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Abstract
Studies testing the effect of single genetic variants on substance use have had modest success. This paper reviewed 39 studies 
using polygenic measures to test interaction with any type of environmental exposure (G×E) in alcohol, tobacco, and can-
nabis use. Studies using haplotype combinations, sum scores of candidate-gene risk alleles, and polygenic scores (PS) were 
included. Overall study quality was moderate, with lower ratings for the polygenic methods in the haplotype and candidate-
gene score studies. Heterogeneity in investigated environmental exposures, genetic factors, and outcomes was substantial. 
Most studies (N = 30) reported at least one significant G×E interaction, but overall evidence was weak. The majority (N = 26) 
found results in line with differential susceptibility and diathesis-stress frameworks. Future studies should pay more attention 
to methodological and statistical rigor, and focus on replication efforts. Additional work is needed before firm conclusions 
can be drawn about the importance of G×E in the etiology of substance use.
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Introduction

The use of tobacco, alcohol, and cannabis continues to be 
widespread. Global smoking prevalence in individuals above 
age 15 is around 23% (World Health Organization 2016). On 
average, people drink a glass of alcohol per day, with higher 
estimates for America and Europe (World Health Organi-
zation 2014). Lifetime prevalence of cannabis use is 26% 
in the European Union and up to 44% in the United States 
(European Monitoring Centre for Drugs and Drug Addic-
tion 2017; U.S. Department of Health and Human Services 
2016). Risk factors on biological, social, and psychological 
level have been found to contribute to individual differences 
in substance use behaviors.

Genetic vulnerability is an important risk factor. Tradi-
tionally, this factor has been investigated using family and 
twin designs to determine how much variance in a trait is 
explained by genetic factors (Boomsma et al. 2002). Herit-
ability estimates for substance use, abuse and dependence 
derived from these types of studies are moderate to high 
(about 30–75%; Ducci and Goldman 2012; Vink 2016).

Genetic molecular studies have tried to identify specific 
genetic variants underlying this heritability. In early studies 
the focus was on candidate-genes, selected based on their 
proposed biological function. In recent years, researchers 
have tried to identify genetic variants in a hypothesis-free 
manner in genome-wide association studies (GWASs), 
thereby focusing on single-nucleotide polymorphisms 
(SNPs). Although GWASs have had more success than can-
didate-gene studies, results are modest: only a handful of 
variants have been identified for substance use.

To increase power and because behavior is highly poly-
genic, studies have tried to test the effect of multiple genetic 
variants simultaneously. Some studies have used combina-
tions of variants that are strongly related [i.e., are in high 
linkage disequilibrium (LD)] and are transmitted to offspring 
together in so-called LD blocks. The exact combination 
of alleles a person has on the variants in such a block is 
called a haplotype. It has been assumed that the effects of 
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haplotypes are larger and thus easier to detect than those of 
single variants. Other studies have sought to increase power 
by combining several (unrelated) candidate-gene variants in 
a single sum score. A newer method uses summary statistics 
of GWASs to create weighted sums of the number of risk 
variants an individual carries, often called polygenic scores 
(PS). Research using haplotypes, candidate-gene sum scores, 
or PS has had some success in predicting substance use phe-
notypes. However, for all approaches, explained variance is 
still much smaller than expected based on the heritability 
estimates from twin research.

Possibly, explained variance can be increased by tak-
ing into account the interplay between genetic factors and 
the environment. In gene–environment interaction (G×E), 
the effect of a genetic factor depends on the presence of 
an environmental factor. The premise is that genetic factors 
underlie biological mechanisms (e.g., stress system respon-
sivity) that make a person more or less vulnerable to envi-
ronmental circumstances (Belsky and Pluess 2009). Indeed, 
twin research has shown that the extent to which genetic risk 
contributes to substance use can depend on environmental 
factors (Dick 2011). Early molecular genetic studies inves-
tigated G×E using single candidate-genes. For example, it 
was found that childhood maltreatment increased chances 
of early alcohol initiation more in carriers of the s-allele of 
the 5-HTTLPR polymorphism of the serotonin transporter 
gene than in non-carriers (Kaufman et al. 2007). This find-
ing is one of many in line with the diathesis-stress model, 
stating that adverse environmental circumstances enhance 
the chance that genetic vulnerability comes to expression 
(Monroe and Simons 1991). Other G×E frameworks include 
the differential susceptibility model, posing that genetic pre-
disposition might enhance the effect of adverse, but also of 
positive environmental factors (Belsky and Pluess 2009). 
Less commonly it has been predicted that more adverse out-
comes arise when genetic plasticity is high and environmen-
tal risk is either high or low, as both might lead to high stress 
reactivity (Boyce and Ellis 2005).

Studies using single candidate-genes to test G×E in 
substance use and other complex phenotypes have yielded 
mixed findings (see e.g. Do and Maes 2016; Milaniak et al. 
2015 for recent reviews). Non-replication and contradicting 
results seem the rule rather than the exception. The mer-
its of the different theoretical G×E models remain unclear. 
Low powered study designs and publication bias are likely 
to have contributed to these mixed findings (Duncan and 
Keller 2011). To increase power, the logical next step has 
been to use polygenic rather than single-variant measures 
in G×E designs.

Whereas previous reviews focused on G×E with sin-
gle (candidate) genes, this review presents a summary 
of G×E studies that used a polygenic measure, includ-
ing haplotype-based measures, sum scores of risk alleles 

in candidate-genes, and PS based on SNPs identified in 
GWASs. We focused on (ab)use of and dependence on 
tobacco, alcohol, and cannabis, as these are the most fre-
quently used substances, and most literature was available 
for these substances. No previous studies to our knowledge 
have attempted a review of G×E with polygenic measures, 
or developed a method to systematically review study qual-
ity. Because this field is relatively new, we included all G×E 
studies, regardless of the type of environmental exposure 
under investigation, ranging from cohort effects to childhood 
trauma. Based on our findings, methodological and theoreti-
cal recommendations for future research were formulated.

Methods

For this review, PRISMA guidelines were used (Moher et al. 
2009). The study method was preregistered in PROSPERO 
(CRD42017057478).

Search strategy

Literature searches were conducted in Web of Science, Pub-
Med and Google Scholar, and based on title and abstract 
potentially relevant articles were added. Only articles pub-
lished in peer-reviewed journals were considered. Keywords 
included substance use, gene–environment interaction, and 
polygenic risk. The exact keyword combinations used can 
be found in supplemental Table SI. Reference lists were 
checked for additional articles. The last search was con-
ducted February 1st, 2018.

Study eligibility

Inclusion criteria were met if (a) the study included human 
subjects; (b) the outcome was some form of tobacco, alco-
hol, or cannabis use, or a combination thereof; (c) the study 
was an original research report; (d) the measure of genetic 
risk comprised a combination of multiple risk variants (i.e., 
no single variant designs); and (e) an interaction with an 
environmental variable was tested statistically. Criterion d 
allowed for studies that looked at multiple variants within 
one gene. Although this kind of study does not meet the 
strict definition of ‘polygenic’, it might be more power-
ful than studies looking at only one variant (Oroszi et al. 
2009). Earlier reviews of candidate-gene studies have not 
explicitly investigated the merits of this method. Criterion e 
allowed for any demographic/environmental factor that has 
been investigated in this context, including for example birth 
cohort or something as specific as roommate’s alcohol use 
levels in high school.
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Assessment of study quality

For each study, quality characteristics were assessed. Impor-
tant hallmarks included study design, sample size, power 
(sample sizes necessary to achieve different levels of power 
are described in Supplementary Table SII), the method for 
controlling for confounders (sex, age, population stratifica-
tion/ethnicity, gene–environment correlation), and pheno-
type measurement. The quality of the operationalization of 
the polygenic measure was assessed separately for the hap-
lotype, candidate-gene score, and PS studies.

As no scale exists for assessing the characteristics of 
this specific type of study, study quality was visualized 
using symbols (−, +−, +). Symbol allocations for study 
characteristics are summarized in Table 1. Although lit-
erature was consulted for handholds (Table 1), quality cut-
offs had to be chosen without objective reference points. 
Assessment of study quality was done in duplicate (JP, 
KV); any disagreement was solved through discussion 
with a third assessor (JV).

Table 1   Symbol allocation for quality characteristics of the G×E studies

a Genetic associations may vary in different age and sex groups (Kendler et al. 2008; The Wellcome Trust Case Control Consortium 2007)
b Population stratification resulting from ancestry differences can distort genetic association results (Price et al. 2006); statistical control using 
principal component analysis is preferable to control for these effects
c In gene-environment correlation (rGE) genetic make-up influences to what environment an individual is exposed (only possible in non-rand-
omized studies). These effects can muddle G×E findings (Rathouz et al. 2008a, b)
d Inclusion of more genetic factors in the aggregate predictor was considered better. Cut-offs were based on commonly chosen numbers of vari-
ants for these studies
e The rationale for defining which haplotype or allele was the active (risk/protective) allele was deemed less strong when it was based on the 
results of the main analyses in the same sample, rather than on theory or results from independent samples
f This threshold most commonly concerns the p value for the association between the SNPs and the phenotype in the original GWAS. The lower 
this value, the fewer SNPs are included in the PS. We considered PS including only a few SNPs as less strong than PS including more SNPs, 
although the exact optimal threshold depends on several other study characteristics (Chatterjee et al. 2013; Dudbridge 2013)
g The more similar the outcome variable is to the original GWAS phenotype on which the PS was based, the better the predictive value (Wray 
et al. 2014)

Method Characteristic − −+ + Not applicable

All Study type Correlational Case control Randomized
Sample size < 1000 1000–2500 > 2500
Power calculation No – Yes
Control for age and 

sexa
None Descriptive Statistical Homogenous sample/

age as predictor or 
outcome

Control for ethnicityb None Descriptive Statistical Homogenous sample
Control for rGEc None Descriptive Statistical Interventions/cohort 

effects
Phenotype measures Self-developed short 

survey
Validated survey/

interview
Biological/combined 

measures
Interventions/cohort 

effects
Haplotype # of blocksd 1–4 – > 4

# of genesd 1–3 – > 3
# of variantsd < 5 5–10 > 10
Rationale for risk 

haplotypee
Debatable – Solid

Candidate # of genesd 1–3 – > 3
# of variantsd < 5 5–10 > 10
Rationale for risk 

allele
Debatable – Solid

Polygenic score (PS) Based on Overlapping sample 
GWAS

– Independent GWAS

Discovery sample size < 10,000 10,000–25,000 > 25,000
p value thresholdf p < .0001 – p ≥ .0001
Correspondence 

phenotypesg
Weak Moderate Strong



352	 Behavior Genetics (2019) 49:349–365

1 3

Data extraction and evaluation of results

The studies were categorized according to (a) the measure 
of genetic risk (haplotype, candidate-gene score, or PS), and 
(b) the nature of the environmental exposure (intervention 
or other, e.g., traumatic experiences). Further categorization 
could not be realized due to heterogeneity in environmen-
tal factors, outcomes, and study designs. No meta-analysis 
nor formal publication bias assessment could be attempted 
because of study heterogeneity, inconsistent statistical 
reporting, and absence of report of (standardized) effect 
sizes.

As most studies did report p values for the G×E analy-
sis, a p curve analysis could be conducted (Simonsohn et al. 
2014) to give an indication of the strength of the evidence 
and of the probability that p hacking occurred in the included 
studies. The assumption of the p curve method is that if 
the investigated effect is real, there should be more small 
p values than large p values reported in the literature. If 
there are more large than small p values, this might be seen 
as evidence for p hacking or selective reporting; it is more 
likely that investigators have been conducting tests until they 
reached a p value just below .05. Supplementary Table SIII 
summarizes what G×E test statistics were selected from 
each study. The analysis was conducted twice, once using 
all the reported G×E p values in each study, and once using 
only the first reported p value in each study. If a study only 
reported that the p value was smaller than some threshold 
(e.g., p < .05, p < .001), we included this threshold minus one 
decimal value (e.g., p = .049, p = .00099) as the estimated p 
value in the analysis.

Results

Selection

The study selection process is summarized in the flow chart 
in Fig. 1. In total, 34 articles describing 39 studies were 
left for inclusion in the systematic review. These studies 
described results from 27 independent samples.

Study description

In Tables 2, 3, and 4 key features and G×E findings are sum-
marized separately for studies using (a) haplotype, (b) can-
didate-gene score, and (c) PS measures. Symbols are used to 
annotate what studies used data from overlapping samples.

Sample characteristics for each study are given in Sup-
plementary Table SIV. Samples consisting of only Euro-
pean descent individuals were overrepresented (51%). Stud-
ies included clinical (N = 8), clinically ascertained (N = 5), 
and general populations (N = 26). Eleven studies included 

family-related individuals. Studies comprised various age 
ranges starting from adolescence, with 19 studies specifi-
cally focusing on adolescents or young adults and two on 
older adults. There was an approximately equal representa-
tion of female and male subjects within the studies. Sample 
sizes ranged from N = 81 to N = 11,423, with an average of 
N = 1865.

Fifteen studies used some form of correlational design (7 
longitudinal), 12 were case–control studies, 11 were RCTs 
and 1 was a randomized longitudinal design. Twenty studies 
included alcohol and 16 included tobacco outcomes (among 
others), 4 focused on combined phenotypes (e.g., substance 
use disorder), and only 3 included cannabis outcomes. There 
were 11 intervention studies, 12 studies that included meas-
ures of trauma-like experiences, and 16 that focused exclu-
sively on typical environmental exposures in for example 
the family or peer context. Most haplotype studies focused 
on interventions or psychological trauma as environmental 
exposures, whereas the candidate-gene score and PS stud-
ies more often focused on common environmental factors.

Quality

General quality characteristics per study type are sum-
marized in Table 3. Quality of the implementation of the 
polygenic method is summarized in Table 4. Full details on 
quality characteristics per study are given in Supplementary 
Tables SVa–SVc.

Haplotype method

Haplotype studies (N = 16) were on average published 
7 years before the date of inclusion in this review. They 
used a strong experimental design (i.e., RCT or case control) 

Fig. 1   Flow-chart of study selection for inclusion in the review. 
Exclusion criteria: a non-human subjects; b no substance use out-
come; c no original research; d no polygenic risk predictor; e no sta-
tistical test of interaction with environmental variable
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Table 2   Summary of G×E studies using haplotypes as a measure for polygenic risk (G)

ID Year 1st author Genes Environmental exposure Outcome Qualitya Finding

INTERVENTION

1* 2007 Berre�ni COMT pharmacotherapy vs 

placebo 

7-day smoking

abs�nence

+- 3 out of 4 haplotypes predicted abs�nence more strongly for 

individuals randomized to a bupropion interven�on. Weakened at 6-

month follow-up.

2* 2007 Berre�ni COMT pharmacotherapy vs 

placebo 

7-day smoking

abs�nence

+- 2 out of 4 haplotypes predicted abs�nence more strongly for 

individuals randomized to a bupropion interven�on. Not retained at 

6-month follow-up.

3 2009 Oroszi OPRM1 pharmacotherapy vs 

placebo 

alcochol abs�nence or 

moderate drinking

- Pa�ents treated with naltrexone 

who had 1 haplotype out of 3 

combina�ons had be�er 

outcomes than those treated with 

placebo or other haplotypes .

No interac�on effect for 

haplotypes in other block.

4 2012 Chen CHRNA5 

CHRNA3 

CHRNB4

pharmacotherapy vs 

placebo 

smoking cessa�on + 1 haplotype predicted failed abs�nence only for individuals 

randomized to placebo and not for those treated with nico�ne patch, 

nico�ne lozenge, or bupropion

5+ 2013 Brody DRD2

ANKK1 

GABRG1 

GABRA2

preven�on trial alcohol use + Risk haplotypes in 3 out of 5 blocks predicted only predicted increased 

alcohol use for individuals randomized to control, not for individuals 

in the preven�on group

6 2015 Tyndale CHRNA5 

CHRNA3 

CHRNB4

pharmacotherapy vs 

placebo

smoking cessa�on + no interac�on

OTHER

7% 2006 Lerer HTR6

HTR1B

trauma exposure smoking initia�on &

nico�ne dependence

- no interac�ons 

8% 2007 Segman DAT1 trauma exposure smoking initia�on &

nico�ne dependence

+- in 1 of 2 blocks, 1 of 3 haplotypes 

protected for the effect of trauma 

on nico�ne dep

Not replicated for smok init

9 2008 Ducci MAOA 

MAOB

childhood sexual abuse alcoholism -- in 1 of 2 blocks, 1 of 5 haplotypes predicted alcoholism, but only in 

sexually abused individuals

10 2010 Nelson CRHR1 childhood sexual abuse alcohol use &

alcohol dependence

- 1 of 2 haplotype combina�ons protected for the effect of childhood 

sexual abuse on alc consump�on and dep

11 2010 Enoch GABRA2 childhood trauma alcohol dep &

substance dependence

- in 1 of 2 blocks, 1 of 4 haplotypes

was protec�ve for the effects of 

childhood trauma on subst dep

not replicate for alc dep
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Table 2   (continued)

12& 2011 Kranzler CRHR1 childhood adverse events alcohol dependence - no interac�on

13& 2011 Kranzler CRHR1 childhood adverse events alcohol dependence - no interac�on

14 2013 Ray CRHR1 trauma exposure alcoholism +- in block 1 there was 1 out of 3 and in block 2 there were 2 out of 7 

haplotypes that were a risk factor in non-trauma-exposed individuals, 

but were protec�ve in trauma-exposed individuals

15 2015 Handley FKBP5 childhood maltreatment marijuana dependence - childhood maltreatment only predicted marijuana dep in 1 of 2 

haplotype combina�ons

16 2017 Handley FKBP5 childhood maltreatment problem drinking +- the internalizing pathway from 

maltreatment to alc problems was 

only present for haplotype 

carriers

no interac�on for externalizing 

pathway

ID Year 1st author Genes Environmental exposure Outcome Qualitya Finding

INTERVENTION

17 2012 McGeary ANKK1 DRD4 

DAT1 COMT

pharmacotherapy vs 

placebo 

smoking cessa�on -- no interac�on 

18+ 2013 Brody DRD2 GABRG1 

GABRA2

preven�on trial alcohol use +- score predicted alcohol use, but only for the individuals randomized to 

control and not to preven�on trial

19 2013 David ANKK1 COMT 

DRD4 DAT1

pharmacotherapy vs

placebo 

smoking cessa�on + score predicted �me to first 

lapse only for individuals 

randomized to placebo

Not replicated for abs�nence at end of 

treatment

OTHER

20 2015 Guo DRD2 MAOA 

LMO3 and others

roommate's binge 

drinking in high school

binge drinking in 

college

+- medium propensity predicted higher levels of binge drinking when the 

roommate was a drinker than high/ low propensity. Similar results for 

larger SNP subsets

21$ 2015 Guo DRD2 MAOA

LMO3 and others

roommate's binge 

drinking in high school

binge drinking in 

college

+- medium propensity predicted higher levels of binge drinking when the 

roommate was a drinker than low/ high propensity. Similar results for 

larger SNP subsets

22 2016 Bountress DRD2 ADH4 CNR1 

GABRA2 PDYN 

OPRM1

parental knowledge &

peer substance use

substance use 

disorders

+- highest level of score predicted substance use disorder more strongly 

when parental knowledge was low and peer substance use was high

23$ 2016 Stogner DAT1 DRD2 DRD4

SERT MAOA

parental rejec�on alcohol use 

initia�on

+- score was a risk factor for alcohol use when parental rejec�on was high, 

but a protec�ve factor when rejec�on was low

24@ 2017 Pasman DAT1 DRD4 DRD2

OPRM1

parental educa�on level polysubstance use +- no interac�on

25 2017 Pasman DAT1 DRD4 DRD2

OPRM1

(parental) educa�on 

level

polysubstance use +- score marginally predicted lower polysubstance use for people with a 

low educa�on level

26 2017 Coley DAT1 DRD2 DRD4 

DRD5 COMT 

MAOA

parent and peer alcohol

use &

stressful events

alcohol use,

intoxica�on & use 

disorders

+ no interac�ons
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Table 2   (continued)
ID Year 1st author PS phenotype Environmental exposure Outcome Qualitya Finding

INTERVENTION

27# 2015a Musci smoking cessa�on preven�on trial age smoking initia�on +- higher PS predicted stronger effect of the interven�on on 

age of smok init

28# 2016 Musci smoking cessa�on preven�on trial age cannabis initia�on - higher PS predicted stronger effect of the interven�on

OTHER

29 2012 Vrieze smoking heaviness age cohort smoking heaviness &

alcohol use

+ PS predicted smok more 

strongly in the older cohorts

than in the younger cohorts

PS predicted less alc use 

more strongly in the older 

cohorts than in the younger 

cohorts

30 2013 Meyers smoking heaviness neighborhood cohesion

& trauma 

smoking heaviness + higher PS predicted smok more strongly for high levels of 

trauma exposure and less so individuals experiencing high 

neighborhood social cohesion 

31” 2014 Salvatore alcohol problem parental knowledge &

peer deviance

alcohol problems +- PS had a stronger effect on 

alc problems when parental 

Not replicated for analyses 

using subset of top-SNPs

knowledge was low or peer 

deviance was high 

32# 2015b Musci smoking cessa�on friend's substance use & 

parental monitoring

smoking frequency &

cannabis frequency

+- PS in combina�on with high parental monitoring and low 

friend’s substance use environmental risk predicted lower 

tobacco and marijuana use

33~ 2016 Domingue smoking ini�a�on birth cohort smoking initia�on + marginal interac�on such that influence of PS became more 

important over �me

34~ 2016 Schmitz smoking ini�a�on veteran status &

educa�onal a�ainment

smoking initia�on & 

smoking heaviness

+ PS predicted smoking ini�a�on and heaviness more 

strongly in veterans than in non-veterans. Post-war 

educa�onal a�ainment buffered for this effect

35 2017 Li alcohol dependence

symptoms

close friend’s substance

use

heavy episodic drinking - no interac�on

36@ 2017 Treur smoking heaviness childhood smoke 

exposure

smoking heaviness &

smoking initita�on

+ PS marginally predicted smok

heaviness for individuals 

exposed to smoke in

childhood and not for 

unexposed individuals

not replicated for smok init

37@ 2018 Mies alcohol use stress at home & alcohol use & no interac�on

life sa�sfac�on alcohol problem

38 2018 Poliman� bipolar disorder,

major depressive 

disorder &

schizophrenia

trauma exposure alcohol misuse &

nico�ne dependence

+ bipolar disorder PS predicted 

more alcohol misuse for 

individuals exposed to trauma 

and less for unexposed 

individuals. 

no interac�on for bipolar 

disorder and schizophrenia 

PS on nico�ne dependence. 

Inconsistent marginal 

effects for other GxE 

analyses

39“ 2018 Salvatore alcohol problems roman�c rela�onship alcohol intoxica�on + No interac�on
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Table 2   (continued)

Top rows for studies testing intervention/prevention as environmental exposure (E). Only first author of the respective papers is mentioned
Green = reinforcing, dark green = reinforcing such that G only has effect in one E, blue = E has only effect for one level of G, orange = G’s effect 
is reversed by E, gray = no evidence for G×E
*,+,%,&,$,@,#Studies denoted with the same symbol used data from identical or overlapping samples
a Quality ratings based on characteristics from Supplementary Tables SVa-SVc

more often than both other study types. Sample sizes were 
quite low given the expected small effects, with an average 
of N̂ = 771 and almost half of the studies using a sample of 
less than N = 500 individuals. In many cases, exact sample 
sizes were only reported for the main effects analysis and not 
for the G×E analysis. Power calculations were not reported 
in 10 out of 16 studies.

Only three studies controlled statistically for both age 
and sex, although other studies often reported that outcomes 
and predictors did not vary for different sexes or age groups 
(‘descriptive’ control). In a few cases, statistical control was 
unnecessary as the sample was sufficiently homogeneous 
(e.g., all female or all within the same 2-year age range). 
Control for ethnicity was absent or rudimentary in all but 
one study (16), for example consisting of self-reported 
‘white/non-white’ racial background. In nine studies the 
sample was reasonably ethnically homogeneous. In non-
randomized studies (N = 10) gene–environment correlation 
(rGE) might confound the G×E interaction results. Only four 
of the ten studies reported on rGE and no studies controlled 
for these effects.

The quality of the application of the haplotype method 
was limited. Almost all studies tested haplotypes in one or 
two LD blocks, with the number of tested variants ranging 
between 2 and 18. Many studies looked at 1 or 2 blocks in a 
single gene or a few genes in high LD, so that they are hardly 
more ‘polygenic’ than single candidate-gene studies. Most 
studies did not formulate a literature-based directional pre-
diction. In many cases, only haplotypes that showed a main 
effect on the outcome were included in the G×E analysis.

For severe outcomes (e.g., clinical diagnosis) or environ-
mental exposures (e.g., traumatic experiences) interviews 
were used as a measurement instrument. In the smoking ces-
sation trials, biological measures were employed to validate 
self-reported abstinence. Other outcomes and exposures 
were mostly measured using validated questionnaires or 
more crudely using short questionnaires that were developed 
for the purpose of this or an earlier study.

Most haplotypes investigated were located in genes 
involved in (dopamine-related) reward and inhibition pro-
cesses in the brain (e.g. COMT, ANKK1, DRD2, DAT1, 
OPRM1, HTR6, HTR1B, and GABA- and MAO-related 
genes). Other candidate-genes included CRHR1 and FKBP5, 
related to the stress system. Genes such as the nicotine 

metabolism, cannabinoid receptor, or the alcohol dehydro-
genase genes seem equally suitable candidates, but received 
much less research attention.

Summarizing, weaknesses of the haplotype studies 
included small sample sizes, low statistical control, and 
limitations in the implementation of the polygenic method. 
Strengths included the use of strong designs and phenotypi-
cal measures.

Candidate–gene method

Studies using candidate-gene scores were on average 3 years 
old at the time of inclusion in this review. The study designs 
were somewhat less strong than those used in the haplotype 
studies, with four out of ten using some randomization pro-
cedure. Average sample size was larger than for the haplo-
type studies ( N̂ = 2141), although for 2 studies exact sample 
size for the G×E analyses were not reported and the average 
was boosted by one study with N = 11,423. Three out of ten 
studies reported power calculations.

Control for confounders was more stringent than in the 
haplotype studies, with 8 studies exerting statistical control 
for both age and sex. Five studies used some control for 
genetic ancestry and another four used a relatively homog-
enous sample. One of the seven studies that did not use a 
randomization procedure statistically controlled for rGE 
effects and three studies reported on them.

All but one candidate-gene score study used an 
unweighted sum score of the number of risk alleles as 
a predictor. Sum scores were based on risk alleles in on 
average seven variants. Almost all variants were located 
in previously investigated candidate-genes related to dopa-
mine-signaling. The rationale for selecting the risk allele 
was debatable in three cases. Many studies did omitted a 
description of conflicting literature on the risk allele of 
the candidate-gene. Outcome and environmental exposure 
measures were generally of lower quality than those in the 
haplotype studies and mostly comprised self-developed 
short questionnaires.

Candidate-gene studies scored slightly better than the 
haplotype studies on sample sizes, control for confounding, 
and the implementation of the polygenic method.
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Polygenic score method

Studies using PS were the newest, on average 2 years old 
at the time of inclusion. Study designs were more often 
simple correlational designs. Sample size was N̂ = 3001 on 
average, with only two samples smaller than N = 500. Five 
out of 13 studies reported power calculations.

Control for confounding was most rigorous in this type 
of studies, with seven studies controlling statistically 
for both age and sex, and the rest using some procedure 
rendering statistical control less necessary. In PS stud-
ies it is possible to control statistically for ethnicity using 
ancestry-informative principal components. Eight of the 
ten studies used this procedure, with an additional two 

using a more rudimentary approximation of this method 
and the final three using a reasonably homogenous sample. 
Of the ten studies where rGE could have played a role, one 
exerted statistical control for rGE and eight described the 
effects without controlling for them.

Half the studies constructed the PS based on results 
from larger GWASs (average discovery N̂ = 58,447, range 
N = 31,266–74,053), while the others based it on results 
from GWASs with limited sample size ( N̂ = 3140). One of 
the latter calculated the PS based on a GWAS in a sam-
ple that was genetically related to the target sample, which 
could have biased results (35). The similarity between the 
study outcome and the source GWAS phenotype was in most 
cases reasonably high. The specific score calculation method 

Table 4   Summary of quality of the implementation of the polygenic method

Average quality 

− +− +

Haplotype # of blocksa (M = 1.6) 1–4 − > 4

# of genesa (M = 1.6) 1–3 − > 3 

# of variantsa (M = 6.2) < 5 5–10 > 10

Ra�onale for risk haplotypeb (50% solid) Debatable − Solid 

ytilauqllarevO

Candidate-gene 

score 

# of genesa (M = 8.8) 1–3 − > 3 

# of variantsa (M = 6.2) < 5 5–10 > 10 

Ra�onale for risk alleleb (67% solid) Debatable − Solid 

ytilauqllarevO

Polygenic score 

(PS) 

Based on (92.3% independent sample) Overlapping GWAS − Independent GWAS 

Discovery sample size (M = 58,447) < 10,000 10,000–25,000 > 25,000 

p-value thresholdc (7.7% p < .0001) p < .0001 − p ≥ .0001 

Correspondence phenotypesd (84.6% weak) Weak Moderate Strong 

ytilauqllarevO

Averages or counts are given per criterion. Shading indicates that most studies (or the study average) fell into this quality category, with the 
darker shading indicating the average quality category per study type. For details per study, refer to Supplementary Tables SVa–SVc
a Inclusion of more genetic factors in the aggregate predictor was considered better. Cut-offs were based on commonly chosen numbers of vari-
ants for these studies
b The rationale for defining which haplotype or allele was the risk/protective allele was deemed less strong when it was based on the results of the 
main analyses in the same sample, rather than on theory or results from independent samples
c This threshold most commonly concerns the p value for the association between the SNPs and the phenotype in the original GWAS. The lower 
this value, the fewer SNPs are included in the PS. We considered PS including only a few SNPs as less strong than PS including more SNPs, 
although the exact optimal threshold depends on several other study characteristics (Chatterjee et al. 2013; Dudbridge 2013)
d The more similar the outcome variable is to the original GWAS phenotype on which the PS was based, the better the predictive value (Wray 
et al. 2014)
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differed somewhat across studies, with three preselecting a 
subset of SNPs to include in the score. Most studies used the 
PLINK program to calculate the PS, using pruning or clump-
ing to remove variants that were in high LD. One study used 
LDpred to calculate PS while accounting for this LD (36). 
The p value thresholds for including SNPs in the PS varied 
widely from p < 1 × 10−8 (resulting in a score of only two 
variants) to p = 1 (retaining all SNPs in the score), and five 
studies tested multiple PS with different thresholds.

Overall, the phenotype measures were of limited quality, 
with most studies using short self-developed questionnaires.

Overall, the PS studies scored higher than the other 
study types on sample size, control for confounding, and 
the implementation of the polygenic method, but similar or 
worse on study design and phenotypical measures.

In general, study quality appeared somewhat higher for 
studies that found a significant G×E result than for studies 
that did not. This might have been driven by the higher qual-
ity of the PS studies, that could also have yielded more sig-
nificant findings because of higher power. Study quality did 
not seem to influence what kind of G×E pattern was found.

Main results

p curve analysis

To get an indication of the overall evidence for G×E in sub-
stance use, a p curve analysis was conducted. The analysis 
was based on 82 p values (34 significant) derived from 28 
studies (see Supplementary Table SIII). The other 11 stud-
ies did not report p values for the G×E term specifically (or 
for the simple effects in the case of cross-over interactions) 
or statistics by which these could be calculated. As can be 
seen in Fig. 2, there were more small p values than expected 
under the null hypothesis. The p curve is flatter than expected 
if studies had at least 70% power, such that there were not 
many more small p values than medium to large p values. 
This indicates that there was evidential value, but this was 
not very strong. Moreover, if only the first p value reported 
in each study was taken into account, results deteriorated, 
indicating that they were driven by a few studies that reported 
many small p values (data not shown). Results did not change 
if non-exact p values (e.g., p < .05) were excluded from analy-
sis (results not shown). There was no clear evidence for p 
hacking, which would be indicated by a substantially higher 
proportion of p values just below 0.05.

G×E patterns

The G×E findings from each of the 39 studies were sum-
marized in the last column of Tables 2, 3, and 4. Thirty stud-
ies reported at least 1 significant G×E finding and 9 did not. 

Twenty-five of the significant G×E findings followed a pattern 
as depicted in Fig. 3a (22 studies) or b (3 studies). The pat-
tern in panel a indicates that environmental risk enhances the 
effect of genetic risk, further increasing the chance of unfa-
vorable outcomes. Or, likewise, a protective genetic predis-
position might enhance the effects of a positive environment 
or counteract the effects of an adverse environment. Thus, 
in these cases, genetic and environmental factors reinforce 
each other’s effects. In panel b the pattern is similar, only 
now a genetic factor that is a risk factor in one situation, is 
protective in the other situation, or likewise, an environmental 
exposure that is a risk factor for individuals with a certain 
genetic make-up is a protective factor for individuals with a 
different genetic make-up. Thus, genetic and environmental 
factors reverse each other’s effects (cross-over interaction).

The colors in Tables 2, 3, and 4 correspond to specific pat-
terns of results as summarized in Fig. 3. The light green color 
indicates that the study interpreted the G×E effects such that 
the genetic and environmental factors reinforce each other 
(study 1–3, 21, 26–31, 33). For example, in study 22 a genetic 
risk factor (associated with substance use) enhances the effect 
of an adverse environmental factor (high peer substance use), 
yielding a negative outcome (substance use disorder).

Studies marked in darker green are similar, but did not 
find (or report) a main effect of environment (‘ME’ in 
Fig. 3a) or a main effect of the genetic factor (‘M’ in Fig. 3a; 
study 4–5, 9, 15–16, 18–19, 36). The interpretation in these 
cases is that genetic risk only has an adverse effect in an 
adverse situation (study 9, 15, 16, 36) or when there is no 
intervention to counteract it (study 4, 5, 18, and 19). Like-
wise, the blue studies find that environmental risk only has 
an adverse effect in the absence of a protective genetic factor. 
The 3 studies finding this pattern are all haplotype studies 
where a specific combination of alleles protects for the effect 
of psychological trauma (studies 8, 10, 11).

Studies marked in orange (14, 23, and 38) showed that 
a genetic risk factor becomes a protective factor depending 
on the environment as depicted in Fig. 3b. For example, in 
study 14, certain haplotype combinations were risk factors 
for alcoholism in controls, but protective factors in trauma-
tized individuals.

The yellow studies find patterns that correspond with 
neither Fig. 3a nor b. Study 20 and 21 find that medium 
levels of genetic risk predict adverse outcomes for high 
environmental risk. Study 25 reports that high genetic risk 
predicts favorable outcomes for an adverse environmental 
characteristic (low parental education). Study 29 found a 
PS for smoking heaviness to be related to less alcohol use 
for older cohorts, whereas it was related to more smoking in 
this group. Another cohort study (33) reported that genetic 
risk marginally predicted adverse outcomes more strongly 
for young cohorts, even though being in such a cohort is 
generally viewed as protective for substance use.
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Patterns substances, genes, and environments

Patterns of G×E did not seem to differ depending on the sub-
stance under investigation. Fourteen of the 20 studies includ-
ing alcohol outcomes, and 13 of the 16 studies including 
smoking outcomes found at least one significant G×E effect.

Results did not seem to differ depending on the kind of 
variants investigated. For example, studies looking at dopa-
mine-related genes were not more likely to find significant 
G×E patterns than studies focusing on other candidate-
genes. However, it was difficult to compare findings across 
gene-groups, as most studies used aggregates of genes from 
different groups.

Intervention studies and studies looking at trauma expo-
sure seemed more likely to yield patterns corresponding to 
Fig. 3a or b, but not more likely to show significant results. 
The 16 studies focusing on common environmental expo-
sures yielded more diverse patterns. For example, all 5 yel-
low outcomes fell in this category, investigating birth cohort, 
peer substance use, and parental education level.

Discussion

The aim of this review was to provide an overview of all avail-
able studies (N = 39) using measures of polygenic risk (haplo-
types, candidate-gene scores, and polygenic scores) to inves-
tigate gene–environment interaction in substance use. There 
was some support for the existence of G×E in substance use, 
but the evidential value was weak.

Theoretical interpretation

Most G×E results followed the pattern as depicted in Fig. 3a. 
These patterns nicely fit in the diathesis-stress framework 
(Monroe and Simons 1991), stating that individuals who are 
at risk genetically show higher levels of some adverse out-
come when they are exposed to a risk environment. Although 
not stated in the original model, the same seems to apply for 
individuals who have a protective genetic predisposition in that 
they have more positive outcomes in beneficial environments. 
It is important to point out that this would fit equally well in 
the differential susceptibility framework (Belsky and Pluess 
2009), but it is rarely found (or reported) within studies that the 
same genetic factor has a positive effect in one situation and a 
negative effect in the other. Only three studies report such an 
effect (14, 23, and 38), providing direct evidence for a ‘genetic 
plasticity factor’ yielding differential susceptibility.

Many studies did not provide a strong theoretical frame-
work for predicting one G×E pattern rather than another. 
It seems that a fitting theoretical explanation can be found 
regardless of the pattern that was discovered. For example, 
findings that environmental factors have a stronger effect at 
medium levels of genetic risk have been explained lending 
from a ‘social push’ model framework, stating that a risk fac-
tor is overruled at particularly low or high levels of another 
risk factor (Guo et al. 2015). Researchers may be tempted to 
place their findings in a theoretical framework a posteriori, 

Fig. 2   Percentage (y axis) of reported p values in the studies that fell 
in the range specified on the x axis (p curve), against the percent-
age that would be expected under the null hypothesis (nil effect) and 
under the alternative hypothesis given a power level of 70% (70% 
power curve)

Fig. 3   General pattern of G×E. a Genetic factors and environmental 
factors reinforce each other (green–blue shades in Tables  2, 3, and 
4, N = 21). ME represents the main effect of environmental expo-

sure, MG that of the genetic factor. b The effect of a genetic factor 
is reversed as a function of an environmental factor (or vice versa; 
orange findings in Tables 2, 3, and 4, N = 2)
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rather than formulating hypotheses beforehand. Pre-registering 
hypotheses might be a good way to overcome these caveats.

As heterogeneity in outcomes, genetic predictors, and envi-
ronmental factors was substantial, it was difficult to discern 
patterns in the results. These did not appear to depend on gene 
group, environmental factor, or substance investigated. How-
ever, patterns were hard to discern, as there were many differ-
ent (combinations of) factors investigated.

Limitations of included studies

Study quality differed within and between genetic risk 
assessment methods, and was often limited. For all study 
types, power calculation was mostly omitted, and many 
studies are likely to have been underpowered (see Table 
SII). Interaction effects usually require more power to be 
detected than main effects, and given that main effects of 
genetic predictors are often small this is especially relevant 
in G×E studies (Duncan and Keller 2011). For example, 
if the effect size of a G×E effect would be R2 = 0.5%, in 
order to achieve 80% power sample size would need to be 
N = 2185 (assuming 3 predictors and α = .05), and 31 out 
of 39 studies had smaller sample size than that (see Table 
SII). To put that in perspective, main effects of top SNPs 
in GWASs are often around 0.25%, and all measured SNPs 
together typically explain around 10% or less of the variance 
in substance use phenotypes (So et al. 2011). Also, control 
for gene–environment correlation was limited, and where it 
was tested, the test often entailed a simple correlation with-
out controlling for the effects of covariates, or for interaction 
effects between the genetic predictor and covariates (Keller, 
2014). This is problematic, as many environmental factors 
(such as parenting behaviors) are in fact influenced by genes 
themselves (Krapohl et al. 2017), and this covariation would 
decrease chances of detecting G×E and impede its interpre-
tation (Rathouz et al. 2008a, b). Over all study types, het-
erogeneous designs, lack of replication studies, and incon-
sistent statistical reporting made assessment of publication 
bias impossible. In candidate-gene G×E studies such bias 
to underreporting negative results has been demonstrated 
(Duncan and Keller 2011). As the number of p values just 
below the significance threshold was not higher than the 
number of small p values, we concluded that p hacking did 
not seem to be an issue.

The haplotype method was limited as a measure of poly-
genic risk because many studies looked at a few variants 
in one gene, which is strictly speaking not ‘polygenic’ (but 
‘polyvariant’) and will not capture much variation. The 
investigated genes were mostly plausible candidates for 
substance use because of their biological function. The 
benefits of this method compared to the traditional single 
candidate-gene method are modest. This might be reflected 
in the results, as more haplotype than other studies did not 

find a G×E interaction or found results that are difficult to 
interpret (i.e., did not follow a pattern as depicted in Fig. 3).

Studies using candidate-gene score methods appeared 
of somewhat better quality than the haplotype studies. 
Sample sizes and the number of investigated variants still 
seem (too) low to detect small effects (Luan et al. 2001). A 
more fundamental drawback of the candidate-gene method 
in general is that the selection of variants and risk alleles 
by definition has to rely on a limited body of knowledge, 
that might or might not include information on the causally 
most important genetic variants (Zhu and Zhao 2007). As 
an example, previous research has shown that candidate-
genes for schizophrenia did not predict schizophrenia better 
than candidate-genes for an unrelated phenotype (diabetes; 
Johnson et al. 2017). Indeed, few of the proposed candidates 
in haplotype or candidate-gene score studies have actually 
been identified in hypothesis-free GWASs (e.g., Liu et al. 
2019; Pasman et al. 2018; Walters et al. 2018). This might 
have added to the finding that studies using these methods 
more often yielded unexpected patterns.

Technical advances and decreasing costs have made it 
possible to consider the whole genome for risk prediction, 
and studies using such PS seem to become more popular 
than those using haplotype and candidate-gene methods. 
PS studies yielded the highest quality ratings, with sample 
sizes more adequate to capture small effects, although study 
design and phenotype measurements were less strong. It is 
important to note that PS studies are not necessarily appro-
priate for testing differential vulnerability hypotheses, as 
SNPs that operate through that mechanism would not nec-
essarily have large main effects likely to be detected in a 
GWAS (Fox and Beevers 2016). It is an interesting pos-
sibility that different variants are important for interaction 
effects than for main effects, and this might contribute to the 
fact that G×E studies show disappointing results in compari-
son with GWASs. Furthermore, even the qualitatively better 
studies reviewed here show only small effects.

Recommendations for future studies

Following from the limitations of the included studies, 
important recommendations for future research can be made. 
A roadmap for future research is summarized in Fig. 4. 
First, more attention should be given to hypothesis selec-
tion. Although addiction research would be advanced by a 
further expansion of the scope of research, direct replica-
tion attempts might be even more important at this stage 
(Duncan and Keller 2011). Replication and original studies 
alike should focus on formulating and pre-registering sharp 
predictions and give attention to the exact direction of the 
G×E effects (Belsky et al. 2013; Munafò et al. 2017).
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Second, high quality study methods should be used. Despite 
having limitations, the PS studies yielded more consistent 
results than the other two study types. GWASs with substan-
tial sample sizes for alcohol (N ≈ 941,000) and tobacco use 
(N ≈ 1,232,000; Liu et al. 2019), and cannabis use (Pasman 
et al., 2018; N ≈ 184,000) are increasingly available, enhancing 
the predictive power of PS. It is interesting to note that stud-
ies are emerging testing SNP by environment interactions in 
GWASs, making it possible to explore G×E in a hypothesis-
free manner. This would circumvent the difficulty that SNPs 
captured in GWASs do not necessarily measure differential 
susceptibility. For instance, Polimanti et al. (2017) showed a 
SNP by trauma exposure interaction on the risk of alcohol 
misuse. As the multiple testing burden for this kind of design 
is substantial, large sample sizes are needed to test G×E on a 
genome-wide level. However, as these samples are becom-
ing increasingly available, the merits of this method might 
be further explored. Other important characteristics of high 
quality study methods include using better phenotypical meas-
ures, using large discovery and target sample sizes, controlling 

for covariates and taking into account possible rGE. Authors 
should report on rGE analysis (that controlled for covariates), 
and ideally the G×E analysis should control for the effects (for 
example using structural equation modeling).

Third, future studies should report more completely and 
transparently on statistics, such as effect size and achieved 
power level. Also, more attention should be given to null 
results, so that in future meta-analyses unbiased effect sizes 
can be estimated (see Fig. 4).

Strengths and limitations

This is the first review focusing on and comparing multiple 
polygenic methods for assessing G×E in multiple substance 
use outcomes. Patterns of results could be compared across 
different methods, outcomes, and predictors. The quality 
assessment provided insight in important lacunas in study 
methodology and gave some suggestion that study quality 
influences the patterns of results.

Fig. 4   Road map for future 
studies with recommended steps 
for improving the stance of the 
substance use G×E literature •a�empt direct replica�on of previously reported GxE, or at least priori�zing 

environmental factors and outcomes that have been tested before
•base hypothesis on strong empirical evidence or use hypothesis-free design
•pre-registra�on when using direc�onal hypotheses
•correc�on for mul�ple tes�ng when using hypothesis-free designs
•selec�on of gene�c measure a�uned to hypothesis (e.g., GWAS-based measure 
might not be suitable for tes�ng reversed GxE hypotheses; empirically iden�fied 
variants are preferrable above candidate-genes)

Select appropriate hypothesis and a�une methods to it:

•strong phenotypical measures, preferably commonly used measures to increase 
similarity with other studies, e.g. validated survey or clinical interview

•discovery studies with large sample sizes when crea�ng PS (work together in 
consor�a)

•sufficient sample size for target sample (use power calcula�on)
•sta�s�cal control for covariates incl. ethnicity, sex, and age, and interac�on 
between PRS and those covariates

•taking into account rGE (either directly including the effects in the model using 
structural equa�on modeling, or tes�ng it separately while controlling for 
stra�fica�on and covariates)

Use high-quality study methods:

•direc�on and interpreta�on of the found interac�on effect (e.g., in a figure)
•exact p-values
•(standardized) effect sizes
•sta�s�cs for rGE effects
•exact sample size per test
•power analysis
•scripts for the data prepara�on and analysis
•data files
•null results

For future meta-analysis, re-analysis and replica�on, report transparently on:
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The heterogeneity of the included studies introduced some 
important constraints for the review. No meta-analysis could 
be attempted and we had to devise our own method to visual-
ize study quality. As we tried to integrate all findings in one 
comprehensive interpretation, some detail was inevitably lost. 
Another limitation lies in the fact that some of the studies did 
not set out to test G×E, but rather included it as a secondary 
analysis. This might have contributed to the fact that details on 
methods and results could sometimes be retrieved only with 
difficulty. Also, it may have biased results, as studies in some 
cases seemed to test an interaction with a variable that proved 
to have a main effect, rather than a G×E effect predicted based 
on the literature.

Conclusion

The current review summarized literature investigating if 
environmental and polygenic factors interact in influencing 
alcohol, tobacco, and cannabis use phenotypes. There are 
important limitations to the literature, concerning overall 
study quality, failure to formulate directional hypotheses, 
inconsistent reports of statistics (effect sizes), and a great 
lack of replication studies. It is likely that some publica-
tion bias exists.

Because of these limitations, it is difficult to draw con-
clusions about the existence of G×E effects in substance 
use. Before any substantive claims can be made, it is cru-
cial that some steps are undertaken, such as using more 
sophisticated methods and direct replication attempts of 
G×E findings. Although still weak, there is some evidence 
that polygenic G×E effects are a factor in the etiology of 
substance use, with PS being the best measure of poly-
genic risk. Studies suggest that environmental factors can 
influence the effect of genetic predisposition, either by 
enlarging its (positive or negative) effects, or by reversing 
those. Additional work is needed before firm conclusions 
can be drawn about the importance of G×E in the etiology 
of substance use.

G×E research has the potential to give crucial insight in 
biopsychosocial mechanisms underlying substance use that 
might be leveraged for clinical applications. For example, 
polygenic scores (Musci et al. 2015a, b) and even single 
genetic variants in the nicotinic receptor genes (Sarginson 
et al. 2011) can predict who will respond favorably to smok-
ing interventions. In the future, well-conducted G×E stud-
ies have the potential to improve possibilities for clinical 
applications.
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