.6 

Meteorological data 
Temperature °C 13.2 9.6 14.1 5.2 21.7 −7.9 29.7 

Humidity % 71 9 71.1 64.6 78.1 44.2 92.6 
Wind speed m/s 2.9 0.9 2.7 2.3 3.3 1.3 8.2 

Extra data 
RDI   −0.1 8.4 −1.3 −6.8 6.6 −22.5 16.5 

Population person 202,196 154,313 170,220 60,151 308,111 18,036 669,068 

RDI: Regional deprivation index, Med: median, Q1: first quantile, Q3: third quantile. 

Figure 1. Map of administrative districts in South Korea as of 2012.

2.2. Data Description

We obtained monthly mortality data for 250 administrative districts using the Micro Data
Integrated Service (MDIS) from Statistics Korea [20]. We used three types of mortality data: total
mortality (all deaths except ICD codes V01–Y98), cardiovascular mortality (I00–I99), and respiratory
mortality (J00–J99).

We acquired monthly average concentrations of PM10 and PM2.5 and meteorological data
(temperature, humidity, and wind speed) for 250 districts for the years 2012–2015. The district-level air
pollution data were produced based on Pun’s interpolation method [21], a data-assimilation method
that combines data from monitoring stations and numerical model outputs.

The regional deprivation index (RDI) was also added to the covariates to control for socio-economic
status effects. Because there was little temporal variation in the regional deprivation index, we only
used data from 2010. Higher index values indicated that the area was more economically deprived.
Because deaths occur more often in areas with relatively large elderly populations, we used the number
of people over the age of 65 as an offset. Table 1 shows the summary statistics for the 36 months of data
(2012–2014) and 250 administrative districts.

Table 1. Summary of variables (2012–2014).

Type Variable Unit Mean SD Med Q1 Q3 Min. Max

Mortality
Total person 78.8 43.2 73 44 106 2 236

Cardiovascular person 19.3 11.4 17 11 26 0 80
Respiratory person 7.7 4.8 7 4 10 0 35

Air pollutant PM10 µg/m3 37.7 12.1 36.8 28.8 46 3.7 83.2
PM2.5 µg/m3 29.4 10.5 28.3 21.5 36.7 1.6 69.6

Meteorological data
Temperature ◦C 13.2 9.6 14.1 5.2 21.7 −7.9 29.7

Humidity % 71 9 71.1 64.6 78.1 44.2 92.6
Wind speed m/s 2.9 0.9 2.7 2.3 3.3 1.3 8.2

Extra data
RDI −0.1 8.4 −1.3 −6.8 6.6 −22.5 16.5

Population person 202,196 154,313 170,220 60,151 308,111 18,036 669,068

RDI: Regional deprivation index, Med: median, Q1: first quantile, Q3: third quantile.
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2.3. Statistical Analysis

We proposed a two-stage Bayesian hierarchical spatio-temporal model (Model 3) to capture the
spatial and temporal dynamics. Two competing models (Model 1, Model 2) were used to compare
performances of the proposed model, Model 3. Mathematical expressions for Model 1 and Model 2 are
as follows:

Model 1: log(θit) = β0 + β1Xit + S1(Zit) + S2(Wit) + S3(Qit) + δDi,
Model 2: log(θit) = β0 + β1Xit + S1(Zit) + S2(Wit) + S3(Qit) + δDi + ui + vi + kt + lt + φit.

The observed mortality for area i and month t, yit, followed a Poisson distribution with mean
θitNit, where θit is the relative risk, and Nit is the elderly population. The constant term β0 indicates the
intercept of the log of the relative risk that was common to all areas and months. Covariates Xit, Zit, Wit,
and Qit are the monthly average air pollutant concentrations of PM10 or PM2.5, temperature, humidity,
and wind speed, respectively. The socio-economic covariate Di indicates the deprivation index.
The smoothing function Si(·), i = 1, 2, 3 denotes a natural cubic spline function to explain the nonlinear
effects of meteorological variables on mortality. The degrees of freedom of the natural cubic spline were
3, 2, and 3 for temperature, humidity, and wind speed, respectively. The parameters β1 and δ denote the
regression coefficients Xit and Di, respectively. The random effects ui and vi are spatially uncorrelated
and correlated terms, respectively, and kt and lt are temporally uncorrelated and correlated terms.
Lastly, the random component φit is the space-time interaction term.

To deal with the spatial confounding bias problem [17] in Model 2, a two-stage model [22] was
considered. In the first stage, the Poisson regression model with only covariates (Model 1) was used.
Using this model, we acquired the estimated relative risk θ̂it, and the continuous-type residuals r̂it
were obtained from

r̂it = log
(

yit

Nit

)
− log(θ̂it) (1)

To capture the extra spatial and temporal variations in the residuals, we considered the
following model:

r̂it|Sit ∼ N
(
Sit, σ2

r

)
(2)

Sit = ui + vi + kt + lt +φit (3)

In the second stage, our model was expressed as follows, using Ŝit, the estimated Sit:

Model 3: log(θit) = β0 + β1Xit + S1(Zit) + S2(Wit) + S3(Qit) + δDi + Ŝit.

Regression coefficient estimation was performed at this stage.
In the Bayesian framework, we used non-informative prior distributions for the parameters.

For the intercept β0 and air pollutant coefficient β1, we assumed normal distribution with zero 0 and
variance 1,000,000, which is a fairly flat prior. For random effects, spatially and temporally uncorrelated
terms had independent and identical normal distributions with zero mean hyperparameters σu and σk.
The spatially correlated random term vi had a conditional autoregressive (CAR) [23] prior, and the
temporally correlated random term lt had an autoregressive (AR)(1) prior. For the interaction term φit,
we considered four of the types proposed in [24]. The interaction term with different spatial trends for
each time unit showed the best performance. Uniform distributions with lower bound 0 and upper
bound 10 were specified for all hyperparameters.

The three models described above were fitted for the 2012–2014 data. Based on the results from
the fitted models, we forecasted death counts for 2015 for all administrative regions in South Korea.
We followed the forecasting scheme used in [25].

Bayesian analyses were carried out using the WinBUGS statistical package [26] Two parallel Monte
Carlo Markov Chains (MCMC) were used with different initial values. To assess sample convergence,
we utilized trace plots, auto-correlation plots, and the Gelman–Rubin statistic [27]. After burn-in,
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we generated 2500 samples for each chain with thin 50, resulting in a total of 5000 posterior samples.
Including the burn-in period, it took around 30 hours to obtain 5000 posterior samples with a CPU
Intel Xeon gold 5118 2.3 GHz and RAM 32 GB computer. The open source software R [28] was used to
produce the figures in this paper.

We compared the performance of Models 1–3 to identify the model with the best performance,
which is shown in Table 2. For comparison, the deviance information criterion (DIC) and mean squared
prediction error (MSPE) were used to evaluate model fitness in the Bayesian framework and prediction
performance, respectively. The mathematical expression for MSPE is as follows:

MSPE =
1
N

∑
I
i=1

∑
T
t=1(yit − ŷit)

2, (4)

where yit is the observed value, and ŷit is the predicted value. DIC is defined as follows:

DIC = pD + D(α), (5)

where D(α) is the posterior mean of deviance D(α) = −2 log f (y
∣∣∣α), and pD is D(α) −D(α̂), where α̂

is the posterior mean of the parameter α.

Table 2. Model performance.

Model MSPE Deviance pD DIC

Model 1 184.22 72,690 11 72,701
Model 2 77.09 63,597 548 64,145
Model 3 79.25 63,098 10 63,108

MSPE: Mean squared prediction error, pD: the effective number of parameters, DIC: Deviance information criterion.

To investigate the impact of the degrees of freedom in the spline functions of meteorological
variables, we performed a sensitivity analysis by changing degrees of freedom from 2 to 12. The models
differed very little in terms of regression coefficient estimates of air pollution and model performance.

3. Results

To show the spatial distributions of air pollutants and mortality in South Korea over the period
of 2012–2014, we used the average values of air pollutant concentrations for 36 months and the
total death counts for each region over the 36-month period, which are presented in Figure 2.
Each map is partitioned into four colors based on quantile. As shown in Figure 2, the total number
of deaths from 2012 to 2014 was highest in Nowon-gu, in Seoul, at 7030, and lowest in Gyeryong-si,
in Chungcheongnam-do, at 394. Moran’s I statistic was applied to measure the spatial dependencies
of mortality and air pollution data at the administrative region level. The null hypothesis of Moran’s
I statistic is that there is no spatial correlation among the data. As the adjacency matrix from
Moran’s I statistic, various neighborhood structures including binary, row-standardized, and globally
standardized techniques were considered. Binary neighborhood structure used a matrix with a
value of 1 if it was adjacent, or 0 otherwise. Row-standardized neighborhood structure was used
to divide the binary matrix by the sum of the rows. Globally standardized neighborhood structure
was used to divide the binary matrix by the mean of the sum of the rows. Moran’s I statistics using
row-standardized neighborhood structure of the total, cardiovascular, and respiratory mortality data
were 0.27, 0.25, and 0.14, respectively. The results of Moran’s I test for all neighborhood structures
showed that all mortality data had statistically significant spatial dependency, with a p-value less
than 0.05. Similarly, Moran’s I test indicated spatial variations in PM10 and PM2.5 with p-values less
than 0.05.
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Figure 2. Spatial distributions of air pollutants and mortality. (a) and (b) are monthly averages of air
pollutants from 2012 to 2014; (c), (d), and (e) are monthly sums of deaths from 2012 to 2014.

Model performance for total mortality and PM10 is shown in Table 2. Smaller MSPE and DIC
values indicate a better model. While the difference in MSPE between Model 2 and Model 3 was not
large, Model 3 yielded a smaller DIC than the other models. Therefore, Model 3 was chosen as the best
model. Based on these results, we fitted only Model 3 for cardiovascular and respiratory deaths.

Table 3 gives the posterior summaries of the estimated coefficients of the explanatory variables.
The relative risks of air pollutants are based on a 10-µg/m3 increase. The estimated relative risks
(RR) of PM10 and deprivation index for total mortality were 1.011 and 1.001, respectively. Since 95%
credible intervals of all variables did not include 1, all estimated coefficients except PM10 for respiratory
mortality were statistically significant. When the relative risk was larger than 1, we inferred that the
number of deaths increases as the corresponding variable increases. Figure 3 shows the calibration
plots of the observed and estimated numbers of deaths for 2012–2014 for the best model, Model 3.
The points are close to the line y = x (red line in Figure 3), indicating that the estimation matched the
observations well. Figure 4 shows the calibration plots for the observed and forecasted death counts in
2015 using Model 3 with the 2012–2014 data. It shows that the forecasted numbers of deaths were very
similar to the observed numbers of deaths. To see the forecasting performance in detail, we calculated
the Pearson residuals of the observed and forecasted values, which are shown in Figure S1 in the
supplementary material.
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Table 3. Relative risks with 95% credible intervals for mortality in Model 3.

Air pollutant Explanatory Variables
Total Cardiovascular Respiratory

Mean (95% CI) Mean (95% CI) Mean (95% CI)

PM10
Air pollutant 1.011 (1.008, 1.013) 1.014 (1.009, 1.019) 0.998 (0.991, 1.006)

Deprivation index 1.001 (1.001, 1.002) 1.003 (1.002, 1.004) 1.016 (1.015, 1.017)

PM2.5
Air pollutant 1.028 (1.026, 1.031) 1.047 (1.042, 1.053) 1.045 (1.036, 1.053)

Deprivation index 1.001 (1.001, 1.001) 1.003 (1.002, 1.004) 1.016 (1.015, 1.017)

Int. J. Environ. Res. Public Health 2019, 16, x 7 of 11 

 

forecasted death counts in 2015 using Model 3 with the 2012–2014 data. It shows that the forecasted 
numbers of deaths were very similar to the observed numbers of deaths. To see the forecasting 
performance in detail, we calculated the Pearson residuals of the observed and forecasted values, 
which are shown in Figure S1 in the supplementary material. 

Table 3. Relative risks with 95% credible intervals for mortality in Model 3. 

Air pollutant Explanatory Variables 
Total Cardiovascular Respiratory 

Mean (95% CI) Mean (95% CI) Mean (95% CI) PM  
Air pollutant 1.011 (1.008, 1.013) 1.014 (1.009, 1.019) 0.998 (0.991, 1.006) 

Deprivation index 1.001 (1.001, 1.002) 1.003 (1.002, 1.004) 1.016 (1.015, 1.017) PM .  
Air pollutant 1.028 (1.026, 1.031) 1.047 (1.042, 1.053) 1.045 (1.036, 1.053) 

Deprivation index 1.001 (1.001, 1.001) 1.003 (1.002, 1.004) 1.016 (1.015, 1.017) 

   
(a) Total mortality with 𝐏𝐌𝟏𝟎     (b) Total mortality with 𝐏𝐌𝟐.𝟓 

   
(c) Cardiovascular mortality with 𝐏𝐌𝟏𝟎  (d) Cardiovascular mortality with 𝐏𝐌𝟐.𝟓 

   
(e) Respiratory mortality with 𝐏𝐌𝟏𝟎  (f) Respiratory mortality with 𝐏𝐌𝟐.𝟓 

Figure 3. Calibration plots for the observed and estimated values of 2012–2014 using Model 3. Figure 3. Calibration plots for the observed and estimated values of 2012–2014 using Model 3.



Int. J. Environ. Res. Public Health 2019, 16, 2111 8 of 11
Int. J. Environ. Res. Public Health 2019, 16, x 8 of 11 

 

     
(a) Total mortality with 𝐏𝐌𝟏𝟎  (b) Total mortality with 𝐏𝐌𝟐.𝟓 

     
(c) Cardiovascular mortality with 𝐏𝐌𝟏𝟎  (d) Cardiovascular mortality with 𝐏𝐌𝟐.𝟓 

   
(e) Respiratory mortality with 𝐏𝐌𝟏𝟎  (f) Respiratory mortality with 𝐏𝐌𝟐.𝟓 

Figure 4. Calibration plots for the observed and forecasted values of 2015 using Model 3. 

4. Discussion  

This study focuses on verifying the association between air pollution and human health over the 
entire area of South Korea for the years 2012–2015. To adjust for other effects on mortality, we also 
used meteorological factors and regional deprivation index as covariates.  

After controlling for the effects of weather variables, the deprivation index was positively 
associated with different types of mortality. A previous study [19] found that socioeconomic status, 
as represented by marital status, education level, and occupation, was linked to different causes of 
death. Because the deprivation index is a comprehensive index encompassing all types of social or 
economic statuses for small geographic areas, areas with higher values for this index represent areas 

Figure 4. Calibration plots for the observed and forecasted values of 2015 using Model 3.

4. Discussion

This study focuses on verifying the association between air pollution and human health over the
entire area of South Korea for the years 2012–2015. To adjust for other effects on mortality, we also
used meteorological factors and regional deprivation index as covariates.

After controlling for the effects of weather variables, the deprivation index was positively
associated with different types of mortality. A previous study [19] found that socioeconomic status,
as represented by marital status, education level, and occupation, was linked to different causes of
death. Because the deprivation index is a comprehensive index encompassing all types of social or
economic statuses for small geographic areas, areas with higher values for this index represent areas
with greater deprivation. Deprived areas generally have higher death rates; therefore, our findings are
consistent with those of [19].
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After controlling for other factors, increases in the concentrations of PM10 and PM2.5 were
associated with increases in various types of mortality. Other than the non-significant association
of PM10 with respiratory death, these findings are consistent with those from several previous
studies [29–31]. One previous study [29] determined that the daily PM10 concentration was positively
associated with daily mortality. One of their findings was that PM10 was positively associated
with all-cause, cardiovascular, and respiratory mortalities after adjusting for weather variables [29].
Although there are very few existing studies addressing the relationship between PM2.5 and death
in South Korea, the effects of PM2.5 on mortality can be inferred from previous studies on PM10 and
human health.

One of our study’s strengths is that it covered the entire area of South Korea from 2012 to 2015.
Although some studies have considered different geographic areas in South Korea, most did not
evaluate spatial and temporal dynamics. For instance, [18] focused on the seven metropolitan cities
in South Korea, but analyzed each geographic area independently. In contrast, our study area
encompassed all 250 South Korean administrative areas, and we also considered spatial and temporal
variations. We utilized spatial and temporal random effects to capture the spatial and temporal
dependency structures not captured by the covariates. As far as we are concerned, this study is the
first attempt to illustrate the link between air pollutants and human health using a Bayesian two-stage
spatio-temporal model.

Despite the many strengths of this study, there are several limitations. First, the regression
coefficient of particulate matter is the same for all administrative areas in our proposed model.
However, since the effect of air pollution on death might vary across regions, region-specific regression
coefficients may be more suitable. This will be one of the future directions of our research into air
pollution and human health. Second, stratification of age and sex might lead to a more detailed
understanding of air pollution and health. Several previous studies have conducted age- and
sex-specific analyses and obtained meaningful findings [5]. Lastly, the results of this paper may be
biased due to the possibility of exposure misclassification resulting from the aggregated nature of
the data. For example, we assigned air pollution averages to all cases in each district for a given
month, which may not truly capture the monthly average exposure for the 30 days prior to the day of
mortality. Ideally, individual level data with precise location and date of death are needed to assess
daily time-lagged effects of air pollution exposure [32–34]. Future research should be geared to address
the above limitations.

5. Conclusions

In conclusion, this study contributes to an understanding of the relationship between air pollution
and human health using a Bayesian two-stage spatio-temporal model. Our findings show that air
pollution positively affects total, cardiovascular, and respiratory mortalities. Additionally, this study
indicates the need for considering spatio-temporal dynamics in epidemiological studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/12/2111/s1,
Figure S1: Plots of Pearson residuals versus the forecasted values for different types of mortality and air pollutants.
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