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Biomechanical evaluation of a nov
el transtibial posterior cruciate
ligament reconstruction using high-strength sutures in a porcine
bone model
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Abstract
Background:Multiple techniques are commonly used for posterior cruciate ligament (PCL) reconstruction. However, the optimum
method regarding the fixation of PCL reconstruction after PCL tears remains debatable. The purpose of this study was to compare
the biomechanical properties among three different tibial fixation procedures for transtibial single-bundle PCL reconstruction.
Methods: Thirty-six porcine tibias and porcine extensor tendons were randomized into three fixation study groups: the interference
screw fixation (IS) group, the transtibial tubercle fixation (TTF) group, and TTF + IS group (n= 12 in each group). The structural
properties of the three fixation groups were tested under cyclic loading and load-to-failure. The slippage after the cyclic loading test
and the stiffness and ultimate failure load after load-to-failure testing were recorded.
Results:After 1000 cycles of cyclic testing, no significant difference was observed in graft slippage among the three groups. For load-
to-failure testing, the TTF + IS group showed a higher ultimate failure load than the TTF group and the IS group (876.34± 58.78 N
vs. 660.92± 77.74 N [P< 0.001] vs. 556.49± 65.33 N [P< 0.001]). The stiffness in the TTF group was significantly lower than
that in the IS group and the TTF + IS group (92.77 ± 20.16 N/mm in the TTF group vs. 120.27± 15.66 N/m in the IS group
[P= 0.001] and 131.79± 17.95 N/mm in the TTF + IS group [P< 0.001]). No significant difference in the mean stiffness was found
between the IS group and the TTF + IS group (P= 0.127).
Conclusions: In this biomechanical study, supplementary fixation with transtibial tubercle sutures increased the ultimate failure load
during load-to-failure testing for PCL reconstruction.
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Introduction

Compared with the treatments used for anterior cruciate
ligament (ACL) reconstruction, the optimal treatment for
posterior cruciate ligament (PCL) tears has been debated
because many patients develop residual posterior laxity
following PCL reconstruction.[1-13] Recent studies have
evaluated several PCL reconstruction techniques, includ-
ing the transtibial technique or inlay technique, femoral
and tibial tunnel placement, femoral and/or tibial fixation,
etc.[6-9,14-17] However, the gold standard technique for
PCL reconstruction has not been established.
Tibial side fixation has been the recent treatment of interest
for PCL reconstruction. Numerous types of tibial fixation
have been introduced for PCL reconstruction using
hamstring autografts during the transtibial technique,
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such as interference screws, cross-pins, screws, spiked
washers, and endobuttons.[6-8,11,14,18-20] The transtibial
technique with a hamstring autograft is one of the most
frequently employed techniques in clinical practice.
However, four-stranded hamstring autografts fixed with
interference screws with the transtibial technique may have
short decreased pullout strength, which might lead to
decreased overall graft stiffness and increased total graft
deformation. Therefore, we proposed a new surgical
technique for PCL reconstruction with tibial transtibial
tubercle fixation (TTF) using several high-strength sutures
that are not restricted by the graft length and increase the
biomechanical properties of the reconstructed graft. To
our knowledge, no study has compared tibial graft fixation
in the transtibial technique for PCL reconstruction with
TTF using several high-strength sutures with interference
screws at the tibial side fixation.
Correspondence to: Dr. Hang-Zhou Zhang, Department of Orthopedics, Joint
Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, 155
Nanjing North Street, Shenyang, Liaoning 110001, China
E-Mail: Zhanghz1000@sina.com

Copyright © 2021 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the
CC-BY-NC-ND license. This is an open access article distributed under the terms of the Creative
Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is
permissible to download and share the work provided it is properly cited. The work cannot be
changed in any way or used commercially without permission from the journal.

Chinese Medical Journal 2021;134(19)

Received: 03-05-2021 Edited by: Yan-Jie Yin and Xiu-Yuan Hao

mailto:Zhanghz1000@sina.com
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0


Figure 1: Computer drawing of the three fixation groups. (A) IS; (B) TTF; (C) TTF + IS. IS: Interference screw fixation; TTF: Transtibial tubercle fixation.
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The purpose of this study was to compare the biomechan-
ical properties among three different procedures at the
tibial site in terms of their ability in transtibial PCL
reconstruction: the use of interference screw fixation (IS)
alone, the TTF alone, and the new TTF + IS technique. The
primary hypothesis is that supplementary fixation with
transosseous high-strength sutures will improve the initial
IS strength and stiffness under cyclic loading and load-to-
failure testing. The secondary hypothesis is that the initial
new TTF technique will be comparable with that achieved
with IS.
Methods

Graft preparation and tunnel preparation

This study was approved by the Ethics Committee of First
Affiliated Hospital of China Medical University. The
availability of young cadaver knees is limited for
biomechanical testing. Porcine tibias, which were used
in this study, have been reported to have biomechanical
properties similar to those of young human bone.[21] A
randomized controlled experimental study in a porcine
model was performed using 36 fresh-frozen porcine tibias
and 24 porcine digital extensor tendons from healthy male
pigs aged 12 to 16 months and weighing 90 kg. The bone
mineral density (BMD) of the porcine tibias was assessed
using dual-energy X-ray absorptiometry (Hologic QDR
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Whole-Body X-ray Bone Densitometer; Hologic, Bedford,
MA, USA). BMD in IS group was 24.21± 0.85 kg/m2, in
TTF group was 24.05± 0.62 kg/m2, and in TTF + IS group
was 24.29± 0.53 kg/m2. Both the tibias and tendons were
stored at�80°C. Before testing, all specimens were thawed
at room temperature for 12 h. All of the specimens
underwent one freeze-thaw cycle before biomechanical
testing. The preparation procedures for the graft and tibial
tunnel were similar for the three groups. The specimens
were blocked and randomly divided into three groups: IS
alone, TTF alone, and TTF + IS (n= 12 in each group)
[Figure 1].

For all porcine tibiae, a tunnel with a diameter of 8 mm
and a length of 5 to 6 cm was prepared on the tibia by the
transtibial technique. A PCL tibial drill guide (Arthrex,
Naples, FL, USA)was used, and the drill guide angle of the
tibia was oriented at 55° to 60°. A double-looped graft
was prepared on the table, folded in half, and thinned to 8
mm in diameter and 9 to 10 mm in length. Three No. 2
Ultrabraid sutures (Smith & Nephew, Andover, MA,
USA) were used to sew 3 cm of both ends of each tendon
together using a crisscross stitch. Then, the grafts were
wrapped in 0.9% saline solution-soaked gauze before
testing. In the IS group, the graft was fixed with an 8� 25
mm titanium interference screw (Guardsman) in the
proximal tibial tunnel [Figure 2]. In the TTF + IS group,
the graft was fixed with an 8� 25 mm titanium
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Figure 2: Sawbone model demonstrating the TTF technique. (A–C) The graft was pulled into the tibial tunnel; an eyelet-passing pin was drilled transversely into the transtibial tubercle. (D–F)
The sutures were passed to the lateral side. (G–I) The transosseous sutures were tied at the tibia with a knot pusher. TTF: Transtibial tubercle fixation.
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interference screw (Guardsman) in the proximal tibial
tunnel, and then the ends of the sutures were tied at the
tibia. An eyelet-passing pin was drilled transversely 1 cm
distal to the tibial tunnel (parallel to the tibial joint line
and 1 cm posterior to the anterior tibial cortex). The
sutures were passed through the transtibial tubercle with
the eyelet-passing pin. All the ends of the sutures were tied
at the tibia [Figure 3].
Biomechanical testing using animal tissue

Biomechanical testing was performed in a similar manner
to the methods described by Zhang et al[20] The tibias were
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fixed in a custom testing jig [Figures 2 and 3]. All
biomechanical tests of the graft-fixation method-tibia
complexes were administered using a testing machine. The
looped end of the double-looped porcine tendon graft was
fixed to a bar attached to the base of the material testing
machine. The free graft was kept at a length of 3 cm. The
direction of the tensile force and tibial bone tunnel formed
an angle of 130° in the sagittal plane. For the graft-fixation
method, the tibia complex was pre-conditioned at 50 N for
5min, and cyclic loads between 50 and 250Nwere applied
for 1000 cycles at a frequency of 1 Hz. Grafts were marked
with links at tunnel exit points applying the pre-
conditioning load and again after the cyclic loading test.

http://www.cmj.org


Figure 3: (A) IS: the graft was fixed with a titanium interference screw in the proximal tibial tunnel. (B) TTF: the graft was fixed with high-strength sutures tied at the tibia. (C) TTF + IS: the
graft was fixed with a titanium interference screw in the proximal tibial tunnel; the ends of the high-strength sutures were tied at the tibia. IS: Interference screw fixation; TTF: Transtibial
tubercle fixation.

Table 1: Cyclic testing and load-to-failure testing in the three groups.

Items IS TTF TTF + IS P
∗

P† P‡

Slippage after 1000 cycles (mm) 1.37± 0.45 1.40± 0.41 1.39± 0.50 0.883 0.943 0.039
Stiffness (N/mm) 120.27± 15.66 92.77± 20.16 131.79± 17.95 0.001 0.127 <0.001
Ultimate failure load (N) 556.49± 65.33 660.92± 77.74 876.34± 58.78 0.001 <0.001 <0.001

Data are presented as mean± standard deviation.
∗
IS vs. TTF; †IS vs. TTF + IS; ‡TTF vs. TTF + IS. IS: Interference screw; TTF: Transtibial tubercle

fixation.
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Graft slippage was measured as the distance between these
two lines. After clinical load testing, the constructs were
pre-loaded at 20 N for 2 min; then, they underwent load-
to-failure testing at a rate of 10 mm/min. The ultimate
failure load (N) was determined. Pull-out stiffness (N/mm)
was calculated as the slope of the linear portion of the load-
elongation curve. The failure modes were noted.
Statistical analysis

Statistical analysis was performed using SPSS 21.0 (IBM,
Armonk, NY, USA). We used the Kolmogorov-Smirnov
test to determine the normally distributed variables within
the groups. The Student’s t test was used to compare the
elongation, stiffness, and failure load among the three test
groups. The significance level was set at P< 0.050.
Results

Cyclic testing

No failures occurred during cyclic testing. Table 1
reports the cyclic testing results (1000 cycles) in the
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three groups. The mean graft slippage values for the IS
group, TTF group, and TTF + IS group were 1.37 ± 0.45,
1.98 ± 0.46, and 1.39 ± 0.50 mm, respectively. There
were no significant differences in slippage among the
three groups.
Load-to-failure testing

The ultimate failure load in the TTF + IS group was
significantly higher than those in the IS group and the TTF
group (876.34± 58.78 N in the TTF + IS group vs.
556.49± 65.33 N in the IS group [P< 0.001] and
660.92± 77.74 N in the TTF group [P< 0.001]). The
ultimate failure load in the TTF group was also
significantly higher than that in the IS group
(660.92 ± 77.74 N vs. 556.49± 65.33 N; P= 0.001).

The stiffness in the TTF group was significantly lower than
those in the IS group and the TTF + IS group
(92.77 ± 20.16 N/mm in the TTF group vs.
120.27± 15.66 N/m in the IS group [P< 0.001] and
131.79± 17.95 N/mm in the TTF + IS group [P< 0.001]).
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No significant difference in the mean stiffness was found
between the IS group and the TTF + IS group [Table 1].
Discussion

The principal finding of our study was that the surgical
technique for transtibial PCL reconstructionwithTTFusing
several high-strength sutures provided a higher ultimate
failure load than IS alone or TTF alone during PCL
reconstruction on the tibial side in a porcine model. In the
cyclic testing study, there were no significant differences in
the slippage between the IS group and theTTF + IS group. In
the load-to-failure testing, the TTF + IS group had a higher
ultimate failure load than the IS group and the TTF group.
The stiffness in the TTF group was significantly lower than
that in the IS group and the TTF + IS group. No significant
difference in mean stiffness was found between the IS group
and the TTF + IS group (P= 0.127).

Recent studies have supported that the transtibial
technique or tibial inlay technique can improve the
stability of the knee in PCL-reconstructed knees.[1,13-
17,19,20,22-27] However, the optimal PCL reconstruction
technique has yet to be determined because PCL
reconstruction has not had the same success in restoring
knee stability as ACL reconstruction. Many authors have
pointed out that graft fixation techniques and graft fixation
levels are critical factors for successful PCL reconstruction
using hamstring tendon grafts.[3]

There are some biomechanical studies supporting that
supplementary tibial fixation for ACL reconstruction may
be beneficial[20,28] and showing that supplementary
fixation with staple or push-lock screws increases the
ultimate failure load compared with interference fixation
alone.[28] Multiple strands of high-strength sutures can
theoretically provide a higher ultimate failure load. The
transosseous suture fixation technique with high-strength
sutures has been used for the repair of the rotator cuff,
patellar tendon, and quadriceps tendon ruptures,[11,18,29-
35] and we used transosseous suture fixation with high-
strength sutures for PCL reconstruction in this biomechan-
ical study. Another study published a similar technical note
for TTF without hardware for ACL and PCL reconstruc-
tion.[13] Our study is the first to compare the biomechanics
of supplementary TTF using several high-strength sutures
with those of IS in transtibial PCL reconstruction.
Regarding TTF + IS vs. IS alone or TTF alone, we found
that supplementary TTF provided a higher ultimate failure
load than IS alone or TTF alone for PCL graft-to-tibial
tunnel fixation. This procedure may theoretically be
recommended for supplementary fixation in cases of
revision surgery with tunnel widening and graft-tunnel
mismatch in PCL reconstruction. The supplementary
transtibial tubercle technique does not require implants
and is therefore much less expensive than other techniques,
such as suspension buttons, screws or washers, and
metallic anchors. Considering the decreased biomechani-
cal properties with TTF alone (relatively lower stiffness), it
might not be recommended for PCL fixation alone in a
clinical setting. A longer effective length of reconstructed
graft could lead to increased overall graft stiffness and
decreased total graft deformation.[4] We chose to avoid the
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use of IS alone or TTF alone for PCL graft fixation because
of the decreased pullout strength and/or decreased
stiffness, which might have led to decreased overall graft
stiffness and increased total graft deformation.

There were some limitations to our study. First, a main
limitation of this biomechanical study was that we only
focused on the time-zero outcomes. Second, we could not
study the healing of the graft to bone over time. Third,
human bone was not used in this study because the
availability of young human bone and hamstring tendons
for biomechanical testing is limited. The porcine bone
model may not indicate the actual situation in human
surgical repair, which limits the value of the study.
However, porcine bone specimens are commonly used for
biomechanical studies due to their similar structural and
material properties to human hamstring tendons.[20,21]

Fourth, this is another offering for knee ligament
reconstruction surgeons and is a relatively non-complicat-
ed and inexpensive technique. There are no comparative
data with clinical outcomes. Finally, we should provide
evidence that this technique restores knee function,
motion, and stability in future clinical studies.

The results of this biomechanical study suggest that
supplementary TTF + IS increased the ultimate failure
loads compared with conventional IS alone.
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