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Abstract

Background: The establishment of C, photosynthesis in maize is associated with differential
accumulation of gene transcripts and proteins between bundle sheath and mesophyll
photosynthetic cell types. We have physically separated photosynthetic cell types in the leaf blade
to characterize differences in gene expression by microarray analysis. Additional control
treatments were used to account for transcriptional changes induced by cell preparation
treatments. To analyse these data, we have developed a statistical model to compare gene

expression values derived from multiple, partially confounded, treatment groups.

Results: Differential gene expression in the leaves of wild-type maize seedlings was characterized
using the latest release of a maize long-oligonucleotide microarray produced by the Maize Array
Project consortium. The complete data set is available through the project web site. Data is also
available at the NCBI GEO website, series record GSE3890. Data was analysed with and without

consideration of cell preparation associated stress.

Conclusion: Empirical comparison of the two analyses suggested that consideration of stress
helped to reduce the false identification of stress responsive transcripts as cell-type enriched. Using
our model including a stress term, we identified 8% of features as differentially expressed between
bundle sheath and mesophyll cell types under control of false discovery rate of 5%. An estimate of
the overall proportion of differentially accumulating transcripts (I1-m;) suggested that as many as
18% of the genes may be differentially expressed between B and M. The analytical model presented
here is generally applicable to gene expression data and demonstrates the use of statistical
elimination of confounding effects such as stress in the context of microarray analysis. We discuss
the implications of the high degree of differential transcript accumulation observed with regard to

both the establishment and engineering of the C, syndrome.

Page 1 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17212830
http://www.biomedcentral.com/1471-2164/8/12
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2007, 8:12

Background

Photosynthesis in the majority of plants occurs in a single
photosynthetic cell type (C; photosynthesis) [1]. Within
the chloroplasts, the enzyme ribulose-1, 5-bisphosphate
carboxylase/oxygenase (Rubisco) fixes atmospheric car-
bon by addition of CO, and water to the five-carbon sugar
ribulose-1, 5-bisphosphate (RuBP). Rubisco will also cat-
alyze the oxidation of RuBP in a process known as pho-
torespiration that does not fix carbon [2]. The reduction
in efficiency associated with photorespiration and the
energetic costs of recycling its products has been estimated
to limit the performance of C; photosynthesis by as much
as 30% in hot arid conditions [3]. A number of taxa utilize
a two-step carbon fixation process, known as C, photo-
synthesis, to limit the impact of photorespiration upon
photosynthetic performance [4]. Plants that utilize C4
photosynthesis appear to be at a particular fitness advan-
tage under conditions of limited water availability, high
temperature and high irradiance light [5]. Interestingly,
some of the most promising grasses for biofuel produc-
tion are C4 grasses, including Miscanthus x giganteus
(Giant Miscanthus), Panicum virgatum (switchgrass), Zea
mays (maize), Sorghum bicolor (sorghum) and Saccharum
officinarum (sugarcane).

In C, plants, Rubisco accumulation is spatially restricted
to CO,-rich sites within the leaf so that the carboxylase
reaction is favoured over photorespiration. In maize,
Rubisco accumulation is restricted to thick-walled bundle
sheath (B) cells that surround the leaf veins (Figure 1A).
Carbon is initially fixed in adjacent mesophyll (M) cells
and subsequently transported, by a multi-enzyme carbon
shuttle, into the B, where decarboxylation elevates local
CO, levels and generates an environment for efficient
Rubisco function (Figure 1B).

Cell-type specific differences in morphology and physiol-
ogy are fundamental to C, photosynthesis [1,6]. Detailed
analysis of B and M differentiation in maize has shown
that Rubisco, enzymes of a C, carbon shuttle and compo-
nents of the light-harvesting machinery accumulate to dif-
ferent levels in B and M cells [7]. B cell chloroplasts are
predominately agranal and do not accumulate key com-
ponents of the water oxidizing complex of photosystem II
(PSII) [8,9]. Consequently, a number of processes requir-
ing chemical reduction, including portions of Calvin cycle
[10,11], synthesis of antioxidants [12] and nitrogen
assimilation [13] are localized to the M cells. Despite
detailed understanding of certain metabolic pathways uti-
lized in C, photosynthesis, the molecular mechanisms
governing cell differentiation and the full extent of meta-
bolic partitioning are still to be fully characterized. Pro-
moter fusion, methylation assays and transient expression
studies have identified a number of cis acting elements in
the promoter sequences of C,-related genes [14-17].
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C, photosynthesis in the maize (Zea mays) leaf. A.
Schematic of a longitudinal cross section through a maize leaf
showing Kranz anatomy. Thick-walled bundle sheath (B) cells
surround longitudinal veins (V). Mesophyll cells (M) occupy
the leaf space between vascular bundles. B. Major reactions
of the C, carbon shuttle. I) Carbon is initially added to phos-
phoenolpyruvate (PEP) to form oxaloacetate (OAA) by the
enzyme PEP carboxylase (PEPC). 2) OAA is transported to
the M chloroplasts where it is reduced to malate (MA) by
NADP-specific malate dehydrogenase (NADP-MDH). 3) MA
is transported to the B where it is decarboxylated by NADP-
malic enzyme (NADP-ME) to yield pyruvate (PA) and release
CO, to the Calvin cycle. 4) PA is returned to the M where it
is phosphorylated by phosphoenol pyruvate dikinase (PPdK)
to regenerate PEP and continue the cycle.

Much less is known about trans acting factors that may
drive the C,differentiation process [18,19]. Genetic
approaches have resulted in the isolation of maize
mutants characterized by B cell-specific defects, but these
mutants have not directly identified regulators of cell-spe-
cific development [20-22].

Many biochemical and molecular studies of C, photosyn-
thetic cell types have made use of techniques for isolation
of separated cells. Typically, B cells have been isolated as
vascular strands by mechanical disruption and M cells iso-
lated as protoplasts by enzymatic digestion [23,24].
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Therefore, different isolation protocols complicate the
identification of differences between the two cell types.
This is especially true when comparing the accumulation
of RNA transcripts because changes can occur rapidly in
response to the stresses of protoplast preparation [25].
When small numbers of genes have been analyzed, addi-
tional treatments have been used to control for the effect
of these stresses (e.g. [22]). In contrast, previous multi-
gene profiling studies of C, cell types have not accounted
for such effects in the initial analysis [26-28]. Following
preliminary two-sample microarray experiments, we were
especially concerned with the problem of mistakenly
identifying stress-induced transcripts as M enriched (Saw-
ers et al., unpublished observations).

In order to control for a stress effect associated with M cell
isolation, total leaf and stressed total leaf samples were
included in analysis. In general, microarray experiments
are based on paired comparisons [29]. Multiple paired
comparisons may be linked, as in a time course, or may be
cross-referenced, as in a clustering analysis [29]. In the
case of the isolated C, cell types, the situation is somewhat
different in that cell type and effects of the separation pro-
tocol are partially confounded between treatments. To
formally describe this relationship, we have developed an
analytical model to describe C, gene expression and to
allow elimination of the stress effect resulting from proto-
plast isolation. Using this approach, we have identified
1,280 features in the Maize Array Project oligonucleotide
array that are predicted to be B or M enriched. We also
present an analysis of the same data without considera-
tion of the stress effect. Comparison of these two analyses
demonstrates the importance of considering the stress
effect and the application of a statistical modelling
approach to control confounding factors in microarray
experiments.

Results and discussion

Experimental design and data collection

B strands (T;) and M protoplasts (T,,) were isolated from
10 day-old W22 inbred maize seedlings by mechanical
disruption and enzymatic digestion, as previously
described [30] (Figure 2A). Isolation of M protoplasts
required a 3 h enzymatic incubation that was not per-
formed during isolation of B strands. To control for tran-
scriptional differences arising from these different
treatments, additional total leaf (T;) and total leaf stress
(Ts) samples were isolated. Both T and Tg samples con-
tain a combination of B and M cells. Leaves for the T sam-
ple were harvested and cut into thin strips as for the Ty
sample and then frozen directly in liquid nitrogen rather
than subjected to mechanical disruption. Leaves for the Tg
sample were harvested and cut as for the Ty, sample, sub-
jected to a 3 h mock enzymatic digestion and then frozen.
An interwoven loop design [31] was used to directly com-
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pare all combinations of the four treatment groups (Tj,
Ty T Tg) on two-label microarrays (Figure 2B). To max-
imize biological replication, a unique set of seedlings was
used for each Ty, Ty, T;and Ty replicate. The resulting
design used 24 independent RNA samples analysed over
12 array sets.

Samples were analysed by hybridisation to a long-oligo-
nucleotide microarray produced by the Maize Array
Project consortium [32]. Maize sequences for design of
this chip were predominantly selected from the The Insti-
tute for Genomic Research (TIGR) maize gene index [33].
To manufacture this microarray, approximately 50,000
sequences were positively orientated and identified as
suitable for oligonucleotide design. This initial sequence
set was supplemented with further EST sequences,
organellar sequences, repeat sequences and community
requests to provide a final design data set of 57,441 fea-
tures. Single 70-mer oligonucleotides were designed for
each sequence in the design set and printed over two glass
slides.

Array detection (Figure 2C) and image analysis were per-
formed as described in Methods. Images and intensity
data may be accessed in a MIAME compliant form at the
Maize Oligonucleotide Array Project website [34]. Data
are also available in the NCBI GEO database, series record
GSE3890. The data are presented in full on both the Maize
Array Project and NCBI websites.

Feature intensity values were log-transformed and cor-
rected for local background signal and a LOWESS proce-
dure [35] was used to normalize between channels for
each slide (see Methods). On the basis of the T, treatment
(which contains both B and M), features with either low
or saturating signal intensity were discarded (see Meth-
ods). A stringent filtering of low expression values was
used to reduce the dimensionality of the data set in light
of the complexity of the experimental design. High expres-
sion filtering was less stringent to avoid elimination of
previously characterized, high abundance, C, 'marker'
transcripts. Following filtering, 15,988 unique features
were considered for subsequent analysis (Additional file
1). We considered this reduced data set appropriate for
model development while maintaining sufficient and
meaningful biological information to allow general con-
clusions on the extent of differentiation between B and M
cell types.

Construction of a model to include a stress term in the
analysis of the B and M data set

The experimental design required the analysis of four, par-
tially confounded treatment groups; i.e. the T treatment
contains both B and M cell types found in Ty and T, treat-
ments, while the T}, treatment combines the effects of cell-
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Figure 2

Experimental design. A. B stands and M protoplasts were
isolated by mechanical disruption and enzymatic digestion,
respectively. Representative chloroplasts are marked with an
arrow. B. Interwoven loop design of microarray labelling.
Four treatments (B, M, S, T) were compared using two-dye
microarrays. Each arrow represents hybridization. RNA iso-
lated from the treatment at the tail of the arrow was used to
synthesize Cy3-labelled cDNA, and RNA isolated from the
treatment at the head of the arrow was used to synthesize
Cy5-labelled cDNA. Independent biological replicates were
used for each labelling, giving a total of six per treatment.
Numbers on arrows refer to |. C. Pseudo-colour overlay of
Cy3 and Cy5 images from a representative hybridization. A
single 26 x 26 features sub-grid is shown. The complete Uni-
versity of Arizona oligonucleotide array consists of 96 such
grids arrayed over two slides.
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specificity and the stress effect that is also seen in Tg. In the
following discussion, the term 'stress' is used to refer spe-
cifically to the effect of protoplast isolation on transcript
levels. Importantly, although the aim of the experiment is
to compare expression levels between B and M cell types,
the level of gene expression within the intact M could
never be directly measured because of the stress effect of
M cell isolation. A model was constructed in order to for-
mally describe this situation and to allow statistical elim-
ination of the stress effect.

Let Virand V), represent the log, transformed expression
level of a given feature (f) in B and M cell types, respec-
tively. The aim is to estimate (V;;- V,) on a feature-by-fea-
ture basis. We use ¢ to label the leaf sample, whether B cell
prep (¢ = 0), M cell prep (¢ = 1) or total leaf sample (¢ =
2). The parameter j indicates the presence (j = 1) or
absence (j = 0) of stress. For any given feature f, we fit the
normalized signal Y, with the model,

chjr = (1 - ac)vlf+ acV2f+ij+ Efcjr (1)

where a_ is the proportion of M cells in the sample, S;rep-
resents the effect of stress on gene expression, r represents
the replicate number from 1 through 6 and f represents
the feature number from 1 to F, the number of features in
the array. In this model, the effect of preparative stress is
assumed to act additively and uniformly in both cell
types. Below, the performance of the model will be
assessed with respect to analysis in which the stress effect
is not considered.

If we assume there is no contamination of the other cell
type for the single cell treatments (T or T,,), the values of
a,and a, (the proportion of M in the sample) are set to be
0 and 1, respectively. In practice, two types of cellular con-
tamination might be recognized. First, a proportion of
contaminating M cells will be present in the B prep and of
B cells in the M prep. The level of this cross-contamination
was estimated at below 5% as determined by semi-quan-
titative PCR using known markers for B (RbcS and ChiMe)
and M cell identity (Pepc and Mdh1) (data not shown).
The level of cross-contamination was considered to be suf-
ficiently low as to be ignored, thereby simplifying the
model by elimination of V;;and V,,terms in expressions
describing M and B, respectively. The values of a, and a,
could be adjusted to allow consideration of such contam-
ination if desired. The presence of additional leaf cell
types constitutes a second source of cellular contamina-
tion, perhaps most notably the inclusion of epidermal
and vascular cells. For simplicity and economy, we do not
consider this second source of contamination in our
model. We estimated the value of a, (the proportion of M
cells in Tyand T preparations), by examination of leaf sec-
tions and by marker gene expression, at between 0.7 and
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0.5 (data not shown). For the analysis presented here, the
value of a, was set at 0.5. The model (1) can thus be sim-
plified as,

Wrge= Vif

Wpnp= Vor+ Sf

Wrpp= (Vip+ Vo) /2
Hrsp= (Vip+ Vo/2 + Sf

where Upg Wpyvg Wypeand (g represent expected expres-
sion levels indexed as appropriate to the four treatments
Ty, Ty, Trand T for feature f. Since not all treatments are
observed within the same array, the spot-specific array
effect is corrected as a random effect to the model (1) and
estimated by REML [36]. The normalized values (see
Methods) for each feature, corresponding to the 12
hybridizations, are listed in Additional file 1.

Two versions of the analysis were performed. First, an
analysis as described above was used to generate estimates
of (V4- V) and Sfor each feature (referred to as the stress
model). Second, we repeated the analysis with the stress
effect ignored (referred to as the simple model). A second
set of estimates of (V- V,) were calculated and compared
with those obtained from the stress model. For both mod-
els, the deviation of each (V;s- V,) estimate from 0 was
investigated using a t-statistic. The g-value procedure of
Storey et al. [37] was used to control the false discovery
rate (FDR). The estimates of (V;;- V,¢) and S for the stress
model are listed in Additional file 2 together with their
test statistics. The estimates of (V- V) obtained from the
simple model are listed in Additional file 3.

Comparison of analyses using the stress and simple models
Lists of differentially accumulating features identified by
the stress and simple models were compared. Under FDR
control at the 5% level with g-values < 0.05, the stress
model identified 1,280 differentially accumulating
unique features. At the same level of control, the simple
model identified 4,384 unique features. 1,043 features
were common to the gene lists obtained from the two
models. Therefore, the simple model identified the major-
ity of features identified by the stress model (approxi-
mately 80%). This is shown graphically in Figure 3A. For
the features identified by the stress model, the q value
obtained from the stress model (q..) is plotted against
the q value obtained from the simple model (i) Fea-
tures are coloured red and blue for predicted M and B
enrichment, respectively. The threshold values of q = 0.05
are shown by dashed lines. Among the features identified
by the stress model, but not the simple model, were three
annotated as components of PSII (MZ00023434,

http://www.biomedcentral.com/1471-2164/8/12

MZ00044083, MZ00040590) (shown in yellow in Figure
3A). Previous analyses have shown that PSII components
predominantly accumulate in the M cells of the maize leaf
[8,9]. The failure of the simple model to identify these
PSII transcripts is consistent with reduction in RNA levels
associated with M cell preparation. Under the stress
model, accumulation of all three of these RNAs was pre-
dicted to be reduced by stress.

Although the simple model identified the majority of fea-
tures identified by the stress model, it also identified
many more features in total than the stress model (Figure
3B). Preliminary microarray analysis of B and M cell types
using a simple paired comparison had suggested that one
confounding effect of preparation stress might be the mis-
taken identification of stress induced transcripts as M
enriched (Sawers et al, unpublished observations).
Among the features predicted to be strongly M enriched
only under the simple model were a number annotated as
chaperones or heat shock proteins (HSPs) (MZ00000354,

MZ00034301, MZ00035916, MZ00035984,
MZ00036574, MZ00038036, MZ00039146,
MZ00040123, MZ00040558, MZ00040980 and

MZ00042904), a class of transcripts known to be induced
by stresses [38,39]. These HSPs are shown in green in Fig-
ure 3B. Additional stress-related annotations included a
glutathione peroxidase (MZ00041338, MZ00041463)
and a wounding-associated chymotrypsin inhibitor
(MZ00037253, MZ00041005). These HSPs and other
stress-related features are likely to have been mis-identi-
fied as M enriched on the basis of stress-related increases
in accumulation. Consistent with this interpretation, the
stress model predicted that accumulation of all of these
transcripts increased following stress.

Empirical comparison of simple and stress models dem-
onstrated the requirement for the control of the stress
effect and the applicability of our stress model to this
problem and is, therefore, the model we have chosen in
the analysis of differential gene expression between B and
M cells. Below, we describe the use of the stress model to
identify potentially differentially accumulating transcripts
and briefly discuss the resulting gene list.

Statistical identification of B and M enriched transcripts
using the stress model

The estimate (V- V) was calculated for all 15,988 fea-
tures passing data filtering. The mean estimate of (V-
V) was 0.02 suggesting that the estimates were distrib-
uted around a value close to 0, i.e. equivalent expression
in B and M cell types. Analysis of the distribution of result-
ing p-values allowed estimation of the proportion of non-
differentially expressed genes (m,). Using the method of
Storey et al., [37], m, was calculated to be 0.823, corre-
sponding to 2,830 differentially expressed features from
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Comparison of analysis with and without consideration of the stress effect. For a given feature the g-value for testing
differential expression between B and M cells under the stress model (qy,..;) Was plotted against the g-value obtained under
the simple model (qgip)- A 1,280 unique features selected as qg;, , < 0.05. Dashed lines cut axes at g, = 0.05 and qgp,0e =
0.05. B 4,384 unique features selected as qg, < 0.05. Features predicted to be M enriched by stress or simple models, in A.
or B. respectively, shown in red. Features predicted to be B enriched by stress or simple models, in A. or B. respectively,
shown in blue. Four features annotated as PSIl components (MZ00023434, MZ00044083, MZ00040590, MZ00041794), not
identified as M enriched by the simple model, are shown in yellow in A. Eleven features annotated as heat shock proteins
(MZ00000354, MZ00034301, MZ00035916, MZ00035984, MZ00036574, MZ00038036, MZ00039146, MZ00040123,
MZ00040558, MZ00040980 and MZ00042904), predicted to be strongly M enriched by the simple model, are shown as green

in B.

the 15,988 in the analysis. Under FDR control at the 5%
level, the model identified 1,280 candidate features.

Annotation of features identified as differentially
expressed under FDR control

The majority of features present in the Maize Array Project
are designed to EST contigs present in the TIGR maize
sequence database [40]. An annotation of the features,
based on annotation of the TIGR sequences at the time of
design, is available at the Maize Array Project website [41].
It is important to note that a complete maize genome
sequence is not yet available and that current gene models
may well change as additional data become available.
Annotation of oligonucleotide probes is further compli-
cated by difficulty in predicting cross-hybridization
between related genes [42,43]. This is especially relevant
to a highly polymorphic species such as maize that pos-
sesses a highly duplicated genome [44]. Given these cave-
ats, approximately 50% of the identified features were
fully or partially annotated in the Maize Array Project
database. Of the remainder, approximately 15% were
annotated as encoding genes related to hypothetical or

unknown Arabidopsis or rice proteins, 10% were anno-
tated by similarity to Arabidopsis or rice genomic regions
and 25% were not annotated. To further investigate the
number of unique genes represented by the 1,280 fea-
tures, a BLAST search was used to identify maize
sequences in the NCBI non-redundant database homolo-
gous to the oligonucleotides. For each feature, the best-
matched sequence was recorded. Under the search criteria
used 1,173 matches were recovered. Of these, 899 unique
sequences were represented. In addition, TIGR rice gene
model matches were obtained for 792 of the features from
the Maize Array Project database. These 792 rice matches
represent 730 independent gene models. This estimate is
in line with the original design criteria of the microarray
used [33]. Annotations are included in Additional file 2.

Validation of candidate gene list using prior knowledge

Differential gene expression in B and M cells has been the
subject of extensive prior investigation [18]. The wealth of
previous studies provides a collection of well-character-
ized marker transcripts that can be used in the preliminary
validation of the candidate gene list. In total, we identified
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approximately 80 features as markers considered to pro-
vide biological validation of the data set and analysis
(Additional file 2). Data corresponding to a number of
these are shown graphically in Figure 4. Markers were
selected on the basis of previous studies and the presence
of multiple features representing a gene. For each feature,
the ratios of signal intensity (M values) obtained from the
12 hybridizations are shown. While variation is evident
both between and among features, the overall consistency
of behaviour is evident. In all examples shown, strong B
or M cell enrichment is predicted in accordance with pre-
vious observations.

The enzymes of the C, carbon shuttle are abundant and
cell-type specific (Figure 1B). Previous studies have char-
acterised accumulation of their transcripts by RNA gel-
blot analysis [45], in situ hybridization [46], real-time
PCR [27] and differential screening [26]. Features corre-
sponding to genes encoding the carbon shuttle enzymes,
phosphoenolpyruvate carboxylase (PEPC), malate dehy-
drogenase (MDH), NADP-dependent malic enzyme
(NADP-ME) and pyruvate orthophosphate dikinase
(PPDK) activities are shown in Figure 4. Although consid-
ered markers of C, cell identity, the carbon shuttle
enzymes are encoded by members of small gene families
that contain both C; and C, isoforms. For example, C,-
specific malic enzyme is hypothesized to have arisen fol-
lowing the acquisition of a plastid transit peptide
sequence by a gene encoding a cytosolic isoform, fol-
lowed by duplication and divergence of C; and C, forms
[47]. Consequently, maize contains at least three NADP-
ME loci [47]. The gene ZmChIMel encodes a leaf-specific,
plastid-targeted isoform required for decarboxylation of
malate in B cells [47,48] (Figure 1B, reaction 3) while two,
nearly identical, Me2 genes (ZmChiMe2a and
ZmChiMe2b) have been identified that encode cytosolic
isoforms [47]. At the nucleotide level, ZmChiMe2a and
ZmChiMe2b are 99% identical to each other and 87%
identical to ZmChiMel [47]. A further NADP-ME activity
has been characterized from roots and found to be 99%
and 98% identical to ZmChiMe2a and ZmChiMe2b,
respectively [49]. Gene duplications of this type could
pose a serious difficulty in oligonucleotide analysis if fea-
tures do not discriminate between paralogous gene cop-
ies. In the case of the carbon shuttle enzymes, the C,
isoforms are typically more abundant than C; isoforms
[50] and the accumulation patterns we observed suggest
that the signal obtained in our experiment corresponds to
C, cell-specific transcripts.

A somewhat different situation is illustrated by the multi-
subunit Rubisco holoenzyme. Here, an enzyme that is
abundant in all photosynthetic cell types in the C; plant is
restricted to the B in maize, although the biochemical role
of the protein remains unchanged. Rubisco consists of a

http://www.biomedcentral.com/1471-2164/8/12

number of large (LSU) and small (SSU) subunits. LSU is
encoded by the chloroplast gene rbcL [51], while SSU is
encoded by a family of nuclear RbcS genes [52-55]. In
maize, both LSU and SSU are restricted to the B cells of
mature leaf tissue by regulation of transcript accumula-
tion [54-57]. In this experiment, three features were iden-
tified corresponding to RbcS and each showed the
expected B enrichment. Two additional Calvin cycle
enzymes, carbonic anhydrase (CA) and phosphoribuloki-
nase (PRK) were also represented by multiple features on
the array and displayed the predicted B-enriched patterns
of expression (Figure 4).

Previous gene profiling of leaf cell-types in maize [26,58]
and sorghum [28] have identified a number of metal-
lothionein (MT) genes that are expressed preferentially in
B cells. MTs are a family of small, metal-ion binding pro-
teins that are found in many taxa and are hypothesized to
play important roles in metal tolerance and homeostasis
[59]. Consistent with these studies, we identified a
number of B-enriched features corresponding to MT-like
proteins (Figure 3). There are three annotated MT genes in
maize, designated ZmMtl [60], ZmMtl2 [61] and
ZmMil3 [62]. Although the features we identified showed
homology to these genes, the majority were most similar
to a non-characterized EST sequence (Gen Bank:
CF023010) that we tentatively annotate as ZmMtl4. The
role of MT proteins in the B is not immediately apparent.
However, the analysis of Nakazono and colleagues [58]
suggests an involvement in the functioning of the vascula-
ture.

Proteomic analysis of maize B and M chloroplasts has
identified B-glucosidase as among the most strongly B-
enriched proteins [63]. Immunocytochemical studies
have also demonstrated B enrichment of the major plas-
tidic isoform of B-glucosidase in maize leaves [64,65]. We
found six B-enriched features corresponding to B-glucosi-
dase in our candidate gene list. B-glucosidase is proposed
to function in plant defence by conversion of hydroxamic
acid glucosides to toxic benzoxazolinones [66]. In addi-
tion, B-glucosidase activity has been implicated in cytoki-
nin signalling [67]. Although providing a further marker
for B identity, the significance of the localization of the
enzyme in maize leaves remains unresolved.

In summary, approximately 8% (1,280 of 15,988) of the
features analysed were identified as accumulating differ-
entially between B and M when FDR is controlled at 5%.
Approximately 50% of these features were fully or par-
tially annotated by the maize array project database.
Searching of maize sequences databases suggested that
that these features represent at least 899 unique genes. An
estimate of the overall predicted proportion of differen-
tially accumulating features (1-m,) suggests that as many
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Figure 4

Accumulation of transcripts encoded by representative C, marker genes. The ratios of signal intensity (M values) for
each feature across the twelve hybridizations. Hybridizations are listed as Cy5 sample — Cy3 sample. Positive M values corre-
spond to higher signal in the Cy5 channel. Features in green are predicted to be B enriched whereas features in blue are pre-
dicted to be M enriched. Features are listed according to MZ identifiers [87]. ZmCal (carbonic anhydrase), ZmPepc
(phosphoenolpyruvate carboxylase), ZmChiMe (malic enzyme), RbcS (Rubisco SSU), ZmPrk (phosphoribulokinase), ZmMtl
(metallothionein), Glu!l (B-glucosidase). The chart 'Photosystem II' shows features corresponding to a number of transcripts:
MZ00013412, psbH; MZ00040940, psbH; MZ00043525, psbS; MZ00034872, psbT; MZ00009950, psbW; MZ00040590, oee3.
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as 18% of features may be differentially expressed.
Approximately 80 features identified in our gene list cor-
respond to previously characterized marker genes and
provide convincing evidence of the validity of our data set
and analysis. Below we consider the significance of differ-
ential expression in the establishment and potential engi-
neering of the C, syndrome.

General comments on the differentiation of B and M cell
types

It is estimated that the C, syndrome has been derived at
least 45 times in 19 families of angiosperms [5] and that
a small number of regulatory changes are sufficient to
establish a functional C, type [68]. By contrast, our obser-
vations suggest that differentiation of B and M cell-types
in maize involves the cell-specific regulation of many
thousands of genes. A number of these differences likely
pre-date the acquisition C, photosynthesis. Ancestrally,
the M would have been the major site of photosynthesis
while the B would have had, and presumably retains,
functions associated with proximity to the vascular tissue
[69]. Indeed, C, isoforms of certain C,-related enzymes
show specialised patterns of accumulation in the leaves of
C, plants [70]. Additionally, a number of C, cell-specific
promoters have been shown to be functional when intro-
duced into C; species [71-76]. These observations suggest
that spatial information distinguishing B and M also pre-
dates the shift to C,.

Although it is likely there were ancestral differences
between B and M, our data and previous studies suggest
that the establishment of the C, syndrome resulted in
many additional changes to the accumulation of tran-
scripts within these cell types. We distinguish two modes
of regulation that might establish these differences
(shown graphically in Figure 5). First, modification of cis-
acting elements and the recruitment of transcription fac-
tors may directly change patterns of gene expression
(genes A and B in Figure 5). Studies of C, gene regulation
in maize have successfully identified such elements asso-
ciated with a number of genes [16,17,19,77,47]. Although
it has been assumed that regulatory changes of this type
drive the establishment of the C, state, it appears unlikely
that novel regulatory elements could be recruited on the
scale required to explain the number of differentially
expressed genes we have observed. As a second mecha-
nism, we suggest that pre-existing regulatory mechanisms
established in the C, state respond in a cell-specific man-
ner to the creation of novel environments in the C, leaf
(genes C and D in Figure 5). The B and M cells of a C, leaf
differ in their complement of protein complexes, concen-
tration of sugars, the redox poise of the photosynthetic
electron transport chain and the availability of reducing
equivalents [78]. More broadly, we suggest that a small
number of changes in gene expression, when superim-

http://www.biomedcentral.com/1471-2164/8/12

posed on ancestral cellular differences, would further
induce secondary changes in transcript accumulation and
thereby generate the complex pattern we have observed. It
should be noted that such a model does not suggest the
presence of regulatory 'master-switches' but rather the re-
balancing of a complex system in response to key altera-
tions. We have recently initiated transcriptional profiling
of maize mutants with defects in phytochrome signalling
[79], Calvin cycle function [22] and tetrapyrrole biosyn-
thesis [80,81] to assess the effect of disrupting cellular
conditions on cell-specific patterns of gene expression.

Engineering C, photosynthesis

The ability to express C,-associated transcripts in C; plants
has stimulated interest in the molecular engineering of a
C, state in C; plants to achieve high photosynthetic per-
formance and water and nitrogen use efficiencies [82,83].
Unfortunately, the physiological effects of over-expressing
individual carbon shuttle proteins in C; plants have been
limited and difficult to interpret [82]. The next steps in C,
engineering will require that multiple enzymes be
expressed together. To achieve this, knowledge of the
mechanisms that coordinate the distribution of activities
in the C, leaf will be essential. In addition, an apprecia-
tion of the extent of de novo regulation required for the
establishment of the C, state will aid the selection of tar-
gets for manipulation. Many of the most promising
attempts to transfer individual C, activities to a C, plant
have been achieved by transfer of maize genes to rice [71-
74]. Similarly, the applicability of information regarding
genome wide regulatory events will likely be greatest
between closely related species. In this regard, compara-
tive genomic and proteomic studies of maize and rice
offer perhaps the greatest potential for understanding the
establishment of the C, syndrome.

Conclusion

Differential gene expression was examined in separated B
and M cell types from maize leaf blade tissue. To control
for stress effects generated during the isolation process we
developed a model that includes a stress term and com-
pare the results of the analysis with a model lacking the
stress term. These results suggest that gene expression
changes are induced during the M cell isolation process
and that this confounding effect can be reduced using the
stress model. Our analysis indicates that 8% of features
detected on the maize long-oligonucleotide microarray
produced by the Maize Array Project consortium and up
to 18% of genes expressed in the leaf transcriptome are
differentially expressed between B and M cell types.

Methods

Plant material and growth conditions

Wild-type W22 inbred maize seedlings were grown in a
growth chamber at 28°C, 500 umol m=2 s! light, 16 h
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Figure 5

Mechanisms of differential regulation. The C,-specific
regulation of four hypothetical genes and their protein prod-
ucts is illustrated. During the establishment of the C, syn-
drome, novel regulatory mechanisms that were absent in the
C; state control the accumulation of proteins A and B. In the
case of A, a protein that accumulates in all photosynthetic
cell types in the C; state is restricted to a specific cell type,
by a trans acting factor X, without any change to biochemical
function. Gene B, expressed at low levels, accumulates in a
specific cell type. Proteins C and D also accumulate differen-
tially in the C, state, but, in these instances, differential accu-
mulation is the result of a novel cellular environment. In the
case of C, protein accumulation is regulated post-translation-
ally at the level of assembly or stability through interaction
with A. In the C, state and the absence of A, product C fails
to accumulate. Such a scenario does not require differential
accumulation of C transcripts, but could affect transcription
of other genes. Transcription of gene D is linked, either
directly of indirectly, to the presence of a metabolic signal Y.
The accumulation of Y is governed by the activities of pro-
teins A and B. In the C, state, changes in the accumulation of
A and B affect the levels of Y and subsequently alter the accu-
mulation of D. Boxes represent genes and spheres represent
gene products.
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days, 8 h nights. Light was provided by a combination of
400-W metal halide and 100-W halogen lamps. Ten-day
old seedlings were harvested 2 h after the start of the light
period for bundle sheath and mesophyll preparation.

Preparation of bundle sheath strands and mesophyll
protoplasts

Bundle sheath strands and mesophyll protoplasts were
prepared as previously described [22,84]. Approximately
5 g of tissue were harvested from the second and third
leaves of 10-day-old maize seedlings for each mesophyll
preparation. Approximately 4 g of tissue were harvested
from the second and third leaves for each bundle sheath
preparation.

Preparation of RNA

RNA was prepared as previously described [85]. DNAse
treatment was performed using amplification grade
DNAse I (Invitrogen, Carlsbad, CA) in the presence of
RNase OUT RNase Inhibitor (Invitrogen). Following
treatment, RNA was extracted first with phenol:chloro-
form:IAA (24:1:1) and then with chloroform:1AA (24:1).
Following extraction, RNA was ethanol precipitated,
washed twice in 70% ethanol and re-suspended in DEPC-
treated dH,O.

Microarray detection

Microarray detection was performed using the Genisphere
3DNA 900 MPX two-stage labelling kit (Genisphere, Hat-
field, PA). 8 ug of DNAse-treated total RNA were used per
labelling reaction and resulting cDNA products split
between a two-slide set covering a total footprint area of
~3000 mm?2. cDNA synthesis was primed using oligo dT
and random primers according to the manufacturer's pro-
tocol. Maize oligonucleotide microarrays were obtained
from the Maize Array Project (University of Arizona) as
described [32]. Arrays were imaged using the Scan Array
5000 system (Perkin Elmer, Wellesley, MA). Intermediate
laser gain (60-70%) was used to detect a majority of fea-
tures while minimizing the problem of signal saturation
from highly expressed genes.

Preliminary data processing and background correction
Preliminary segmentation and data extraction were per-
formed using Imagene software (Biodiscovery, El Seg-
undo, CA). For each feature, median signal (SMD) and
background (BMD) values were extracted. To correct for
background noise, the difference between the log values
of SMD and BMD was calculated (Corrected intensity =
log,(SMD) - log,(BMD)) [86]. Corrected data sets were
examined graphically by plotting the difference between
Cy5 and Cy3 (M = corrected intensity Cy5 - corrected
intensity Cy3) against the average intensity of Cy5 and
Cy3 signals [A = (corrected intensity Cy5 + corrected
intensity Cy3)/2] for each slide.
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LOWESS normalization and data filtering

A LOWESS procedure [35] was used to normalize signal
intensity between channels for every slide. The difference
(M) and average intensity (A) values were calculated as
described above. A LOWESS regression was applied to M
against A and the resulting trend-line was used to central-
ise M values around 0 and to correct for any dependence
of M on A. Unreliable or uninformative data were dis-
carded to reduce the dimensionality of the analysis. Data
were discarded if intensity measurements were considered
either too low (i.e. detection failed) or too high (i.e. signal
saturation). Filtering criteria were applied to data
obtained from T} hybridizations to retain features show-
ing extreme expression profiles only under certain condi-
tions. The background corrected intensities were averaged
across the six T hybridization data sets. A feature was dis-
carded if this average was less than 1 (i.e. geometric aver-
age SMD < 2xBMD). Additionally, a feature was discarded
as saturating if 3 or more out of the 6 T signal intensities
read at the maximum. Following data filtering, 47,591
features were discarded from an original 64,896 because
of low expression. Of the remainder, a further 178 fea-
tures were removed because of saturation. Excluding the
control spots, we have a total of 15,988 unique features
(25% of the original set) for subsequent analysis. The nor-
malized M values for these 15,988 features are provided in
Additional file 1.

Authors' contributions

RS designed the study and analytical models, performed
experimental procedures and data extraction and drafted
the manuscript. PL and GH performed data analysis,
including development and implementation of analytical
models. KA assisted in the preparation of isolated cell-
types and the extraction of RNA. TB contributed to the
experimental design and drafting of the manuscript. All
authors have read and approved the final manuscript.

Additional material

http://www.biomedcentral.com/1471-2164/8/12

Additional file 3

Estimates of (v1-v2) under simple model and annotation for features
passing data-filtering. Feature list spreadsheet. (v1-v2) estimate of the
log normalised difference between B (v1) and M (v2) expression derived
from the simple model described in the text without stress term. FOLD is
the degree of enrichment as calculated by back-transformation of the (v1-
v2) estimate under simple model or stress model as labeled.
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Additional file 1

Normalised M values for features passing data-filtering. Feature list
spreadsheet. M values are provided for each of 12 slides. See Methods for
details.
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Estimates of (v1-v2) under stress model and annotation for features
passing data-filtering. Feature list spreadsheet. (v1-v2) estimate of the
log normalised difference between B (v1) and M (v2) expression derived
from the stress model described in the text. FOLD is the degree of enrich-
ment as calculated by back-transformation of the (v1-v2) estimate.
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