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Abstract
Bone marrow cytology plays a key role for the diagnosis and classification of hematological disease and is often the first step 
in the acute setting of unclear cytopenia. AI applications represent a powerful tool in digital image analysis and can improve 
the diagnostic workflow and accuracy. The aim of this study was to develop an algorithm for the automated detection and 
classification of hematopoietic cells in digitized bone marrow aspirate smears for potential implementation in the clinical 
laboratory. The AIFORIA create platform (Aiforia Technologies, Plc, Helsinki, Finland) was used to develop a convolutional 
neural network algorithm based on nine cell classes. Digitized bone marrow aspirate smears from normal hospital controls 
were used for AI training. External validation was performed on separate data sets. Automated cell classification was assessed 
in whole-slide images (WSI) and regions of interest (ROI). A total of 1950 single-cell annotations were applied for AI train-
ing with a final total class error of 0.15% with 99.9% precision and sensitivity (FI-score 99.2%). External validation showed 
an overall precision and sensitivity of 96% and 97% and a F1-score of 96%. Automated cell classification correlated highly 
across ROI with variable correlation to WSI. The average execution time for classifying 500 hematopoietic cells was < 1 s 
and ≤ 260 s for WSI. A cloud-based, deep-learning algorithm for automated detection and classification of hematopoietic 
cells in bone marrow aspirate smears is a very useful, reliable, and rapid screening tool in combination with cytomorphology.

Keywords Deep-learning algorithm · Hematopoietic cells · Bone marrow

Introduction

The cytomorphological assessment of bone marrow aspirate 
(BMA) smears and/or imprints plays a central role in the 
diagnostic work-up of hematologic disease. It is often the 
first diagnostic test in the acute clinical setting of unclear 
cytopenia and suspicious leukemia and a highly effective 
screening tool if used in conjunction with flow cytomet-
ric immunophenotyping [1]. Apart from the assessment of 
cytomorphological details, BMA smears are used for dif-
ferential cell counts (DCC) which can provide important 
diagnostic clues pointing to a broad range of benign and 
neoplastic hematologic disorders. The DCC is particularly 
critical in a subset of myeloid neoplasms where the defining 
diagnostic criteria specify percentage cutoffs for myeloid 
or other progenitor cells, e.g., in acute myeloid leukemia 
(AML) subtypes lacking recurrent genetic abnormalities, in 
myelodysplastic syndromes (MDS) and chronic myelomono-
cytic leukemia subtypes, or for establishing blast phase of 
myeloproliferative neoplasms [2, 3].
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Previously published guidelines suggest that the DCC 
should be based on at least 500 cell count and comprise 
blast cells and the different maturation stages within granu-
lopoiesis, promonocytes, monocytes, mast cells, lympho-
cytes, plasma cells, and erythroblasts [4]. However, the 
precise percentage of all cell types and maturation stages is 
not essential to the diagnosis in every case, such as samples 
taken as part of a routine BM staging examination.

The manual assessment of BMA smears is still consid-
ered the gold standard for DCC, but it is labor-intensive, 
time-consuming, and subject to inter- and intraobserver 
variability, emerging from the diversity and delicate intra-
lineage difference within the maturation process of hemat-
opoietic cells [5]. Digital pathology imaging coupled with 
deep-learning algorithms is a highly promising technology 
for this purpose. However, the automated detection and clas-
sification of hematopoietic cells in BMA smears are very 
challenging due to the high complexity of different cell mor-
phologies, clustering and overlapping of cells, particularly in 
highly cellular smears, uneven distribution, and the presence 
of cellular artefacts.

Herein, we report our experience with the development 
of a deep-learning algorithm to detect and classify hemat-
opoietic cells in BMA smears based on nine cell classes 
for use in the routine staging and screening examination. A 
brief section on recent studies on automated cell detection 
and classification applied to digital bone marrow images is 
included.

Materials and methods

Bone marrow aspirate smears were scanned (Pannoramic 
1000, 3DHISTECH Ltd, Budapest, Hungary) and uploaded 
to the AIFORIA create platform (Aiforia Technologies, Plc, 
Helsinki, Finland) for the development of a convolutional 
neural network (CNN)-based algorithm for the detection 
and classification of hematopoietic cells. External human 
validation was independently performed by three experts in 
bone marrow cytology on a separate set of digitized bone 
marrow images.

Bone marrow aspirate smears

May-Grünwald Giemsa (MGG)-stained BMA smears were 
used for the training (n = 30), testing (n = 20), and validation 
(n = 30) of the AI model without duplication across datasets. 
The samples were collected from the archives of the Depart-
ment of Clinical Pathology and Cancer Diagnostics, Karolin-
ska University Laboratory (KUL), Solna. All samples were 
from untreated, non-cytopenic patients (n = 80) with normal 
or reactive marrow findings and taken as part of a routine 
bone marrow (BM) staging examination. The BMA smears 

were uniformly prepared using the same staining protocol 
according to the manufacturers’ guidelines (Sigma-Aldrich), 
and all included cellular marrow particles with the presence 
of megakaryocytes. The slides were digitized using a Pan-
noramic 1000 whole-slide scanner (3DHISTECH Ltd, Buda-
pest, Hungary) with an output resolution of 63.06 × (using 
40 × objective with a 1.6 × camera adapter magnification) 
and an image resolution of 0.158309 μm in X and 0.158834 
in Y plane.

Cell classification and annotation

The hematopoietic cells in BMA smears were assigned to 
nine major cell classes: blast, promyelocyte, myelocyte/met-
amyelocyte, proerythroblast, erythroblast (basophilic, poly- 
and orthochromatic), mature granulocytes (segmented/band 
neutrophil, eosinophil, basophil), lymphocyte, monocyte, 
and plasma cell. Mature granulocytes were combined into 
one class, with only a few eosinophils and very few baso-
phils present in our data set. The various maturation stages 
within erythropoiesis were divided into two classes—the 
more immature proerythroblasts and normoblasts. The BM 
DCC did not include mast cells, megakaryocytes, smudge 
cells, and mesenchymal stromal cells. Representative exam-
ples of the cell classes used for training of the AI model are 
illustrated in Fig. 1.

Regions of interest (ROI) for annotation were first 
selected and drawn manually where cells were mostly evenly 
distributed, cytologically intact, non-overlapping, and best 
representative for the spectrum of hematopoiesis. Individual 
cells were annotated based on well-established cytomorpho-
logical criteria for each cell type [6] using a consistent cell 
size for each class with the whole target (nucleus and sur-
rounding cytoplasm) centered (Fig. 1, Table 1). Advanced 
parameters were used to allow for “object” overlap and 
object size differences. All annotations were reviewed for 
appropriateness of classification (“ground truth”) by two 
experienced hematopathologists. Cells of uncertain class, 
smudge cells, naked nuclei, and thrombocyte aggregates 
were not annotated but included in the training regions.

Training and verification

Cell annotations were performed in a stepwise process fol-
lowing the recommended workflow (AIFORIA), starting 
with a smaller number of annotations for each class, fol-
lowed by repeated training to guide new annotations until the 
desired AI model performance was obtained. The selected 
layer complexity for the model was set to “extra complex.” 
Advanced training parameters included, for example, the 
setting of maximum object overlap and minimal object size 
difference, in our model set at 0.5 and 0.25, respectively 
(Suppl. Table 1). Maximum object overlap prevents the 
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neural network from finding two overlapping objects and, 
for example, detecting one object twice. Image augmentation 
was used to add variability to the training data during the 
training, i.e., more training data was created from the actual 
annotations. These parameters included the scale (min/max 
variation of training regions), luminance (min/max variation 
in the brightness within the same and in different images), 
contrast (different colors in the target regions in different 

images), all three set at min/max of − 10 to 10), maximum 
image shear (set at 10), maximum white balance change (set 
at 5), white noise (noise and artefacts in the background of 
the image (set at 2)), and rotation angle (min/max rotation 
angle used in augmentation, set at − 180 to 180). A total of 
3056 (out of 7000) iterations were executed on all training 
regions (1 h 46 min 36 s) with an overall training loss of 
0.2258.

Fig. 1  Training annotations based on nine cell classes in bone mar-
row aspirate smears. Single-cell annotations for nine cell classes: 
blast, red ring; promyelocyte, purple ring; myelocyte/metamyelo-
cyte, turquoise ring; granulocyte (neutrophil, eosinophil, basophil), 
brown ring; lymphocyte, green ring; monocyte, yellow ring; plasma 

cell, blue ring; normoblast (orthochromatic, polychromatic, baso-
philic), orange ring; pro-normoblast, bourgogne red ring. The train-
ing regions are indicated by a black line, and all cells within these 
areas were annotated, except smudge cells, thrombocyte aggregates, 
and artefacts

Table 1  Cell classes in the 
AI model and number of 
annotations used for training

Cell classes (n = 9) Cell size (µm) used for 
annotation

Cell size, range 
(µm)

No of annotated cells/
class (% of total, 
n = 1950)

Blast 16 14–18 109 (5.6%)
Promyelocyte 18 12–20 202 (10.4%)
Myelocyte/metamyelocyte 16 10–18 294 (15%)
Granulocyte (neutrophil, basophil, 

eosinophil)
14 12–15 436 (22.4%)

Lymphocyte 10 8–10 191 (9.8%)
Monocyte 16 15–22 147 (7.5%)
Plasmacell 16 14–20 124 (6.4%)
Pronormoblast 18 12–20 142 (7.2%)
Normoblast (basophilic, polychro-

matic, orthochromatic)
12 12–17

8–12
305 (15.6%)
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Verification of the AI model was performed on the train-
ing regions and on selected areas outside the training regions 
to assess the generalizability of classification. Verification 
results were sorted by error rate (high-to-low) and used for 
reviewing the results. Annotations were improved by iden-
tifying misclassified cells and by adding annotations that 
were missed. Smudge cells, naked nuclei, cells in mitosis, 
thrombocyte aggregates, and cells that were not clearly iden-
tifiable were not annotated but intentionally included in the 
training region. The training was repeated several times with 
adjustment of the training parameters, and the AI model was 
further refined by alteration of the “gain values” for certain 
cell classes, if the model did not recognize enough or “too 
many” of that class. A total of 1950 single-cell annotations 
were performed for the training (Table 1). The final total 
class error for all training regions was 0.15% with 99.9% 
precision and sensitivity (FI-score 99.2%). Visual inspec-
tion of the classification results on a separate slide set that 
was not used for training indicated good performance of the 
AI model.

External validation of the AI model

The AI model was validated against three external human 
validators, all three experienced in bone marrow cytology, 
using a separate set of digitized whole-slide images (WSI) 
from normal hospital controls (n = 20). The validation 
regions were areas in which cells were well dispersed with 
good cytological details and low number of smudge (lysed) 
cells. The external validators used their own computer 
screens and had access to the AIFORIA Create platform. An 
average of 2048 cell annotations in 515 validation regions 
were independently performed on two separate occasions. 
Annotations made by the human expert were considered 
the “gold standard,” and classification results of the three 
external validators were averaged for comparison to AI (“AI 
vs human”) and also compared to each other (“human vs 
human”) with respect to the “ground truth” generated by the 
training and testing of the AI algorithm.

WSI analysis vs automated classification in regions 
of interest

In clinical routine, areas of well-spread marrow cells with 
good cytological details and paucity of artefacts are selected 
for the cytomorphological assessment of BMA smears and 
for performing DCC [4]. However, representative areas are 
not always found in the cellular trails of the BMA smear 
behind particles. For example, groups of blast cells can 
sometimes be detected in the tail or at the edges of the micro-
scopic slides. Therefore, deep-learning models should either 
be applied on WSI or be trained for selecting ROI that are 
both informative and reflect the spectrum of hematopoietic 

cells present. Alternatively, a semi-automated approach 
could be used with the selection of ROI by human experts 
following WSI analysis for visual control of the output data 
in non-hemodiluted areas that show good cytological details. 
To test the appropriateness of the latter approach, 16 normal 
BMA smears were selected for WSI analysis and compared 
to the classification results in one larger ROI of equal size 
for all 16 samples vs ten smaller, randomly selected ROI/
slide. The reason for also including a smaller ROI was that it 
better reflects the routine clinical approach when performing 
manual DDCs at high power magnification in different areas 
of a bone marrow aspirate smear.

Statistical analyses

The classification results of the external validation were 
exported from the Aiforia Create Platform for statistical 
analysis. Statistical analyses were performed using R Sta-
tistical Software version 4.3.3.

False positive (FP) refers to objects that were not anno-
tated (external validator), but detected by AI, and false neg-
ative (FN) refers to objects that were annotated (external 
validator) but not detected by the AI model. The false posi-
tive error was calculated by FP/(FP + TN), the false negative 
error by FN/(TP + FN), and the total class error by (FP + FN) 
/ P where P is the sum of (TP + TN + FP + FN). Precision 
is the percentage of the analysis findings that overlap with 
annotated objects, calculated by TP/(TP + FP). Sensitivity 
is the percentage of annotated objects that were found by 
the analysis, calculated by TP/(TP + FN). The results of the 
external validation (Table 2) were calculated using a two-
step averaging process by first calculating the average FP %, 
FN %, total error %, precision %, sensitivity %, and F1-score 
for the nine cell classes per validator. The calculated values 
were then averaged across the three validators and compared 
to AI. The reported F1-score is the average of the F1-score 
from the three validators.

The Shapiro–Wilk test was used to assess whether the 
data sets from whole slide image (WSI) analysis and regions 
of interest (ROI) were normally distributed. The Spearman 
rank correlation test was used to assess the correlation 
between the classification results from WSI analysis and 
ROI.

Results

External human validation against the AI model

The results of the external validation by three human experts 
against the AI model and comparison between the exter-
nal validators are summarized in Table 2; examples of 
classification results are illustrated in Fig. 2. The overall 



Journal of Hematopathology           (2025) 18:12  Page 5 of 12    12 

precision and sensitivity for “AI vs human” were 96% and 
97%, respectively (F1-score 96%), and 97.4% for both when 
comparing “human vs human” (F1-score 96.67%). The error 
percentages are mean values obtained from the three com-
binations coming from the three external validators (human 
vs human) and the three individual comparisons of the AI 
model against human experts (AI vs human). The mean total 
object error for “AI vs human” and “human vs human” was 
6.46% and 5%, respectively, and lowest for plasma cells 
(1.05% vs 0.34%) and pronormoblasts (2.38% vs 1%) for 
both comparisons.

The difference of false positive and false negative errors 
(“AI vs human” and “human vs human”) was small for 
the various classes, except for blasts, promyelocytes, and 
pronormoblasts with higher FP (%) for “AI vs human.” 
The error % for blasts refers to results generated below the 
critical 5% blast threshold, since the samples were from 
normal hospital controls without blast increase. A closer 
visual control of “misclassifications” illustrates difficulties 
in distinguishing blasts and pronormoblasts, but also pro-
myelocytes and myelocytes for both comparisons (Fig. 2). 

This may, at least in part, be explained by differences in 
size and cell morphologies within cell classes in the same 
sample but also across samples used for training. Com-
parison to cells belonging to the same cell class outside 
validation regions provided guidance for correct classifica-
tion by the human validator.

The false positive rate of classifying hematopoietic cells 
was highest for “myelocytes/metamyelocytes,” reflecting 
subtle morphological changes within different maturation 
stages in granulopoiesis. On closer visual inspection of 
cell classes that were misclassified by AI but correctly 
classified by all three validators, it became evident that the 
algorithm had difficulties in distinguishing between mono-
cytes and metamyelocytes or band neutrophils. Specific 
classification errors and disagreement for both compari-
sons included, as stated above, different maturation stages 
within the myeloid and erythroid series (band neutrophil 
vs metamyelocyte; myelocyte vs promyelocyte; blast vs 
pronormoblast).

Table 2  External validation of the AI model (“AI vs human”) and comparison of classification results between experts

False positive (FP) error (%): objects that were not annotated (external validation), but detected by AI, calculated by FP/(FP + TN), where TN 
refers to true negatives
False negative (FN) error (%): objects that were annotated (external validation), but not detected by AI, calculated by FN/(TP + FN), where TP 
refers to true positives
Total class error (%): (FP + FN) / P, where P is the sum of (TP + TN + FP + FN)
Precision: percentage of the analysis findings that overlap with annotated objects, calculated by TP/(TP + FP)
Sensitivity: percentage of annotated objects that were found by the analysis, calculated by TP/(TP + FN)
F1-score (%): harmonic mean of precision and sensitivity

Method Cell class False posi-
tive error 
(%)

False nega-
tive error 
(%)

Total error (%) Precision (%) Sensitivity (%) F1-score (%)

AI vs human Blast 12.94 0.76 5.79 94.97 99.24 95.90
Human vs human 0.93 0.46 0.93 99.54 99.54 99.38
AI vs human Promyelocyte 10.02 2.48 6.87 95.44 97.52 95.29
Human vs human 5.72 2.96 5.66 97.03 97.03 96.16
AI vs human Myelocyte/metamyelocyte 16.18 9.45 17.04 91.05 90.55 88.56
Human vs human 16.30 8.74 16.51 91.26 91.26 88.93
AI vs human Granulocyte 6.16 1.87 5.55 96.13 98.13 96.62
Human vs human 4.98 2.86 5.62 97.14 97.14 96.52
AI vs human Lymphocyte 5.75 4.34 7.04 97.30 95.66 95.14
Human vs human 5.84 2.76 5.51 97.25 97.25 96.32
AI vs human Plasmacell 1.05 0.35 1.05 99.30 99.65 99.35
Human vs human 0.34 0.17 0.34 99.83 99.83 99.77
AI vs human Monocyte 7.01 3.20 6.66 96.37 96.80 95.50
Human vs human 4.42 2.15 4.31 97.85 97.85 97.12
AI vs human Pronormoblast 4.18 0.29 2.38 97.91 99.71 98.42
Human vs human 0.94 0.5 1.00 99.50 99.50 99.35
AI vs human Normoblast 3.03 4.23 5.79 98.33 95.77 96.26
Human vs human 5.04 2.76 5.34 97.24 97.24 96.52
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WSI analysis vs automated classification in ROI

The detailed detection and classification results for WSI 
analysis and ROI are provided in Suppl. Table 2. Figure 3 
illustrates the approach showing one larger ROI and ten 
smaller ROI that were separately analyzed and compared 
to classification results of WSI analysis. The three datasets 
(WSI, larger ROI, ten smaller ROI/slide) showed a non-nor-
mal distribution (Shapiro–Wilk test). The Spearman rank 
correlation test was used to assess the correlation for the 
different cell classes in WSI analysis vs one large ROI vs ten 
smaller, randomly selected ROI. The datasets were grouped 
by cell classes and the test results were visualized using a 
heatmap (Fig. 4). WSI analysis and larger ROI correlated 
highly for several classes, including blasts. The presence 
of outliers in the dataset from WSI, particularly for normo-
blasts, indicates skewness. The visual review of the classi-
fication results for these outliers in the corresponding bone 

marrow smears shows larger areas with poorly preserved 
cellular details that do not allow reliable cell classification 
and hemodiluted areas. All 16 samples had higher lympho-
cyte counts in WSI compared to ROI.

All ROI were manually selected in areas of the bone mar-
row aspirate smear that showed adequate cellularity and 
well-preserved cytomorphological details with a paucity of 
artefacts. The classification results correlated highly for all 
cell classes when comparing “ROI large” with the sum of ten 
smaller ROI of the same slide, except for plasmacells that 
were present in very low numbers in the whole dataset and 
often not present in the smaller regions.

The total number of detected cells (counts) in WSI 
and larger ROI was ranging between 27,893 and 677,698 
counts/slide and between 6864 and 75,044 counts/slide, 
respectively. The total counts in ten smaller ROI were rang-
ing between 270 and 1303 cells/slide. The execution time 
was ≤ 1 s for detecting and classifying approximately 500 

Fig. 2  Single-cell annotations in 
validation regions performed by 
three human experts and com-
parison to the AI model. Exter-
nal human validation of the AI 
model. The different plots show 
the annotation results generated 
by the AI model (plots a and e, 
shaded cell) and the three exter-
nal human validators (plots b–d, 
f–h, ring annotations). The dif-
ferent cell classes are annotated 
by colored rings (see Fig. 1 
for detailed explanation) and 
discrepant results are depicted 
by arrows. Black arrow: anno-
tated as promyelocyte by AI 
and two examiners (c, d) and 
as myelocyte by one examiner 
(b). Red arrow: AI and two 
examiners annotated this cell as 
myelocyte and as promyelocyte 
by the third examinator (c). Dot-
ted black arrow: annotated as 
myelocyte by AI and B and as 
monocyte (c) and granulocyte 
(d) by the two other examin-
ers. The second image (plots 
e–h) illustrates differences in 
the classification of blast cells 
(red ring) vs pronormoblasts 
(bourgogne red ring) and in the 
classification of promyelocytes 
(purple ring/shadowed cell) 
vs myelocyte/metamyelocyte 
(turquoise ring)

a b

c d
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cells and between 129 and 260 s for WSI, dependent on the 
total cell count per slide.

Previous studies on cell detection and classification 
in bone marrow aspirate smears

During recent years, a few studies have been devoted to 
the automatization of BMA DCCs in digital images. Choi 
et al. published promising results using a dual-stage con-
volutional network (CNN) for cell classification in BMA 
smears based on ten classes of the myeloid and erythroid 

maturation series and achieved a precision of 97.13% and 
a F-1 score of 97.1% [7]. The data set from Choi et al. was 
used for external validation in a recent study by Matek 
et al. [8]. In this single-center study, DNN was applied 
to > 170,000 expert-annotated microscopic images from 
945 adult patients diagnosed with a large variety of hema-
tological malignancies and reactive conditions, reflecting 
the sample entry of a single large laboratory specialized 
in hematology. ROI were manually selected by human 
experts for morphological analysis with cell annotation 
to 21 classes. The model achieved high accuracy and the 

e f

g h

Fig. 2  (continued)
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a

b

c

Fig. 3  Automated detection and classification of hematopoietic cells 
in whole-slide images and regions of interest. a Example of WSI 
analysis with the results shown in the box (upper left corner); classi-
fication results were compared to one larger ROI (square) and several 

smaller ROI (circle). b and c WSI analysis with (“masked cells”) and 
without the classification results visually shown for one area of the 
slide at higher magnification; the total number of detected objects/cell 
class is shown in the box
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Fig. 4  Spearman’s rank correlation heatmap and Pairwise Scatter-
plot Matrix for WSI analysis and ROI across nine cell classes. The 
heatmap visualizes Spearman’s rank correlation coefficients (ρ) for 
the nine cell classes in WSI compared to one larger ROI and ten 
smaller ROI. The color intensity reflects the strength of the correla-
tion, with dark red indicating a strong positive correlation. The scat-
terplot matrix illustrates the correlation for the cell detection counts 

(%) in WSI, large ROI, and smaller ROI for nine cell classes. Each 
subplot represents a pairwise comparison with individual regression 
trend lines indicating correlation patterns. Different cell classes are 
color-coded to facilitate comparison. The diagonal plots display ker-
nel density estimates (KDE) to illustrate the distribution of each vari-
able within the dataset
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external validation indicated that the method was gener-
alizable to data obtained in other settings.

The technical approach and workflow used in our study 
were similar to the one described by Chandradevan et al. 
(2020) who developed a CNN-based model for automated 
DCC of non-neoplastic BMA smears based on 11 cell 
classes [9]. The samples were from one single center, 
scanned, and uploaded to a digital slide archive server for 
annotation in manually selected ROI. The average execu-
tion time for cell detection and classification was less than 
3 min for ROI containing 500 cells.

Fu et  al. developed the automatic CNN-based sys-
tem Morphogo to classify and analyze nucleated cells in 
BMA smears using > 3000 archived BMA smears from 
patients with reactive and neoplastic conditions [10]. In 
their study, nucleated cells were assigned to 12 categories, 
including the different myeloid maturation stages and one 
erythroid class, with a reported classification accuracy of 
above 85.7%. The automated and manual classification 
results correlated highly with respect to granulocytes, 
erythroid precursors, and lymphocytes (r ≥ 0.762), but 
showed low or no correlation for monocytes (r < 0.459) 
and blasts.

A fully automatic hierarchical deep-learning frame-
work for BMA DCC of WSI based on 16 cell classes was 
recently described by Wang et al. [11]. The reported accu-
racy was 0.989 and the computational time was 44 s for a 
WSI. The model differs from previous studies by its fully 
automatic approach on WSI without human intervention 
by manually selected ROI. As reported in the other studies, 
monocytes presented a challenge in the recognition task 
due to overlapping features with other cell types.

A newly published multicenter study presents a novel 
computational approach with an integrated AI decision 
support system (Scopio Labs X100 full Field BMA) that 
operates by a cloud-based application allowing a fully 
remote BM analysis and reporting without the requirement 
of specific software installation [12]. A comparative analy-
sis based on 795 BMA samples, stained with different, 
site-specific protocols from patients with various diagno-
ses, was performed. The multi-center agreement between 
the test (AI model) and reference method (manual) for the 
BMA assessment was high, with 93.58% agreement for 
specimen quality and 84.03% for cell counts.

Another recent study proposed a system based on 
a three-dimensional (3D) printed device that couples a 
smartphone to a conventional optical microscope, allowing 
the acquisition of microscopic images [13]. The acquired 
images were transferred to a web-based telemedicine plat-
form for automated cell classification. The proposed sys-
tem could, in theory, be implemented at any workplace 
without incorporating complex medical electronic devices 
into the clinical workflow.

Most previous studies followed a single-center approach 
with BMA smears included for training prepared in the same 
laboratory and digitized using the same scanning equip-
ment. Within that setting, the algorithms described showed 
encouraging performance with high classification accuracy. 
However, these studies also reflect common difficulties for 
developing such models due to the complexity of BM cytol-
ogy and high intra-class differences in individual samples 
resulting from the continuous maturation process. One study 
performed external validation by using datasets from another 
center which indicated that their method was generalizable 
to data obtained in other settings [8].

Discussion

Herein, we present a deep-learning algorithm for the detec-
tion and classification of hematopoietic cells in digitized BM 
images from normal hospital controls. Given the complexity 
of bone marrow cytology and the difficulties in develop-
ing reliable qualitative analytic tools on one hand and the 
widespread use of digital images in clinical pathology on 
the other hand, we attempted to develop a simple and quick 
AI model for use in the routine screening examination of 
bone marrow aspirates based on fewer (nine) cell classes as 
compared to previous studies. This approach is supported 
by the lack of clinically meaningful highly complex DCC in 
the majority of cases that enter the hematopathology labo-
ratory. In the workup of unclear cytopenia and a suspected 
myeloid neoplasm, a full 500-cell DCC on the bone mar-
row aspirate smear, as recommended by the WHO and the 
International Council for Standardization in Hematology 
(ICSH), is usually warranted [4, 14]. In Dacie and Lewis 
Practical Hematology, it is stated that a 200- to 500-cell dif-
ferential using the categories erythroid, myeloid, lymphoid, 
and plasma cells is generally adequate provided that a sys-
tematic scheme for examining the morphology is used [15]. 
One study suggested that a 300-cell DCC may be sufficient 
for most cases, even for evaluation of myeloid and plasma 
cell neoplasms [16].

We developed a reliable AI algorithm with high precision 
and accuracy by artificially generating and expanding the 
ground truth using AIFORIAS hyperparameters, yielding 
similar outputs as described in previous studies that were 
based on much higher numbers of images and annotations. 
The accuracy of the model was further improved by using 
the “human-in-the-loop” (HITL) approach in the review pro-
cess of the AI model’s performance. Mori et al. 2020 devel-
oped an AI system for the prediction of dysplasia in BMA 
smears from patients with myelodysplastic syndrome (MDS) 
and used the HITL strategy to correct misclassifications 
by both the AI system and human examiners [17]. In the 
routine clinical setting, the “human-in-the-loop” principle 
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may offer advantages where both morphologists and deep-
learning algorithms fall short, e.g., by using rapid automatic 
cell detection and visual control of the classification results 
by the human expert with the integration of the qualitative 
morphological assessment and clinical data [18].

Importantly, the automated approach can never replace 
the cytomorphological assessment and a thorough review of 
the bone marrow aspirate smear in the clinical context, and 
correlation with other morphologic and ancillary data is still 
a necessary and standard approach taken by hematopathol-
ogists. In this setting, the authors favor a semi-automatic 
approach based on the manual selection of representative, 
preferably larger ROI of good quality for visual control and 
comparison to the classification results in WSI. This is sup-
ported by our data with a high correlation for classification 
results when comparing larger with several smaller ROI in 
well-preserved areas of the BMA smear.

In this study, we only included a limited number of non-
neoplastic BMA smears from adult patients in the training 
and the full spectrum of reactive conditions was certainly not 
represented. Furthermore, we employed a relatively small 
ROI in the training and validation sets, biased towards bet-
ter cytologic preservation, which is a limitation, but which 
also reflects the approach used in clinical routine. Another 
important aspect is the assessment of blast percentage with 
respect to critical thresholds according to current classifi-
cations of myeloid neoplasms (WHO/ICC) using AI tech-
niques. It is well-known that blast enumeration is subject 
to sampling variations/error and subjective evaluation, and 
a single gold standard for blast enumeration does not exist. 
The samples used in this study were from normal hospi-
tal controls (all had < 5% total marrow blasts) with a rela-
tively high false positive rate for AI below the critical 5% 
threshold, indicating difficulties in distinguishing blasts and 
pronormoblasts, while the false negative rate was very low. 
This may be due to variations in cell morphologies and blast 
size within samples, but also across different samples that 
were used for training of the AI model. Comparison to cell 
morphologies outside validation regions provided guidance 
for correct classification made by the three human experts. 
Therefore, larger training regions could improve AI perfor-
mance for the correct classification of blast cells. We are 
planning to perform additional studies using BMA smears 
and bone marrow biopsies in parallel, including neoplastic 
samples with various blast percentages, combined with other 
sensitive techniques (e.g., flow cytometry).

Digital imaging technology coupled with deep-learning 
algorithms represents a rapidly emerging technology for 
automating DCCs. Aside from reducing labor costs, such 
approaches could potentially improve accuracy, reproduci-
bility, and objectivity and provide standardization for DDCs. 
Although the implementation of AI algorithms in daily clini-
cal practice is imminent, the applicability is still hampered 

by domain divergence (different scanners, stainers, antibod-
ies). Large-scale multicenter studies on routine hospital sam-
ples including a range of scanner hardware to increase the 
performance and robustness of future algorithms are needed 
for validation and potential implementation in the clinical 
laboratory. Various browser-based solution systems, as pre-
sented in a very recent study [12], may represent excellent 
evaluation tools for fully remote BMA analysis and report-
ing and for use as external quality assessment and train-
ing programs. As a next step, we are aiming at testing the 
proposed algorithm in a wider range of reactive conditions 
and neoplastic hematological diseases engaging the bone 
marrow in both children and adults. The integration of data 
from several examinations (e.g., BM biopsy, flow cytometry, 
genetics) to construct a multimodal deep-learning network 
and to improve the integrity of the procedure will be impor-
tant tasks in the future.
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