organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2E,5E)-2,5-Bis(3,4,5-trimethoxybenzylidene)cyclopentanone

Yi-Feng Sun,^{a,b}* Yang Liu,^c Feng-Yu Zhang,^c Hong-Ji Chen^b and Yi-Ping Cui^a

^aAdvanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 210096 Nanjing, Jiangsu, People's Republic of China, ^bDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^cLibrary, Taishan University, 271021 Taian, Shandong, People's Republic of China

Correspondence e-mail: sunvf505@hotmail.com

Received 3 September 2008; accepted 15 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.055; wR factor = 0.164; data-to-parameter ratio = 14.1.

The title compound, C₂₅H₂₈O₇, was prepared by the basecatalysed reaction of 3,4,5-trimethoxybenzaldehyde with cyclopentanone. The molecule has crystallographic twofold rotation symmetry and adopts an E-configuration about the central olefinic bonds. The two benzene rings and the central cvclopentanone ring are almost coplanar [dihedral angle = 4.7 (2)°].

Related literature

For background literature, see: Guilford et al. (1999); Xue et al. (2008); Wu et al. (2008); Das et al. (2008). For related crystal structures, see: Sun & Cui (2007); Du et al. (2007); Wei et al. (2008).

Experimental

Crystal data	
$C_{25}H_{28}O_7$	a = 18.573 (4) Å
$M_r = 440.47$	b = 15.231 (3) Å
Monoclinic, $C2/c$	c = 8.8460 (18) Å

$\beta = 113.99 \ (3)^{\circ}$
$V = 2286.2 (10) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Enraf–Nonius CAD-4	2058 independent reflections
diffractometer	1422 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.048$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.973, T_{\max} = 0.982$	every 200 reflections
2123 measured reflections	intensity decay: none

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	146 parameters
$wR(F^2) = 0.164$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
2058 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K

 $0.30 \times 0.20 \times 0.20$ mm

Table 1 Selected torsion angles (°).

O1-C1-C2-C4	-2.7(3)	C13-O4-C7-C6	1.8 (4)
C1-C2-C4-C5	178.0 (2)	C12-O3-C8-C7	86.9 (3)
C2-C4-C5-C6	179.6 (3)	C11-O2-C9-C8	174.8 (3)

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (No.0701001B) and the Foundation of Taishan University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2151).

References

- Das, U., Kawase, M., Sakagami, H., Ideo, A., Shimada, J., Molnar, J., Barath, Z., Bata, Z. & Dimmock, J. R. (2008). Bioorg. Med. Chem. 15, 3373-3380. Du, Z.-Y., Zhang, K. & Ng, S. W. (2007). Acta Cryst. E63, o2595-o2596.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Guilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415-5425.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y.-F. & Cui, Y.-P. (2007). Acta Cryst. E63, 01932-01933.
- Wei, J., Liang, G., Gai, Y. & Lu, J. (2008). Acta Cryst. E64, 01755.
- Wu, J., Shi, M. Q., Zhao, Y. X. & Wu, F. P. (2008). Dyes Pigments, 76, 690-695.
- Xue, J. Q., Zhao, Y. X., Wu, J. & Wu, F. P. (2008). J. Photochem. Photobiol. A: Chem. 195, 261-266.

supplementary materials

Acta Cryst. (2008). E64, o1964 [doi:10.1107/S1600536808029474]

(2E,5E)-2,5-Bis(3,4,5-trimethoxybenzylidene)cyclopentanone

Y.-F. Sun, Y. Liu, F.-Y. Zhang, H.-J. Chen and Y.-P. Cui

Comment

Bis(arylmethylidene)cycloalkanones are widely used as building blocks for the synthesis of biologically active heterocycles (Guilford *et al.*, 1999), and reported to exhibit promising two-photon absorption (TPA) property (Xue *et al.*, 2008; Wu *et al.*, 2008). Moreover, it has been reported that some compounds containing the 3-(3,4,5-trimethoxyphenyl)-2-propenoyl group displayed potent multidrug resistance (MDR) reversal properties in cancer chemotherapy. In particular, 2,5-bis(3,4,5-trimethoxybenzylidene)cyclopentanone was 31 times more potent than verapamil as a MDR revertant (Das *et al.*, 2008). In this contribution, we report the crystal structure of the title compound, 2,5-bis(3,4,5-trimethoxybenzylidene) cyclopentanone, Fig.1.

The molecule possesses normal geometric parameters and adopts an E configuration about the central olefinic bonds (Fig. 1). The cyclopentanone ring and the two benzene rings are almost coplanar which allows conjugation. Among the six methoxy groups, only O3/C12 and O3A/C12A deviate from the molecule mean plane on the opposite side, the others are nearly coplanar with their attached benzene ring (Table 1).

Similar structures have been observed in the related substituted cyclohexanone and cyclopentanone analogues reported by Sun & Cui (2007), Du *et al.* (2007) and Wei *et al.* (2008).

Experimental

The title compound was synthesized from cyclopenthexanone and 3,4,5-trimethoxybenzaldehyde as reported (Sun *et al.*, 2007). Yellow block crystals suitable for an X-ray structural analysis were obtained by slowly evaporating an ethanol solution at room temperature.

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. Suffix A corresponds to symmetry code (-x+1, y, -z+1/2).

(2E,5E)-2,5-Bis(3,4,5-trimethoxybenzylidene)cyclopentanone

Crystal data	
$C_{25}H_{28}O_7$	$F_{000} = 936$
$M_r = 440.47$	$D_{\rm x} = 1.280 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 25 reflections
<i>a</i> = 18.573 (4) Å	$\theta = 10 - 13^{\circ}$
<i>b</i> = 15.231 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 8.8460 (18) Å	T = 293 (2) K
$\beta = 113.99 \ (3)^{\circ}$	Block, yellow
$V = 2286.2 (10) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.048$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.2^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.8^{\circ}$
T = 293(2) K	$h = -22 \rightarrow 20$
$\omega/2\theta$ scans	$k = 0 \rightarrow 18$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 10$
$T_{\min} = 0.973, \ T_{\max} = 0.982$	3 standard reflections
2123 measured reflections	every 200 reflections
2058 independent reflections	intensity decay: none
1422 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$

 $wR(F^2) = 0.164$

S = 1.00

2058 reflections

146 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.080P)^2 + 2.P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.21$ e Å⁻³

$$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$$

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.5000	0.43398 (16)	0.2500	0.0707 (8)
C1	0.5000	0.3537 (2)	0.2500	0.0510 (8)
C2	0.47174 (14)	0.29645 (15)	0.3510 (3)	0.0480 (6)
02	0.36310 (14)	0.07554 (11)	0.6941 (3)	0.0806 (7)
03	0.32676 (10)	0.18198 (11)	0.89316 (19)	0.0592 (5)
C3	0.47864 (15)	0.20225 (14)	0.3086 (3)	0.0512 (6)
НЗА	0.4268	0.1760	0.2546	0.061*
H3B	0.5085	0.1690	0.4080	0.061*
O4	0.33734 (12)	0.35568 (11)	0.8758 (2)	0.0683 (6)
C4	0.44589 (14)	0.33133 (16)	0.4587 (3)	0.0517 (6)
H4A	0.4489	0.3922	0.4665	0.062*
C5	0.41371 (14)	0.28904 (15)	0.5662 (3)	0.0473 (6)
C6	0.39179 (15)	0.34335 (15)	0.6677 (3)	0.0526 (6)
H6A	0.3979	0.4038	0.6648	0.063*
C7	0.36086 (14)	0.30734 (16)	0.7728 (3)	0.0504 (6)
C8	0.35313 (13)	0.21799 (15)	0.7816 (3)	0.0478 (6)
C9	0.37410 (15)	0.16327 (15)	0.6797 (3)	0.0542 (6)
C10	0.40400 (15)	0.19887 (16)	0.5729 (3)	0.0555 (6)
H10A	0.4177	0.1620	0.5050	0.067*
C11	0.3772 (3)	0.01797 (19)	0.5835 (5)	0.1075 (13)
H11A	0.3679	-0.0414	0.6071	0.161*
H11B	0.4309	0.0240	0.5965	0.161*
H11C	0.3425	0.0323	0.4718	0.161*
C12	0.24333 (17)	0.1766 (2)	0.8306 (4)	0.0739 (8)
H12A	0.2284	0.1507	0.9126	0.111*
H12B	0.2239	0.1410	0.7326	0.111*
H12C	0.2212	0.2345	0.8044	0.111*
C13	0.3430 (2)	0.44758 (18)	0.8706 (4)	0.0886 (11)
H13A	0.3249	0.4735	0.9478	0.133*
H13B	0.3111	0.4681	0.7611	0.133*
H13C	0.3969	0.4639	0.8995	0.133*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.118 (2)	0.0480 (15)	0.0791 (18)	0.000	0.0745 (17)	0.000
C1	0.074 (2)	0.048 (2)	0.0498 (18)	0.000	0.0438 (17)	0.000
C2	0.0656 (14)	0.0492 (13)	0.0459 (12)	-0.0033 (10)	0.0397 (11)	-0.0017 (10)
O2	0.1371 (18)	0.0460 (11)	0.0952 (15)	-0.0030 (10)	0.0846 (14)	0.0043 (9)
O3	0.0752 (12)	0.0681 (11)	0.0527 (10)	-0.0055 (9)	0.0450 (9)	0.0105 (8)
C3	0.0719 (16)	0.0494 (13)	0.0494 (13)	-0.0013 (11)	0.0422 (12)	0.0001 (10)
O4	0.1063 (14)	0.0569 (11)	0.0782 (12)	-0.0088 (9)	0.0749 (12)	-0.0123 (9)
C4	0.0734 (16)	0.0497 (14)	0.0515 (13)	0.0006 (11)	0.0452 (12)	0.0011 (10)
C5	0.0631 (14)	0.0482 (13)	0.0463 (12)	-0.0029 (10)	0.0384 (11)	-0.0005 (10)
C6	0.0770 (16)	0.0447 (13)	0.0575 (14)	-0.0010 (11)	0.0493 (13)	0.0004 (10)
C7	0.0666 (15)	0.0550 (14)	0.0474 (12)	-0.0045 (11)	0.0414 (12)	-0.0058 (10)
C8	0.0585 (14)	0.0542 (14)	0.0433 (12)	-0.0037 (11)	0.0336 (11)	0.0049 (10)
C9	0.0779 (17)	0.0449 (13)	0.0564 (14)	-0.0038 (11)	0.0443 (13)	0.0040 (11)
C10	0.0807 (17)	0.0506 (14)	0.0556 (14)	0.0013 (12)	0.0487 (13)	-0.0018 (11)
C11	0.188 (4)	0.0482 (18)	0.130 (3)	-0.005 (2)	0.109 (3)	-0.0127 (18)
C12	0.0775 (19)	0.085 (2)	0.0795 (19)	-0.0150 (15)	0.0526 (16)	0.0035 (16)
C13	0.149 (3)	0.0538 (17)	0.108 (2)	-0.0021 (18)	0.098 (2)	-0.0120 (16)

Geometric parameters (Å, °)

O1—C1	1.222 (4)	C5—C6	1.398 (3)
C1—C2	1.489 (3)	C6—C7	1.389 (3)
C1—C2 ⁱ	1.489 (3)	C6—H6A	0.9300
C2—C4	1.339 (3)	С7—С8	1.374 (3)
C2—C3	1.501 (3)	C8—C9	1.395 (3)
O2—C9	1.365 (3)	C9—C10	1.386 (3)
O2—C11	1.415 (3)	C10—H10A	0.9300
O3—C8	1.381 (2)	C11—H11A	0.9600
O3—C12	1.420 (3)	C11—H11B	0.9600
C3—C3 ⁱ	1.541 (4)	C11—H11C	0.9600
С3—НЗА	0.9700	C12—H12A	0.9600
С3—Н3В	0.9700	C12—H12B	0.9600
O4—C7	1.373 (3)	C12—H12C	0.9600
O4—C13	1.406 (3)	С13—Н13А	0.9600
C4—C5	1.462 (3)	C13—H13B	0.9600
C4—H4A	0.9300	С13—Н13С	0.9600
C5—C10	1.390 (3)		
O1—C1—C2	125.87 (13)	C7—C8—O3	120.62 (19)
O1—C1—C2 ⁱ	125.87 (13)	C7—C8—C9	119.49 (19)
C2—C1—C2 ⁱ	108.3 (3)	O3—C8—C9	119.9 (2)
C4—C2—C1	120.7 (2)	O2—C9—C10	124.2 (2)
C4—C2—C3	130.4 (2)	O2—C9—C8	115.7 (2)
C1—C2—C3	108.86 (18)	C10—C9—C8	120.1 (2)
C9—O2—C11	117.7 (2)	C9—C10—C5	120.7 (2)

C8—O3—C12	113.10 (19)	C9—C10—H10A	119.7
C2—C3—C3 ⁱ	106.72 (11)	C5-C10-H10A	119.7
С2—С3—НЗА	110.4	O2—C11—H11A	109.5
C3 ⁱ —C3—H3A	110.4	O2—C11—H11B	109.5
С2—С3—Н3В	110.4	H11A—C11—H11B	109.5
C3 ⁱ —C3—H3B	110.4	O2—C11—H11C	109.5
H3A—C3—H3B	108.6	H11A—C11—H11C	109.5
C7—O4—C13	117.66 (19)	H11B—C11—H11C	109.5
C2—C4—C5	130.4 (2)	O3—C12—H12A	109.5
C2—C4—H4A	114.8	O3—C12—H12B	109.5
С5—С4—Н4А	114.8	H12A—C12—H12B	109.5
C10—C5—C6	118.77 (19)	O3—C12—H12C	109.5
C10-C5-C4	123.87 (19)	H12A—C12—H12C	109.5
C6—C5—C4	117.4 (2)	H12B—C12—H12C	109.5
C7—C6—C5	120.3 (2)	O4—C13—H13A	109.5
С7—С6—Н6А	119.9	O4—C13—H13B	109.5
С5—С6—Н6А	119.9	H13A—C13—H13B	109.5
O4—C7—C8	115.13 (18)	O4—C13—H13C	109.5
O4—C7—C6	124.2 (2)	H13A—C13—H13C	109.5
С8—С7—С6	120.7 (2)	H13B—C13—H13C	109.5
O1—C1—C2—C4	-2.7 (3)	O4—C7—C8—O3	-2.8 (3)
C2 ⁱ —C1—C2—C4	177.3 (3)	C6—C7—C8—O3	176.1 (2)
O1—C1—C2—C3	177.49 (12)	O4—C7—C8—C9	178.8 (2)
C2 ⁱ —C1—C2—C3	-2.51 (12)	C6—C7—C8—C9	-2.2 (4)
C4—C2—C3—C3 ⁱ	-173.4 (3)	C12—O3—C8—C7	86.9 (3)
C1—C2—C3—C3 ⁱ	6.4 (3)	C12—O3—C8—C9	-94.7 (3)
C1—C2—C4—C5	178.0 (2)	C11—O2—C9—C10	-5.3 (4)
C3—C2—C4—C5	-2.2 (5)	С11—О2—С9—С8	174.8 (3)
C2-C4-C5-C10	-0.3 (4)	C7—C8—C9—O2	-178.8 (2)
C2—C4—C5—C6	179.6 (3)	O3—C8—C9—O2	2.9 (4)
C10-C5-C6-C7	0.0 (4)	C7—C8—C9—C10	1.3 (4)
C4—C5—C6—C7	-180.0 (2)	O3—C8—C9—C10	-177.0 (2)
C13—O4—C7—C8	-179.2 (3)	O2—C9—C10—C5	-179.7 (2)
С13—О4—С7—С6	1.8 (4)	C8—C9—C10—C5	0.2 (4)
С5—С6—С7—О4	-179.6 (2)	C6—C5—C10—C9	-0.8 (4)
С5—С6—С7—С8	1.6 (4)	C4—C5—C10—C9	179.1 (2)
Symmetry codes: (i) $-x+1$, y , $-z$	+1/2.		

