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Summary
Exposure of a developing embryo or fetus to endocrine

disrupting chemicals (EDCs) has been hypothesized to

increase the propensity of an individual to develop a disease

or dysfunction in his/her later life. Although it is important to

understand the effects of EDCs on early development in

animals, sufficient information about these effects is not

available thus far. This is probably because of the technical

difficulties in tracing the continuous developmental changes at

different stages of mammalian embryos. The zebrafish, an

excellent model currently used in developmental biology,

provides new insights to the field of toxicological studies. We

used the standard whole-mount in situ hybridization screening

protocol to determine the early developmental defects in

zebrafish embryos exposed to the ubiquitous pollutant,

bisphenol A (BPA). Three stages (60–75% epiboly, 8–10

somite, and prim-5) were selected for in situ screening of

different molecular markers, whereas BPA exposure altered

early dorsoventral (DV) patterning, segmentation, and brain

development in zebrafish embryos within 24 hours of exposure.

� 2013. Published by The Company of Biologists Ltd. This is

an Open Access article distributed under the terms of the

Creative Commons Attribution Non-Commercial Share Alike

License (http://creativecommons.org/licenses/by-nc-sa/3.0).
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Introduction
The drastic advancement in industrialization and technology and

the growth in human population in the past century have resulted

in unprecedented environmental changes in the human history.

The production of large amounts of synthetic industrial and

biomedical chemicals as well as pollutants poses a risk to our

ecosystem and induces negative effects on the health of wildlife

and human beings. Some of the more damaging chemical

contaminants are classified as endocrine disrupting chemicals

(EDCs) because they can interfere with the synthesis,

metabolism, and action of endogenous hormones (Phillips et

al., 2008; Phillips and Foster, 2008). EDCs exert different

biological effects via diverse mechanisms of actions (Judson et

al., 2009; Rhind, 2008; Wigle et al., 2008). EDCs are believed to

cause damages to human health and the ecological systems. With

the emergence of the global problem of chemical contamination,

the adverse biological effects of EDCs are gaining attention

among the scientific communities, industry, governments, non-

governmental organizations, and the public. There is an

increasing need for the identification and quantification of all

these ubiquitous chemical contaminants. The possible routes of

exposure of humans to the EDCs are through the environments,

consumer products, and foods (Feron et al., 2002; Mantovani et

al., 2006; Poppenga, 2000; Wigle et al., 2008). To safeguard the

public health, instrumental chemical analysis has been adopted

globally for assessing the risk of human exposure to EDCs and

their metabolites (Hotchkiss et al., 2008). Considering the severe

long-term impact of EDCs on public health, a sensitive animal

model is required to assess the risks of the EDCs for protecting

human and ecological health.

Rapid structural and functional changes occur during the fetal

life making it a vulnerable period of development. The process of

development is not a simple process of unfolding the inherited

genetic program, followed by the commitment of cells to specific

lineages, and structural and functional differentiation in

respective organs/tissues. Developmental plasticity in animals

can be influenced by both genomic (epigenetic and genetic) and

environmental factors, which leads to considerable changes in the

developmental path for adaptive responses in the fetus (Bateson

et al., 2004; Gluckman et al., 2009; Gluckman et al., 2008;

Gluckman and Hanson, 2007; Gluckman et al., 2007; Gluckman

et al., 2005a; Gluckman et al., 2005b; Hanson and Gluckman,

2008). To fill the information gap between exposures to EDCs

and the outcomes of developmental failure, an experimental

model that enables us to investigate the early developmental

stages is essential. Zebrafish has been extensively used in

developmental biology and has become an attractive model for

chemical screening. This is a highly scalable model with a well-

established genome database (Barros et al., 2008; Yeh et al.,

2009; Zon and Peterson, 2005). This model has been used in

general toxicology studies for decades. General toxicology

studies such as identification of the median lethal concentration

(LC50) and end-point phenotype have been performed in

zebrafish after bisphenol A (BPA) exposure (Duan et al., 2008;

McCormick et al., 2011; Saili et al., 2012). Recently, next-

generation sequencing technology was used to identify potential
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genes that are altered after BPA exposure in zebrafish embryos
(Lam et al., 2011). However, the unique developmental features
of zebrafish have not been used in many studies for

characterization of exposure to effect. It is difficult to monitor
the effects of EDCs on early development by using mammalian
embryos; therefore, zebrafish, which has the ability of external

fertilization, is used as an alternative model. Gibert and his
colleagues used different in situ molecular markers to examine
the developmental stage of otolith formation in zebrafish after

BPA exposure (Gibert et al., 2011). Here, we hypothesize that the
primary action of EDCs is to prevent normal development during
early embryogenesis and cell fate determination (i.e. cell
signaling and epigenetic modification) and thus affect normal

development (i.e. cell fate determination and organogenesis),
which leads to organ dysfunction. In this study, we used the
zebrafish model to show that exposure of zebrafish embryos to

low doses of BPA caused disturbance in dorsal/ventral patterning
and segmentation, which provides a new insight on
developmental toxicology of environmental pollutants.

Materials and Methods
Fish strains and maintenance
We used the AB wild-type line in this study. The zebrafish were raised and staged
as described previously (Kimmel et al., 1995). All experimental procedures on
zebrafish embryos were approved by the Hong Kong Baptist University, Hong
Kong Special Administrative Region.

BPA exposure in zebrafish embryos
BPA (Sigma–Aldrich, USA) was dissolved in DMSO and diluted in egg medium
(E3 medium). BPA was used at a final concentration of 50 mM in all experiments,
which is comparable to the concentrations used in other studies (Lam et al., 2011;
Sun et al., 2009). Embryos at 1–4 cell stage were directly exposed to BPA in 2 ml
of E3 medium in a 6-well plate. The embryos were grown at 28 C̊ for the selected
time points (stages), 8 hours post-fertilization (hpf) (60–75% epiboly), 14 hpf (8–
10 somite), 24 hpf (prim-5), and 72 hpf (protruding mouth). Control embryos were
treated with equal volume of DMSO as that in the BPA-exposed embryos.

Screening procedure and whole-mount in situ hybridization
We used the whole-mount in situ hybridization (WISH) procedure for screening on
the basis of our previous study (Tse and Jiang, 2012). Briefly, BPA-exposed
embryos were collected at 3 stages 60–75% epiboly, 8–10 somite (ss), and prim-5
and were fixed in 4% paraformaldehyde (PFA). Standard WISH procedure was
applied using zebrafish embryos. Plasmids that were used to make antisense
mRNA probes have been published previously: chd (Miller-Bertoglio et al., 1997),
eng2 (Schier et al., 1996), eve1 (Joly et al., 1993), gata2 (Detrich et al., 1995), gsc
(Stachel et al., 1993), krox20 (Strähle et al., 1993), myoD (Weinberg et al., 1996),
pax2a (Krauss et al., 1991), and otx2 (Heisenberg et al., 1996).

Results and Discussion
BPA is one of the most common EDCs, and the chemical

properties and toxicities of BPA have been reported. BPA is a
selective estrogen receptor modulator (Richter et al., 2007) and
can interact with thyroid hormone receptors (Moriyama et al.,
2002; Zoeller et al., 2005) and peroxisome proliferator-activated

receptors (Riu et al., 2011). At the physiological levels, BPA is
suggested to be a factor attributed to the development of
metabolic disorders in humans, such as cardiovascular diseases,

obesity, and insulin resistance (Polyzos et al., 2012; vom Saal et
al., 2012). A considerable number of studies in rodents have
reported the negative effects of BPA on the function and

development of reproductive and neuronal systems (Jašarević et
al., 2011; Wolstenholme et al., 2011; Xi et al., 2011). More
importantly, female mice prenatally exposed to BPA showed a
decrease in fertility and fecundity (Cabaton et al., 2011) and had

an adverse effect on the fertility of the male offspring (Salian et
al., 2009). Furthermore, BPA administration in rodents could

disturb neurons in the substantia nigra (Tando et al., 2007) and in

the hippocampus (Kunz et al., 2011). In previous studies,

zebrafish embryos have been exposed to BPA at concentrations

similar to those used in this study, and otolith malformations

(70 mM) and cardiac edema (65 mM) have been reported (Duan

et al., 2008; Gibert et al., 2011). Although the general effects and

the effects of BPA on development in rodents and zebrafish have

been reported, important information about the effects of BPA in

the initial stages of cell development remains to be addressed. To

understand the mechanism underlying these effects is important

because these data could reveal the fundamental cause of the

observed effects; further, the data can be utilized to predict and

evaluate the impact of in utero EDC exposure. In this study, we

performed screening in the early stage of embryogenesis; we

selected 3 critical stages, including dorsoventral (DV) patterning

(60–75% epiboly), segmentation (8–10 ss), and brain

development (prim-5), within 24 hpf (Tse et al., 2009; Tse et

al., 2011).

BPA exposure of embryos at 60–75% epiboly stage disturbs

DV patterning

DV patterning is an important developmental process in zebrafish

(Schmitz and Campos-Ortega, 1994). Several zebrafish mutants

have been identified on the basis of their dorsal or ventral

phenotypes, which range from C5 (dorsal) to V4 (ventral)

(Mullins et al., 1996; Kishimoto et al., 1997). In this study, we

targeted on exposure to BPA at the early development period

(within 24 hours). Follow-up examination of the effects of the

exposure was performed up to 3 days after fertilization while

mild dorsalization (mainly C1–C3) was observed. Dorsalization

was characterized by their phenotype of shortened posterior parts

during the development (Fig. 1). Because the DV patterning

Fig. 1. Morphology and phenotypic frequency of 3-day post-fertilized

embryos exposed to bisphenol A. Bisphenol A (BPA)-exposed embryos in an

AB wild-type zebrafish showed mild dorsalized phenotypes at 3 days post-
fertilization. The control embryos were treated with DMSO (A). BPA exposed
embryos showed C1 to C3 mild dorsalization phenotypes (B). Scale bar:
650 mm. Phenotypic frequency is indicated in panel C. C1–C3 phenotypes
represent dorsalized phenotype as described (Tse et al., 2009; Mullins et al.,
1996). n, number of scored embryos.
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occurs in the early stage of embryogenesis, the effects of the BPA

action can be observed by using selected in situ molecular

markers (ventral markers, eve1 and gata2; dorsal markers, chd

and gsc) at stage of 60–75% epiboly (Tse et al., 2009). Among

various validated markers, eve1 is a zebrafish homeobox gene

similar to even-skipped in Drosophila (Joly et al., 1993). eve1 is

strongly expressed in the ventrolateral marginal cells. The other

gene marker gata2 is a hematopoietic transcription factor gene

(Detrich et al., 1995) for ventral ectoderm and hematopoietic

cells in the ventral mesoderm. To trace the dorsal patterning, we

used 2 dorsally expressed markers chordin (chd) and goosecoid

(gsc) (Sasai et al., 1995; Stachel et al., 1993). The expression

patterns of eve1 and gata2 in embryos exposed to BPA were

more restricted in the ventral half of the marginal and the animal

zone than that in the controls (Fig. 2A–D). On the other hand, the

expression of dorsal markers chd and gsc was greater in the

embryos exposed to BPA (Fig. 2E–H). We measured the angles

of expressions of the markers (Fig. 2I,J). Taken together,

embryos at the 60–75% epiboly stage exposed to BPA showed

reduced expression levels of the ventral markers but increased

expression levels of the dorsal markers.

Exposure of embryos at 8–10 somite stage to BPA affects

somatic muscle development

To monitor the trend of altered DV patterning, gata1 and pax2a

were used as the markers at 8–10 somite stage. gata1 is ventrally

expressed in presumptive hematopoietic cells in 2 lateral stripes

(Detrich et al., 1995; Kimmel et al., 1990), while pax2a is used

for marking the presumptive neural region (Krauss et al., 1991).

The gata1 marker showed widening of the 2 lateral stripes of

presumptive hematopoietic cells in BPA-exposed embryos

(Fig. 3A,B). Additionally, pax2a staining showed a diffused

expression pattern in the mid-hindbrain boundary (mhb). The otic

vesicles were missing in the embryos exposed to BPA

(Fig. 3C,D). On the other hand, the somite muscle widened in

BPA-exposed embryos (Fig. 3E,F). The phenotype was further

confirmed by using the myoD somite marker that is expressed in

the dorsal mesoderm and somite muscles (Kimmel et al., 1990;

Weinberg et al., 1996). Weak and abnormal myoD expression

was detected in the BPA-exposed embryos (Fig. 3G,H). In

addition to DV patterning, the follow-up in situ experiments

illustrated the effects of BPA on somatic muscle formation in the

segmentation period.

Fig. 2. Bisphenol A affects dorsal–ventral patterning at

the 60–75% epiboly stage. Embryos exposed to bisphenol

A (BPA) showed narrower expression pattern for the
ventral markers eve1 and gata2 (A–D), but wider
expression pattern for the dorsal markers chd and gsc

(E–H). Red dotted lines indicate the normal expression
margin of the ventral markers (ventricle) or dorsal
(horizontal) in both BPA-exposed and control embryos.

Images were captured in the lateral view (A–D) and animal
pole view (E–H), dorsal towards the right in the 60–75%
epiboly stage. Scale bar: 250 mm. Schematic diagrams
indicate the expression angles of different markers. x marks
the center of the embryos, angle of expression of different
in situ markers in control and BPA-exposed embryos. h
indicates the angles of the ventral markers (eve1/gata2)

with orange lines (I), while s represents the angles of the
dorsal markers (chd/gsc) with blue lines (J). The angles
represent the mean of 20 embryos. The expression angles of
the ventral markers were smaller (I) but those of the dorsal
markers were larger (J), which represents the dorsalization
phenotype (*P,0.05).
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BPA exposure of embryos at the prim-5 stage alters brain
development

On the basis of the diffused pax2a expression in the mhb region

at the 8–10 somite stage, we suspected that BPA affected brain

development during the developmental process. To prove this

assumption, the genetic markers krox20, otx2, and eng2b were

used to monitor the brain regionalization process at the prim-5

stage (Finkelstein and Boncinelli, 1994; Joyner and Guillemot,

1994; Stuart et al., 1994). Brain regionalization is one of the

fundamental processes in the early stages of vertebrate brain

development, including the formation of the mhb and its adjacent

brain regions (Joyner and Guillemot, 1994). The hindbrain

develops into a series of rhombomeres along the anterior–

posterior axis of the neural tube. Rhombomeres are believed to be

involved in neuronal organization in brain development (Moens

and Prince, 2002), while rhombomere 3 (r3) and 5 (r5) could be

identified using the transcription factor, krox20 (Oxtoby and

Jowett, 1993). In this study, BPA exposure resulted in abnormal

and unorganized krox20 expression in the prim-5-stage embryos

(Fig. 4A,B). The reduced size of the mhb shown by the eng2b

mhb structure marker (Ekker et al., 1992; Fjose et al., 1992) was

also found in the BPA-exposed embryos (Fig. 4C,D). These data

were consistent with the results of decreased pax2a expression

pattern at the mhb region observed in the 8–10 somite stage

embryos exposed to BPA (Fig. 3D). To support this observation,

an additional marker otx2 was used to confirm if BPA affects the

development of midbrain structure (Mercier et al., 1995). The

expression of otx2 was decreased in the BPA-exposed embryos,

which indicated that the midbrain development was also affected

(Fig. 4E,F). The altered percentage was consistent from the early

stage to later stages, which suggested the phenotypes might due

to the defect in early development. Furthermore, it should be

noted that the diffused expression patterns were unlikely to be

caused by the developmental delay. Collectively, BPA exposure

disturbed the process of brain regionalization, which resulted in

the development of abnormal rhombomeres, restricted mhb, and

smaller midbrain structure.

Although our study does not provide a detailed mechanism of

how BPA affects development, it strengthens our understanding

about the developmental defect caused by BPA exposure. The

resulting phenotype can be caused by complicated crosstalk

between signaling pathways. Further studies should be performed

to understand how and why the molecular markers listed above

were affected. Zebrafish used in this study can act as a screening

model to focus the research on the specific time point, organ, and

potential signaling pathway involved in development.

Conclusion
In this study, the standard in situ hybridization method was used

to examine the effects of EDCs on early embryogenesis. We

found that BPA exposure influences DV patterning, somite

formation, and brain development in zebrafish embryos. Our

study showed the potential use of zebrafish for validating the

effects of EDC at a particular developmental stage.
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