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Transient increases in peripheral vasoconstriction frequently occur in obstructive sleep

apnea and periodic leg movement disorder, both of which are common in sickle cell

disease (SCD). These events reduce microvascular blood flow and increase the likelihood

of triggering painful vaso-occlusive crises (VOC) that are the hallmark of SCD.We recently

reported a significant association between the magnitude of vasoconstriction, inferred

from the finger photoplethysmogram (PPG) during sleep, and the frequency of future

VOC in 212 children with SCD. In this study, we present an improved predictive model

of VOC frequency by employing a two-level stacking machine learning (ML) model that

incorporates detailed features extracted from the PPG signals in the same database.

The first level contains seven different base ML algorithms predicting each subject’s

pain category based on the input PPG characteristics and other clinical information,

while the second level is a meta model which uses the inputs to the first-level model

along with the outputs of the base models to produce the final prediction. Model

performance in predicting future VOC was significantly higher than in predicting VOC

prior to each sleep study (F1-score of 0.43 vs. 0.35, p-value < 0.0001), consistent

with our hypothesis of a causal relationship between vasoconstriction and future pain

incidence, rather than past pain leading to greater propensity for vasoconstriction.

The model also performed much better than our previous conventional statistical

model (F1 = 0.33), as well as all other algorithms that used only the base-models

for predicting VOC without the second tier meta model. The modest F1 score of

the present predictive model was due in part to the relatively small database with

substantial imbalance (176:36) between low-pain and high-pain subjects, as well

as other factors not captured by the sleep data alone. This report represents the

first attempt ever to use non-invasive finger PPG measurements during sleep and

a ML-based approach to predict increased propensity for VOC crises in SCD. The

promising results suggest the future possibility of embedding an improved version
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of this model in a low-cost wearable system to assist clinicians in managing long-term

therapy for SCD patients.

Keywords: sickle cell anemia, photoplethysmography, peripheral vasoconstriction, sleep, machine learning,

vaso-occlusive crises

INTRODUCTION

Sickle cell disease (SCD) is an inherited blood disorder that
results from an amino acid substitution in the beta globin
chain of hemoglobin, producing sickle hemoglobin (1). When
sickle hemoglobin polymerizes in the deoxygenated state, flexible
discoid red blood cells are transformed into rigid sickle-shaped
erythrocytes that can obstruct capillary blood flow if they
fail to escape the microvasculature before the transformation
occurs (2, 3). The clinical manifestation of these obstructions of
microvascular flow is vaso-occlusive crisis (VOC), characterized
by episodes of pain and subsequently organ damage or even
more severe consequences (4, 5). In children and adolescents with
SCD, the pain events are generally acute and occur intermittently
with frequency increasing with age; whereas in adulthood, the
acute events occur on top of chronic pain (6, 7). Since SCD
individuals have low level, asymptomatic sickling all the time, it
remains unclear how transient regional vaso-occlusion cascades
into full-blown VOC. Much of the contemporary research in
SCD has been focused on elucidating the underlying molecular
and cellular factors that decrease microvascular flow by blocking
the post-capillary venules (8). However, these processes are
ongoing during steady state.Why or how transient regional vaso-
occlusion cascades into large-scale VOC in response to certain
stimuli remains unknown. There is also a significant amount of
variability in VOC frequency and severity among SCD patients
that is not fully explained by the biology of this progressive
chronic vascular disease. However, there is growing evidence that
the autonomic nervous system (ANS) plays an important role in
triggering the onset of VOC (9–11). Of particular significance
to subjects with SCD is the possibility that ANS-mediated
vasoconstriction in the arterioles can reduce microvascular flow
from already low basal levels, prolonging capillary blood transit
time further and thus promoting regional vaso-occlusion.

Sleep-disordered breathing, and in particular obstructive sleep
apnea, has been found to be prevalent among subjects with SCD
(12, 13). For this reason, it has been thought that the intermittent
hypoxia that results from nocturnal apnea or hypopnea would
lead to higher frequency and severity of VOC in SCD subjects.
But Willen et al. (14) found no relationship between low mean
nocturnal SpO2 and incidence of VOC in a prospective multi-
center cohort study of over 200 SCD children. Transient surges
in sympathetic activity generally accompany the arousals and
limb movements that occur during sleep in obstructive sleep
apnea and periodic leg movement disorder, both of which are
common in SCD (15, 16). These sympathetic surges lead to
peripheral vasoconstriction and transient increases in heart rate
that raise blood pressure (17). In SCD subjects, such events likely
translate to recurring episodes in whichmicrovascular blood flow
is reduced, thus increasing the likelihood of triggering VOC. In a

recently published analysis (18) of the same database of subjects
in Willen et al’s. (14) study, we identified a significant association
between the median magnitude of vasoconstriction (Mvasoc),
inferred from the finger photoplethysmogram (PPG) during
sleep, and the rate of subsequent VOC. An interesting secondary
finding was that the indices reflecting frequency of arousal, limb
movements and obstructive apnea/hypopnea were all significant
predictors of Mvasoc but none of these demonstrated a significant
association with VOC pain rate. This result suggests that,
although the sympathetic surges that accompany disordered
sleep contribute to episodes of peripheral vasoconstriction, it is
the collective effect of these events, quantified byMvasoc, that best
represents their net impact on microvascular blood flow and the
consequent likelihood for triggering large-scale VOC.

While our previous study (18) was aimed at identifying the
key physiological factors linking vasoconstriction to VOC pain
frequency, the present work focuses on developing algorithms
to improve the ability to predict future likelihood of VOC. This
is achieved by employing an approach that uses a two-level
stacking machine learning (ML) model to recognize features
extracted from the complex dynamic patterns of the PPG
and heart rate signals that occur in conjunction with episodic
nocturnal vasoconstrictions.

The rest of this paper is structured as follows. The Methods
section describes: (1) the input features that we extracted from
overnight polysomnogram signals and howwe defined VOC pain
rates, (2) the process of feature selection to be included in the
model, (3) the development of models from single-level bases
to two-level stacking model, (4) the cross-validation process and
(5) the chosen evaluation metrics. The Results section compares
the performances of the base models and the two-level stacking
model with a “baseline” random model. Finally, the Discussion
section summarizes the key findings from the application of a
machine learning approach to data derived from non-invasive
measurements of heart rate and finger photoplethysmogram
during sleep, with the goal of predicting future VOC crises in
SCD subjects. The study limitations and implications for home-
based clinical application are also discussed.

METHODS

Data Analysis
As in our previous study (18), our analyses were conducted
using the same database derived from the multi-center Sleep
and Asthma Cohort (SAC) study of children and adolescents
with SCD (14). Data from 252 SCD subjects were considered
for analysis: 240 subjects were homozygous for sickle cell
hemoglobin [HbSS], and 12 were compound heterozygous for
sickle β zero thalassemia [HbSβ0]. Overnight polysomnograms
(PSG) were obtained on all participants in the SAC. Deidentified
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digital recordings of all channels from each PSG and clinical
datasets from 212 participants were selected for our analyses
based on the quality of the polysomnogram recording and
completeness of the records on pain events. Further details about
the recruitment and consent process in the SAC are given in
Willen et al. (14).

The information used for detection and quantification of
peripheral vasoconstriction episodes during sleep was derived
from two channels of the PSG recording: (1) the sequences
of R-peaks extracted from the electrocardiogram, from which
we determined the R-to-R interval (RRI) on a beat-to-beat
basis over the entire sleep duration; (2) the PPG waveform
acquired from pulse oximetry (Masimo SET (v2), Irvine, CA).
The R-peaks were also used as time-markers for delineating
the corresponding cardiac pulses in the PPG waveform. From
each PPG pulse, we derived the peak to trough amplitude
(PPGa). Both PPGa and RRI signals took the form of uniformly
sampled time series using zero-order hold interpolation, which
were downsampled to 2Hz by the method introduced by Berger
et al. (19). Segments with artifacts due to motion, interruptions
to the sleep study, signal clipping, or abrupt changes in gain
of the recording channel were excluded from further analysis.
Ectopic beats (determined by RRIs that are longer or shorter
than 3.5 standard deviations from mean) were interpolated.
PPGa signals were normalized with respect to the 95-percentile
maximum value (from sleep onset to end of sleep) for each
subject’s sleep study. Respiratory influences in both signals were
removed using a low pass filter with cutoff frequency of 0.18Hz.
Vasoconstriction events were detected using the signal processing
algorithm detailed in Chalacheva et al. (18). After detecting
the vasoconstriction events, the resampled (2Hz) PPGa and
RRI signals around the events were selected such that each
segment was 180 s in total duration. This parameter (segment
duration) was based on preliminary analyses of the durations
of vasoconstrictions in randomly selected subjects, in which
we found that the vast majority of vasoconstriction events
lasted much <150 s following onset. Thus, the first 30 s of each
segment prior to vasoconstriction onset were used to represent
the pre-vasoconstriction baseline for that segment. The features
associated with vasoconstriction events were derived from the
dynamics displayed in all these segments (see next section,
“Feature Selection”). In addition, all extracted segments, each of
fixed duration of 180 s, were used as inputs to the convolutional
neural network (CNN) base model (see “Model Development”
section). Given the resampling rate of 2Hz, the CNNmodel thus
received a total of 720 inputs (180 × 2 samples × 2 channels).
Further details of the CNN model architecture are provided in
Supplementary Material.

Hospitalization events of the subjects resulting from severe
pain induced by VOC were recorded in the SAC study. These
records were used to derive the pain rate, quantified by the
average number of pain episodes (that require hospitalization)
per year. “Post-PSG pain rate” was defined as average pain rate
following the PSG study till the end of the SAC study for each
individual. “Pre-PSG pain rate” was defined as average pain
rate before the PSG study. A threshold of 1.5 pain episodes
per year was chosen to separate the subjects into high pain

TABLE 1 | Feature selection.

Feature/input variable Feature type

Age Clinical/Subject

Sex Clinical/Subject

Hemoglobin Clinical/Subject

White blood cell count Clinical/Subject

Reticulocyte count Clinical/Subject

Neutrophil count Clinical/Subject

Diastolic blood pressure Clinical/Subject

Systolic blood pressure Clinical/Subject

Body mass index Clinical/Subject

Hydroxyurea use Clinical/Subject

Arousal indexa Sleep

Apnea-hypopnea indexb Sleep

Number of limb movements Sleep

Effective sleep durationc Sleep

Median of RRI mean per 5min All-night RRI/HRV

Median of PPGa CV per 5min All-night PPGa

Median of Mvasoc values from all detected

vasoconstriction events in sleep study

Vasoconstriction

Median of Ad
RRI− values from all detected

vasoconstriction events in sleep study

Vasoconstriction

Median of Ae
RRI+ values from all detected

vasoconstriction events in sleep study

Vasoconstriction

Nvasoc: total number of vasoconstriction events in

sleep study

Vasoconstriction

aAverage number of arousals per hour of sleep.
bAverage number of apneas and hypopneas per hour of sleep.
cTotal duration of sleep during PSG, minus (short) durations in which PPG signal was

corrupted by artifact or noise.
dRRI area below baseline during vasoconstriction (see Figure 1).
eRRI area above baseline during vasoconstriction (see Figure 1).

(≥1.5) and low pain (<1.5) categories. Applying this criterion
to post-PSG pain rate, 36 subjects were categorized as “high
pain,” and 176 subjects were categorized as “low pain.” The same
criterion, applied to pre-PSG pain rate, yielded 31 “high pain”
and 181 “low pain” individuals. A categorical dependent variable
(pain category) was chosen over a continuous one (pain rate)
for three reasons. First, in the SAC study, 5% of the subjects
contributed toward ∼25% of all pain episodes. Secondly, from
a clinical standpoint, it is more important to distinguish the SCD
patients with 2 pain episodes per year from the patients with
no episode, than to distinguish the patients with 6 episodes per
year from the ones with 2 per year. Employing a categorical
framework for characterizing VOC frequency serves this goal
better than treating pain rate as a continuous variable. Thirdly,
only 212 subjects were studied in this work – this is a relatively
small dataset in the context of machine learning. Adopting pain
category over pain rate can limit the impact of outliers (extremely
high pain rate) on the machine learning models, reduce the
amount of overfitting, and allow the models to be trained
more effectively.

All vasoconstriction events belonging to the same subject
shared the same label: the pain category of that subject.

Frontiers in Digital Health | www.frontiersin.org 3 July 2021 | Volume 3 | Article 714741

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Ji et al. Vasoconstriction and Sickle Cell Pain

FIGURE 1 | Illustration of the changes in PPGa (blue tracing) and RRI (brown tracing) that occur during a vasoconstriction episode. Tvasoc represents the duration

between the onset and end of a vasoconstriction episode. Avasoc (blue-shaded area) represents the cumulative amount of vasoconstriction over Tvasoc. The average

magnitude of vasoconstriction for this episode, Mvasoc, is calculated as the ratio between Avasoc and Tvasoc. Thus, Mvasoc is also the average percent change in PPGa

from pre-vasoconstriction baseline. ARRI− is the RRI area below baseline during vasoconstriction (i.e., cumulative amount of heart rate increase during this

vasoconstriction episode). ARRI+ is the RRI area above baseline (i.e., cumulative amount of heart rate decrease during vasoconstriction episode). Mvasoc, ARRI−, ARRI+,

and total number of vasoconstriction episodes (Nvasoc, not shown in figure) were selected as features representing vasoconstriction dynamics.

Feature Selection
The inputs that were used by the ML model to predict VOC
pain category were selected from a pool of 44 candidate features
derived from five groups of information: (a) clinical data and
subject characteristics, (b) sleep-related indices, (c) all-night RRI
and heart rate variability indices, (d) all-night PPGa statistics,
and (e) compact descriptors of the dynamic fluctuations in PPGa
and RRI associated with detected vasoconstrictions. The final
and reduced set of features employed in the subsequent analyses
was determined by a screening procedure that sought to: (a)
maximize the association between each feature and pain category,
and (b) minimize the pairwise Spearman’s correlation coefficient
between that feature and other candidate features in the same
feature group. The selected set of 20 features is listed in Table 1.
The entire set of 44 candidate features that we initially screened
and the procedures we employed to select the final 20 features
for use as inputs are given in Supplementary Table 1. Figure 1
provides a graphic illustration of the key features associated with
RRI and PPGa changes (Table 1) during a vasoconstriction event
(see figure legend for details).

Model Development
In the first phase of model development, we evaluated the ability
of a variety of stand-alone ML algorithms (“base models”) to
predict pain category of the subjects using the set of 20 selected
features, as described earlier. These algorithms included: (1)
multiple logistic regression, (2) support vector machine (SVM)
with linear kernel (20), (3) SVM with radial basis function (RBF)

kernel, (4) random forest (21), (5) extremely randomized trees
or ExtraTrees (22), (6) adaptive boosting or AdaBoost (23),
(7) one-dimensional CNN (24), (8) multi-layer perceptron (25),
(9) SVM with polynomial kernel (20), (10) gradient boosting
trees (26, 27), and (11) extreme gradient boosting trees or
XGBoost (28). The CNN base model accepted all segments
(each of 180 s duration) extracted from the PPGa and RRI time-
series as inputs, while all other 10 base models used the 20
selected features. The output of each of these base models was
pain category.

Table 2 compares the performance of all the base models that
we tested, using the F1 metric (see Evaluation Metric section
later). Three of these base models (SVM with polynomial kernel,
gradient boosting trees, and XGBoost) were rejected from being
included in the subsequent two-level stacking model since they
performed significantly worse than all the other base models
(Table 2) and also no better than the negative binomial model
used in our previous analysis (Table 3).

The multi-layer perceptron (MLP) performed substantially
better than all the other base models, and thus was selected to
be the algorithm representing the “meta model” in the second
level of the stacking model. The second level meta model took
the outputs of all base models, plus the 20 selected features, as
inputs. The output of the second level of the stacking model was
the final prediction for subject pain category. Figure 2 shows
the architecture of this two-level stacking model. The human
analogy of the two-level stacking model would be that the first-
level base models represent experts with specialized skills that
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report to a higher-level “supervisor” (represented by the second-
level meta model). The “supervisor” considers all the decision
calls submitted by the base models and also directly evaluates
the information derived from the features to render the final
judgement of what pain category to assign to each subject.

Further details about the CNN and MLP models can be found
in Supplementary Material.

Cross-Validation
The base models and the meta model were all trained
and evaluated using k-fold cross-validation; in this case, the
parameter “k” was chosen to be 4. The cross-validation process
can be described as follows (as illustrated in Figure 3).

• The subjects were shuffled using random number generator
(controlled by a seed) and divided into 4 sets (“folds”). Each
fold contained 53 subjects (44 low pain, 9 high pain).

TABLE 2 | Performance of base models.

Model F1-score 95% CI

Logistic regression 0.3751 [0.3594, 0.3907]

SVM with linear kernel 0.3855 [0.3713, 0.3997]

SVM with RBF kernel 0.3726 [0.3605, 0.3846]

SVM with polynomial kernel 0.2391 [0.2149, 0.2633]

Random forest 0.3617 [0.3420, 0.3813]

ExtraTrees 0.3775 [0.3645, 0.3904]

AdaBoost 0.3534 [0.3370, 0.3699]

Gradient boosting trees 0.2151 [0.1891, 0.2411]

XGBoost 0.3101 [0.2937, 0.3265]

CNN 0.3608 [0.3503, 0.3713]

MLP 0.4147 [0.4033, 0.4261]

Inputs are 20 selected features. SVM, support vector machine; CNN, convolutional neural

network; MLP, multi-layer perceptron.

• The i-th fold (1≤ i≤ 4) was selected as the test fold, and while
the other 3-folds were used as training folds.

• The model was trained using data from the training folds,
model performance was assessed using data from the test fold
(fold “i”), and the results (both model outputs and evaluation)
were saved to the output pool.

• Steps 2 and 3 were repeated with each of the other folds being
used as the test fold.

• Following execution of all 4-folds, the output pool contains all
the predicted model outputs and the performance evaluation
numbers for all the subjects.

The base models were first trained in the cross-validation
manner, and the shuffling process was initiated using a random
seed α. Then the outputs of base models were re-ordered (based
on subjects) to the original order of the dataset. Next, the meta
model was also trained in the cross-validation manner, and the
shuffle process for both the features (original order) and the
outputs of base models (original order) was governed by another
random seed β. A schematic illustration of the overall process for
cross-validation and evaluation of the two-level stacking model is
displayed in Figure 4.

Evaluation Metric
Since there were two output categories (“high pain” and “low
pain”), we classified those subjects in the high pain category to
be “true positive” (TP) if they were actually high pain subjects
and predicted to have high pain. Those subjects who actually
had high pain but predicted to be low pain fell into the “false
negative” (FN) category. Subjects who were actually low pain
and predicted to have low pain constituted the “true negative”
(TN) category. Finally, subjects who were low pain but predicted
to have high pain were classified as “false positive” (FP). The
two key metrics for evaluating the performance of prediction
algorithms are “true positive rate,” also known as “recall” or
“sensitivity,” defined as TP/(TP+FN), and “positive predictive
value,” also known as “precision,” defined as TP/(TP+FP). A

TABLE 3 | Model performance comparison.

Model Inputs to

meta-model

Output (pain

category)

F1-score 95%

confidence

intervals

Random Case (Max F1) N/A N/A 0.2903 N/A

Negative Binomial Age, Hgb, Mvasoc Post-PSG 0.3279 N/A

(A) Full Model 20 features + 7 base

models

Post-PSG 0.4255 [0.4183,

0.4327]

(B) No direct features to

Meta-Model

7 base models Post-PSG 0.3827 [0.3695,

0.3960]

(C) Features only + no

base models to

Meta-Model

20 features Post-PSG 0.4147 [0.4033,

0.4261]

(D) Mvasoc excluded from

features

19 features + 7 base

models

Post-PSG 0.4155 [0.4041,

0.4269]

(E) Pre-PSG pain

category

20 features + 7 base

models

Pre-PSG 0.3505 [0.3377,

0.3633]
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FIGURE 2 | Architecture of the two-level stacking model. The base models in the first level take subjects’ physiological and ANS features as input (the CNN

base-model takes PPGa and RRI time-series around the detected vasoconstriction events). The meta model in the second level takes both subject features and the

outputs of base models (prediction of subjects’ pain categories) as inputs, and makes the final prediction.

FIGURE 3 | Illustration of the cross-validation training and evaluation process. The above figure demonstrates the process for i = 4, when model outputs for fold 1 ∼

fold 3 has already been calculated. The model outputs for each fold (any one of the red folds in the figure) were predicted by the model trained by data in the other

3-folds. The overall performance of the model was evaluated based on the red folds in the figure.

common alternate measure is “false positive rate,” defined as
FP/(FP+TN), also referred to in the statistical literature as “type
1 error.” The complement of false positive rate is “specificity” [=

TN/(FP+TN)]. There is usually a trade-off between recall and

precision or false positive rate, particularly when the data are
imbalanced, as in our case since there are many more subjects

with “low pain” than those with “high pain.” Thus, we employed

a measure that combines these key metrics (29). We chose the
broadly accepted F1-score, which is the harmonic mean of recall

and precision:

F1 =
2 precision∗recall

(precision+ recall)

In order to reduce the impact of randomness introduced in
the subject shuffling procedures, the two-level stacking model
underwent training 20 times, with different random seeds
controlling the shuffling procedures in different trials. The mean
F1-score of the 20 trials was taken as the performance of the
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FIGURE 4 | Overall process for training and evaluation of the two-level stacking model. Both base models and the meta model were all trained and evaluated in the

cross-validation manner. The shuffling process (to split subjects into different folds for cross-validation) for base models is controlled by a certain random seed α

(shared for all base models), while the shuffling process for the meta model is controlled by a different random seed β.

model. F1-score was chosen over curve-based metrics (such as
ROC curve or AUC) since curve-based metrics require the model
to output the probability for a subject to be positive (high pain),
which is difficult to define when the model is trained multiple
times. Additionally, it has been shown that measures such as
accuracy, ROC curve or AUC may present an overly optimistic
evaluation of the model with imbalanced data (30, 31). F1-score
takes into account both precision and recall and thus was chosen
as the more appropriate evaluation metric of our model over the
ROC curve.

RESULTS

Sample Datasets
Examples of 20-min segments selected from the overnight
beat-to-beat PPGa and RRI time-series of 2 subjects (A and
B) are displayed in Figure 5. The red vertical lines in all 4
plots represent the times at which significant vasoconstrictions,
as detected by the algorithm of Chalacheva et al. (18), were
considered to have begun. In both cases displayed, each red
line is accompanied by a noticeable drop in PPGa. There are
a number of significant vasoconstrictions that may have been
missed by the automated detection algorithm, due in many cases
to repetitive vasoconstrictions that were close together and the
lack of a sufficiently long, relatively flat baseline prior to the
missed vasoconstriction. Subject A had a post-PSG pain rate of
0 events/year, while Subject B’s pain rate was 7.2 events/year. The
median Mvasoc for Subject A was 13% while median Mvasoc for
Subject B was 27%. Both subjects had similar values for arousal

index, the number of arousals per hour of sleep, (A: 8.4 h−1, B:
9.5 h−1) and low obstructive apnea-hypopnea index or AHI, the
number of apnea and hypopnea events per hour of sleep (A: 1.1
h−1, B: 0.12 h−1).

Benchmarks for Least Acceptable Model
Performance
We performed calculations with a random model to provide the
benchmarks that represent the minimum acceptable levels of
model performance. Since the problem involved only 2 output
labels (“low pain” vs. “high pain”), we simulated the tossing
of a coin with different head-tail probabilities. Suppose the
probability of obtaining a head (representing “high pain”) is p.
The SAC dataset contains 212 subjects, with 36 belonging to the
positive category (“high pain”), and 176 belonging to the negative
category (“low pain”) based on post-PSG pain rate. Thus, the
expected confusion matrix for this randommodel would contain
the following entries:

TP= 36p, FN= 36 (1 – p), FP= 176p, TN= 176 (1 – p)
The corresponding precision, recall and F1-score values could

be calculated as defined in the formulas listed in the “Evaluation
Metrics” section.

We considered 3 cases:

• Here, we simulated a fair coin that yielded predictions of “high
pain” and “low pain” with equal probability (p = 0.5). This
resulted in F1= 0.2535.

• Given the unbalanced distribution of “high pain” (36) vs. “low
pain” (176) subjects, here we examined the consequences of
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FIGURE 5 | Representative samples of PPGa and RRI time-series (20-min sections) derived from PSG data in two subjects: (A) in low pain category, and (B) in high

pain category. Red vertical lines represent detected start-times of significant vasoconstrictions. The time-axes in A and B are displayed in military time format.

a random model with p = 36/212, i.e., the probability of
obtaining “high pain” with a single toss is <0.17. This gave an
F1-score of 0.1667.

• In this third “random” scenario, we simulated a coin toss that
was totally biased toward “high pain,” with p = 1. This led to
F1 = 0.2903. It can be shown that this is the highest possible
F1-score that can be derived from the random model. It also
represented the lowest acceptable F1-score that any of the ML
models we tested had to exceed in order to have a level of
performance that was “better than random.”

Performance of the Two-Level Stacking
Model
Table 3 compares the performance of the random model (best
possible performance), the negative binomial model (18), and
different variations of the two-level stacking model (labeled “A”
through “E”), using the F1-score metric.

(A) The “full model,” consisting of the two-level stacking model
with 7 base models utilizing all 20 features, and including
the time-series of PPGa and RRI as inputs to the CNN base
model, yielded the best outcome, with average F1-score of
0.4255. This predictive capability was substantially higher (F1
= 0.4255 vs. 0.3279) than what we had previously reported
in Chalacheva et al. (18), using median Mvasoc, age and
hemoglobin level as predictors.

(B) In the reduced version of the two-level stacking model
where the second-level meta model received only the output
“decisions” of the 7 base models but not the 20 features
directly, performance was substantially lower than that of the

“full model,” but this was still better than the performance of
the negative binomial model (0.3827 vs. 0.3279).

(C) In the other reduced version of the model where the inputs
to the meta model consisted only of the 20 features but not
the outputs of the 7 base models, the average F1 score was
marginally lower than that attained by the “full model” (0.4147
vs. 0.4255), but significantly higher than Case B above (0.4147
vs. 0.3827).

(D) Here, we tested the scenario in which the full model was
used, but a key vasoconstriction feature (Mvasoc) was excluded
from the information sent to the base and meta models.
This reduced model displayed marginally lower performance
relative to the “full model” (0.4155 vs. 0.4255) but the
performance was similar to that in Case (C).

(E) The full two-level stacking model was also used to predict pre-
PSG pain category. As demonstrated in Table 3, the F1-score
for predicting pre-PSG pain was substantially worse than that
for predicting post-PSG pain (0.3505 vs. 0.4255). This result
is consistent with the finding reported by Chalacheva et al.
(18) that the direction of causality is for high vasoconstriction
propensity to predispose to future high VOC pain rate, rather
than for high prior pain rate to influence current propensity
for vasoconstriction.

DISCUSSION

Summary and Interpretation of Key
Findings
The application of machine learning techniques of different levels
of complexity to the analysis of physiological signals has become
ubiquitous in recent years. The application areas span the broad
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spectrum of biomedicine, ranging from medical imaging (32)
and electrocardiogram analysis (33) to automated staging of
sleep (34, 35), as well as the prediction or detection of sleep
apnea (36). The present study represents the first attempt ever
to apply a machine learning (ML) approach to data derived from
non-invasive measurements of RRI (heart rate) and finger PPG
during sleep, with the goal of predicting future VOC crises in
SCD subjects. We developed a ML model with relatively simple
architecture for this purpose, given the paucity of measurements
of VOC pain in the small database (212 subjects) that was
available for analysis. Nonetheless, we obtained valuable insights
from this pilot study. The key findings derived from our analyses
may be summarized as follows:

• Preliminary screening of all possible “inputs” to be used in
our ML algorithms led to the identification of 20 features,
which included clinical information, sleep-related indices,
overall statistics of the heart-rate and PPGa time-series,
and descriptors related to the vasoconstriction events. These
features included Mvasoc, age and hemoglobin level, the three
parameters that were found in our previous study (18) to be
significant predictors of post-PSG pain rate.

• We tested a total of 11ML algorithms as stand-alone
prediction models of pain category using the selected 20
features as inputs, with the exception of the CNN algorithm
which used as inputs the segments of RRI and PPGa (of 180 s
duration each) straddling all detected the vasoconstriction
events. Based on relative performance, seven of these
algorithms were selected as base models filling the first layer of
a two-level stacking model. The best performing stand-alone
algorithm (MLP) was selected to be the second-level “meta
model,” the output of which was the overall model’s prediction
of pain category.

• The two-level stacking ML model (“full model”) that we
developed performed much better than the negative binomial
regression model used in Chalacheva et al. (18), as well as
all other algorithms that used only the base-model outputs
for predicting pain outcomes without the second tier meta
model. We believe the modest F1 score of the “full model”
was due in part to the relatively small database with substantial
imbalance (176:36) between low-pain and high-pain subjects,
as well as other factors influencing the development of VOC
not captured by the PSG or clinical data.

• Performance of the “full model” in predicting post-PSG
VOC pain category was significantly higher in comparison
to predicting pre-PSG pain category, consistent with our
hypothesis of a causal relationship between vasoconstriction
and future pain incidence, rather than past pain leading to
greater propensity for vasoconstriction.

• Eliminating Mvasoc as one of the inputs degraded the F1 score
of the “full model,” but prediction performance remained
higher than that attained by the negative binomial model
(18). Our interpretation of this finding is that the other three
vasoconstriction features and the median of the coefficients of
variation of 5-min segments of PPGa provide complementary
information about vasoconstriction dynamics that partially
compensate for the absence of Mvasoc as one of the inputs.

TABLE 4 | Detailed comparison of performance metrics: full model vs. negative

binomial model.

Model performance

metric

(mean values)

Full model Negative binomial

F1-score 0.4255 0.3279

Precision 0.2915 0.4000

Recall (sensitivity) 0.7917 0.2778

Specificity 0.6048 0.9148

Accuracy 0.6366 0.8066

• Although the two-level stacking ML model was superior
in predictive capability relative to all other models that
were tested in this study, the more conventional statistical
approach that was adopted using the negative binomial
model (18) provided a complementary perspective in allowing
us to determine which features were the most significant
predictors of post-PSG pain rate. Table 4 provides a more
detailed comparison of these two models, based on the other
performance metrics (precision, recall, specificity, accuracy)
along with F1-score. The substantially higher sensitivity
(recall) of the full model vis-à-vis the negative binomial model
is noteworthy, showing that the former is superior in its ability
to detect subjects with high pain, even though this results in
a higher false positive rate (lower specificity). The imbalanced
nature of the data (much larger fraction of subjects with low
pain), on the other hand, allows the negative binomial model
to more easily identify the true negatives – hence, the higher
values of specificity and accuracy.

Limitations
There were a number of important limitations that need to be
addressed in future work. First, the size of the dataset (212
subjects) was relatively small in the context of studies that utilize
machine learning. In addition, the features used for training the
model were derived from the RRI and PPGa signals of only
one PSG study per subject. Predicting pain rate a few years
into the future for each subject based on data obtained from
only one night of measurements clearly presupposes that this
single study was representative of the subject’s sleep patterns, and
sleep-disordered breathing status would remain relatively stable
over time. However, there is some support for this assumption
based on a report by Mullin et al. (37), who found little change
in the polysomnograms of a subset of this same cohort of
SCD subjects over durations lasting 1 to 2-1/2 years. Another
consequence of the small number of datasets is that unbiased
evaluation using data that was reserved only for testing, but not
for training, was not feasible. Some extent of “data leakage” was
inevitable in the cross-validation process. This likely biased the
hyper-parameter tuning and evaluation toward overfitting. The
effect was reduced by applying different random seeds in hyper-
parameter tuning and evaluation, but the leakage effect could not
be thoroughly removed.
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Another limitation was the unbalanced ratio of number of
subjects in the high-pain category vs. the number of low-pain
subjects (1:4.9 for post-PSG pain category and 1:5.8 for pre-
PSG pain category). This issue was handled to some extent by
assigning larger class weights to the positive samples (associated
with high pain) in training and using F1-score as evaluation
metric. As well, during 4-fold cross-validation, we constrained
each of the 4 “folds” (each containing 53 samples) to contain
nine high-pain subjects and 44 low-pain subjects, so that the
proportion of high-pain to low-pain subjects in the overall
dataset was mirrored in each fold. In spite of these mitigating
measures, model performance was likely reduced due to lack in
diversity of the features in the samples associated with high pain.

As well, the feature selection process applied in this work
was based on similarity of distribution between a single
independent variable (feature) and the dependent variable (pain
category), which did not properly consider potential interaction
effects among features. The vasoconstriction detection algorithm
introduced in Chalacheva et al. (18) was critical to this work,
as it was used to derive the features related to vasoconstriction
events. However, the algorithm contains assumed settings that, in
principle, could be tuned as hyper-parameters to further improve
prediction outcomes. Examples of these parameters include the
thresholds used for detection of “significant” vasoconstriction
and the durations of the time-windows used for determining
the times of onset and end of each vasoconstriction episode. As
exemplified in Figure 5, there were likely many vasoconstriction
episodes that were not detected or falsely detected by this
automated algorithm due to aberrant behavior of the PPG signal.

Implications for Home-Based Clinical
Application
The promising results arrived at in this study point to the
feasibility of designing a wearable system that provides a marker
for the propensity to have more frequent VOCs. Although our
analyses were conducted using data collected during overnight
polysomnography, the key signal that we used to identify and
quantify vasoconstrictions was the finger photoplethysmogram.
Beat-to-beat pulse interval (or heart rate) can be derived from
the PPG signal. Many commercial devices already measure PPG
for continuous tracking of health and fitness, although most
extract PPG signals from the wrist rather than the fingertip. In
the present work, VOC pain rate for the SCD patients was derived
from hospitalization records and clearly excluded pain episodes
that were experienced in the home that were not sufficiently
severe or persistent to motivate the patient to seek hospital
care. Since most VOC pain is managed at home, we recently
monitored self-reports of the frequency and intensity of pain and
mental stress in SCD patients over a 13-month period using a
mobile application (38). We found that greater pain intensity
was associated with higher stress level after adjusting for age and
gender. Also, it is well-known that many SCD patients report
experiencing an “aura” that precedes the onset of VOC. In our
mobile application study, >80% of the reports of aura were

followed by pain. In another study (39), the sleep patterns of
pediatric SCD subjects were monitored over 2 weeks using a
wrist-mounted actigraphy device, and these were found to be
associated with the occurrence of next-day pain recorded by daily
pain diary. Taken together, these exciting recent developments
point to the future possibility of embedding an ML-based model
in a low-cost wearable system, consisting of a wristband paired
with mobile phone, to assist clinicians in managing long-term
therapy for SCD patients.
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