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Soil moisture (SM) plays a significant role in determining the probability of flooding in a given
area. Currently, SM is most commonly modeled using physically-based numerical
hydrologic models. Modeling the natural processes that take place in the soil is difficult
and requires assumptions. Besides, hydrologic model runtime is highly impacted by the
extent and resolution of the study domain. In this study, we propose a data-driven
modeling approach using Deep Learning (DL) models. There are different types of DL
algorithms that serve different purposes. For example, the Convolutional Neural Network
(CNN) algorithm is well suited for capturing and learning spatial patterns, while the Long
Short-Term Memory (LSTM) algorithm is designed to utilize time-series information and to
learn from past observations. A DL algorithm that combines the capabilities of CNN and
LSTM called ConvLSTM was recently developed. In this study, we investigate the
applicability of the ConvLSTM algorithm in predicting SM in a study area located in
south Louisiana in the United States. This study reveals that ConvLSTM significantly
outperformed CNN in predicting SM. We tested the performance of ConvLSTM based
models by using a combination of different sets of predictors and different LSTM sequence
lengths. The study results show that ConvLSTMmodels can predict SM with a mean areal
Root Mean Squared Error (RMSE) of 2.5% andmean areal correlation coefficients of 0.9 for
our study area. ConvLSTM models can also provide predictions between discrete SM
observations, making them potentially useful for applications such as filling observational
gaps between satellite overpasses.
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INTRODUCTION

In this study, we explore the performance of spatial Deep Learning (DL) neural network models in
the field of hydrologic prediction. Namely, we focus on modeling Soil Moisture (SM) as a key
hydrologic variable. SM plays a fundamental role in the water and energy exchange between the soil
and atmosphere. It has a significant effect on many hydrologic processes and applications such as
drought and flood prediction, water availability for evapotranspiration by plants, and irrigation
planning (Koster 2004; Narasimhan and Srinivasan 2005; Norbiato et al., 2008; Fang et al., 2017).
Hydrologic variables such as SM are known to exhibit significant spatiotemporal variability due to
their inter-dependence on past and current conditions of related environmental and
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hydrometeorological variables (e.g., incoming long and
shortwave radiation, temperature, available surface, and
subsurface runoff, and evapotranspiration). Currently, these
processes are commonly simulated using sets of physically or
statistically based models that require tradeoffs between accuracy,
resolution, and computational efficiency. These tradeoffs are
inevitable given the current state of knowledge (i.e., the
current understanding of how these physical processes take
place) and technology (i.e., the time and resources needed to
simulate these processes). On the other hand, data-driven DL
models have the potential to aid, or in some cases be an
alternative to, hydrologic models. DL models do not require
complex statistical or physically-based equations targeting a
single variable, but rather perform their predictions solely
based on learning from a set of predictors that are related to
the variable of interest. Moreover, once the model learning
process is complete and a DL model has been developed, it
can be easily stored and used to process future data in a
significantly short amount of time. Compared to some
physically-based models, deep learning models do not require
specific operating systems to operate in. DL models can easily
integrate more data for additional learning and improving their
quality in the future as more data are available.

Two of the most relevant DL neural network algorithms for
hydrologic prediction are Convolutional Neural Networks (CNN;
LeCun et al., 2015) and Long Short-Term Memory networks
(LSTM; Hochreiter and Schmidhuber, 1997). CNNs are powerful
in identifying spatial patterns and strongly respond to spatial
correlations that are dominantly present in hydrologic variables.
On the other hand, LSTM is a class of Recurrent Neural Networks
(RNN) that utilize feedback connections; this allows the LSTM
algorithm to not only process single data points, but process an
entire sequence of data. Therefore, LSTM is well suited for time
series applications. These powerful DL algorithms started
drawing the attention of the hydrologic community in recent
years. Studies such as Hu et al. (2018) and Kratzert et al. (2018)
assessed the performance of LSTM based DL models in
forecasting daily and hourly runoff, respectively. Fang et al.
(2017) used LSTM to predict observations of the Soil Moisture
Active Passive (SMAP) V3 satellite using atmospheric forcings in
combination with simulated SM from the Noah hydrologic
model. The output from their LSTM model predicted SMAP
observations with low Root Mean Squared Error (RMSE) and
high correlation (R). Pan et al. (2019) used CNN-based DL
models to improve rainfall estimates from weather models.
Their CNN models outperformed statistical downscaling
approaches such as linear regression, nearest neighbor, and
random forest.

Despite the suitability of CNN and LSTM in spatial and
temporal applications respectively, their special capabilities
have only recently been combined. Xingjian et al. (2015)
developed a new algorithm that combines the capabilities of
CNN and LSTM, called Convolutional LSTM (referred to as
ConvLSTM for the remainder of this article). Their study applied
the ConvLSTM algorithm in rainfall nowcasting and was able to
effectively predict rainfall intensities and reproduce the
spatiotemporal properties of short-term rainfall fields.

Moreover, ConvLSTM outperformed other models such as the
Fully Connected LSTM (FC-LSTM; Srivastava et al., 2015) and
the state-of-the-art precipitation nowcasting algorithm (ROVER;
Woo andWong, 2017). To the best of our knowledge, no research
has been done in the SM prediction or other surface hydrology
variables using ConvLSTM at the time of writing this article. In
this study, we will perform analyses that are related to Fang et al.
(2017), in the sense that we will predict SM values using
hydrometeorological forcings. Our main sources of dynamic
data input (predictors) are the High-Resolution Rapid Refresh
(HRRR; Weygandt et al., 2009) and the Multi-Radar/Multi-
Sensor radar rainfall product (MRMS; Zhang et al., 2016).
Unlinke Fang et al. (2017) who used all outputs and forcings
of the North American Land Data Assimilation System phase II
(NLDAS-2; Xia et al., 2015) as predictors to their LSTM models,
we selected a relatively smaller set of variables from HRRR in
addition to MRMS rainfall as predictors to our models. This is
done to test the effect of each of the predictors on the
performance of the models. The reference SM product in this
article is the output from the National Water Model (NWM)
Noah-MP Land Surface Model (LSM) (Niu et al., 2011). It is
important to note that the models can be trained to predict other
sources of gridded SM data. The reason behind this choice is the
availability of a long record of simulation outputs that are
available on the National Water Center’s (NWC) Amazon
Web Service (AWS) portal (https://registry.opendata.aws/nwm-
archive/). The record spans from the year 1993 through the end of
the year 2017 at the time of writing this article. We performed
additional analyses to evaluate the effect of adding more
predictors and the prolongation of the retrospective sequence
of the LSTM component on the performance of the models. More
importantly, we compared the performance of the ConvLSTM to
that of CNN to assess the added benefit of incorporating the
temporal aspect of the ConvLSTM models. As will be described
later in this article, the data used to derive the NWM is different
(reanalysis forcing data) from those used in the training process
of DL models in this study. This adds to the credibility of the
analysis by showing that the DL models can be generalized to
predict SM from other sources.

Moreover, the analysis presented in this article included
varying the number of predictors, and the length of the input
sequences, to provide specific insight into the behavior of the
ConvLSTM models for SM prediction. It is consequential to note
that the number of possible combinations of predictors that can
be used in DL models are overwhelmingly large and can come
from various sources. In this study, we do not specifically focus on
optimizing the combination of predictors, neither do we focus on
finding the optimal length of the time series of past observations
for the ConvLSTM models. We rather perform a pilot study to
investigate the overall performance of ConvLSTM in hydrologic
modeling and how it is affected by a limited set of predictors and
sequence lengths. Another interesting aspect of this study is the
ability of the ConvLSTM models to perform predictions in-
between the discrete observations of a given SM product. This
can be useful in the case of attempting to predict estimates of a
product such as SMAP SM which is limited to the overpasses of
the satellite (up to a few days). This is possible because the
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ConvLSTMmodels use independent predictors, thus, predictions
can be made with the same temporal frequency of these
predictors (hourly in our case). This process will be described
in more detail later in this article.

In this study, we use open source software tools and free cloud
computing services and storage resources without the need for a
privately owned Graphical Processing Unit (GPU).

To summarize, the specific objectives of the current study are
as follows:

1. Evaluate the performance of the ConvLSTM algorithm in
predicting SM and compare its performance to the
commonly used CNN algorithm.

2. Investigate the sensitivity of the ConvLSTM based models to
the variability in predictor type and count.

3. Investigate the sensitivity of the ConvLSTM based models with
respect to the length of the time series record (LSTM
component) used in the learning and prediction process.

4. Demonstrate the model’s capability in producing predictions
with a higher temporal frequency compared to the original
frequency of the predicted variable (data gap-filling).

The remainder of this article is organized as follows. Section
Study Area and Datasets describes the study area and the datasets
used in the analysis. Section Methods describes the methods and
how the data have been processed. Section Experimental Setup
describes the experimental setup. Section Results presents the
results and discussion of the analysis. Finally, conclusions are
presented in Section Discussion.

STUDY AREA AND DATASETS

Study Area and Period
The study area is located in south Louisiana, in the United States
(Figure 1). It covers a domain that contains Lafayette parish
(county) and its surrounding. Lafayette parish is fairly developed
with a relatively dense population and has been frequently
impacted by floods resulting from extreme rainfall events
(Sharif et al., 2020). Additionally, the area lies in a very flat
region due to its proximity to the Gulf of Mexico, this allows the
water to stagnate on the ground and raise the water levels in the
stream channels for elongated periods. Naturally, SM plays an
immediate role in determining whether flooding will occur
following a strong rainfall event or not based on the available
soil’s ability to absorb more water. Lafayette parish is bordered by
large wetland areas to the east (Figure 1) and a significant portion
of it is occupied by the city of Lafayette which is mostly developed
causing low soil capacity for water storage. The Vermilion River,
which passes through the city of Lafayette, experiences complex
hydrodynamic regimes during extreme rainfall events and
frequently floods parts of the city of Lafayette and Lafayette
parish. This is due to its flat slope (e.g., backwater flow) as well as
the tidal flow patterns downstream of the river caused by the Gulf
of Mexico. The top right portion of the study area is partially
occupied by the Teche River basin which is a flood plain area that
consists mainly of wetlands and open water bodies. The total area
of the study domain is 3,575 km2 (65 km height × 55 km width).
We gridded the domain at a 1 km × 1 km resolution to match the
data inputs and outputs to the SM estimates obtained from the

FIGURE 1 | The study area is located in south Louisiana (red box in the top right). The left side of the figure depicts the different Land Use/Land Cover categories in
the study area. The city of Lafayette is the developed area (shades of red) located in Lafayette Parish (mostly developed with different capacities).
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NWM. We also used the same projection parameters of the
NWM’s LSM geogrid. The main Land Use/Land Cover
categories obtained from the National Land Cover Dataset
(NLCD; Homer et al., 2015 and Yang et al., 2018) in the study
area are Woody wetlands (19.9%), Pasture/hay (25.3%),
Cultivated Crops (32.4%), and various developed categories
with different capacities (15.8%), all shown in Figure 1. The
total population of Lafayette parish is 244,390 (https://www.
census.gov/quickfacts/lafayetteparishlouisiana) which is
mainly concentrated in the city of Lafayette. Our study
period extends from August of 2016 through the end of the
year 2017. In August of 2016, an extreme rainfall event resulted
in rainfall depths of around 20–30 inches in some parts of the
state with over 20 parishes including Lafayette parish declaring
a state of emergency. This continuous period of hourly
observations consists of 4,124 h. Combined with the number
of pixels (65 × 55), this results in a total number of 14,743,300
data points per input variable. This number will be multiplied
by up to 7 times (number of predictors) as discussed later in
the article.

The National Water Model Soil Moisture
Data
We obtained the reference SM data from the NWM archive
located and described in (https://registry.opendata.aws/nwm-
archive/). The archive contains NWM reanalysis
(retrospective) runs during 1993–2017. The NWM produces
multiple outputs from its different components (e.g., LSM, and
surface and channel routing components). The variable of
interest (SM) in this study is an output of the LSM
component of the NWM. Unlike the operational NWM runs
(https://water.noaa.gov/about/nwm) that have an hourly
frequency, the output frequency of the archived NWM
retrospective runs is 3 hourly in the case of the LSM
component. This is because the main purpose of this archive
is to provide historical context to the current NWM outputs and
intended to be used for frequency analysis and for algorithm
training applications similar to what is performed in the current
study. Volumetric soil moisture, the dimensionless ratio of water
volume (m3) to soil volume (m3) (m3 m−3) is available on a 1 km
× 1 km grid for the entire United States. We used this SM grid as a
designated geographical setup for all other variables used in this
study. Therefore, all other variables have been scaled to the NWM
1 km × 1 km grid. We subsetted (extracted) the NWM SM over
our domain and stored the hourly grids in Tagged Image File
Format (TIFF) using the Geospatial Data Abstraction Library
(GDAL; GDAL/OGR Contributors, 2020) library of the Python
programming language.

High-Resolution Rapid Refresh Data
Assimilation and Forecast Modeling System
The first dataset used as a predictor in this study’s DL models is
obtained from HRRR model outputs (Weygandt et al., 2009).
HRRR is a real-time atmospheric model operated by the National
Oceanic and Atmospheric Administration (NOAA) covering the

entire United States. The model has spatial and temporal
resolutions of 3 km a 1-h respectively. HRRR is a convective-
allowing, cloud-resolving atmospheric model that utilizes 3 km
radar data assimilation every 15 min over hourly periods. In our
study, we used HRRRv2 which was implemented at the National
Center for Environmental Prediction (NCEP) from August 2016
through July 2018. A data HRRR data archive is provided by
Blaylock et al. (2017), which was the source of HRRR data in this
study. The total number of variables that the HRRR model
produces is 132 variables. The variables used in this study are
incoming longwave and shortwave fluxes, storm surface runoff,
baseflow-groundwater runoff, and moisture availability.

The Multi-Radar/Multi-Sensor Radar
Rainfall Product
MRMS is a radar rainfall product that is gauge corrected in near
real-time with spatial and temporal resolutions of 0.01 degrees
(approximately 1 km × 1 km) and 1-h, respectively. The National
Severe Storm Laboratory (NSSL) implements this product.
MRMS has been extensively evaluated and validated for
various applications (e.g., Zhang et al., 2016; ElSaadani et al.,
2018; Sharif et al., 2020) and is available since September 2015.
The product is archived by Iowa State University’s Iowa
Environmental Mesonet (IEM) in GRIB format and is
available at (https://mesonet.agron.iastate.edu/archive/). MRMS
is an excellent source of continuous spatiotemporal rainfall
observations over the entire United States and is widely used
by the hydrologic community (Zhang et al. 2016; Sharif et al.,
2020). In this study, rainfall observations are an irreplaceable
source of information to train the DL models due to the direct
relationships between rainfall and SM (Norbiato et al., 2008; Fang
et al., 2017). Unlike some of the HRRR variables that weren’t used
to train the DL models, rainfall observations are always included
as a predictor for all of our models.

National Land Cover Dataset
Another important input that we used to train the DL models is
NLCD Land use/Land cover (LULC) dataset (Homer et al., 2015).
The dataset covers the entire United States with a 30 m × 30 m
resolution. We aggregated LULC data to 1 km × 1 km resolution
to be consistent with other model inputs. As with rainfall
observations, LULC data is crucial for the model learning
process and is used as a static predictor for all our DL models.
A breakdown of the available LULC classes over the study area is
depicted in Figure 1. We used the latest available version of
NLCD data at the time of this study (the year 2016) which is also
consistent with the study period.

METHODS

Data Representation
Although the NWM SM has a three-hourly resolution, the
temporal resolution of the predictors (i.e., HRRR and MRMS)
remains hourly. This is because based on our setup, we use this
information between SM grids (NWM output) to enhance the

Frontiers in Artificial Intelligence | www.frontiersin.org March 2021 | Volume 4 | Article 6362344

ElSaadani et al. Soil Moisture Prediction Using DL

https://www.census.gov/quickfacts/lafayetteparishlouisiana
https://www.census.gov/quickfacts/lafayetteparishlouisiana
https://registry.opendata.aws/nwm-archive/
https://registry.opendata.aws/nwm-archive/
https://water.noaa.gov/about/nwm
https://mesonet.agron.iastate.edu/archive/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


prediction using the LSTM component of the ConvLSTM neural
network. The input datasets are represented as a temporal
sequence of hourly records, and each record is viewed as a
three-dimensional grid or image (width � 55, height � 65, and
depth � the number of predictors).

Convolutional Neural Network
The best deep neural network architecture that can be used when
dealing with images (spatial data) is Convolutional Neural
Networks (CNN; LeCun et al., 2015). Hierarchically, CNNs
can learn spatial patterns in the input data very effectively. In
data sources like images, the neighboring pixels have a strong
correlation and they can contribute together to form a spatial
pattern in the data while remote pixels do not affect those
patterns. Therefore, when learning the local patterns from a
certain group of pixels in a specific area of an image, using
fully connected layers of neurons won’t be very effective. CNN
architecture typically comprises three different types of layers:
alternating convolutional and pooling layers followed by a fully
connected layer. A Convolutional layer consists of filters
(kernels). These filters slide over (convolve) with the input
image. The region with which the filter is convolved in the
input image is defined by a configurable parameter (stride).
The output of a convolutional layer is feature maps where the
number of feature maps equals the number of the applied filters.
The pooling layer performs a network down-sampling by
lowering the dimension of the convolution layer output
(feature maps). Ultimately, the fully connected layer combines
all activations from the preceding layer and generates the output
based on the objective of the neural network-based system.

ConvLSTM
Considering that we have a dataset in the form of sequences or
time series, it is reasonable to propose a system that uses a
recurrent neural network (RNN) that can capture and identify
the temporal patterns in the data. A recurrent neural network is a
type of neural network that can maintain a state between various
inputs. This state (memory) stores information about what the
network has learned from the sequential data inputs. Long short-
term memory (LSTM), a specific RNN architecture, introduced
the concept of memory cells (units) with controlling gates to help
maintain gradients while being backpropagated during network
training and retain long-term temporal dependencies between
inputs. An LSTM cell has three gates which are named the input
gate, the output gate, and the forget gate. These gates regulate the
information flow into and out of the LSTM cell by either storing
or forgetting the previous state and passing or discarding the
current state.

In our study, since we are working with a sequence of three-
dimensional spatial data, a better approach is to benefit from the
combination of LSTM and CNNs and deploy a convolutional
LSTM (ConvLSTM; Xingjian et al., 2015) network. ConvLSTM
networks consist of recurrent layers, just like the LSTM, but in
each gate, a fully connected layer is replaced with a convolution
layer and so, the internal matrix multiplications in a ConvLSTM
cell are exchanged with convolution operations to help capture

the underlying spatial features besides temporal features in our
three-dimensional data.

Proposed Systems Architectures
In this study, we are predicting the soil moisture (SM) every three
hours based on hourly-recorded input data consisting of
sequences of records. Each record consists of a three-
dimensional image of the size 65 × 55 × V. The number of
variables (channels or predictors) under analysis defines the third
dimension (V) of the data. We have done our experiments using
two different values of V: five, and seven.

The proposed system consists of four ConvLSTM layers
stacked on each other. The output of the last layer is
forwarded to one convolutional layer to output the final
prediction. Two different experimental setups have been
conducted for generating and testing different input
sequences in the prediction process. In the first one, an input
sequence consists of three or five consecutive hours of recorded
data that includes data recorded at the same hour as the desired
output (We name this experiment as Inclusive). In the other
experiment, the input sequence consists of three or five
consecutive hours of recorded input that precedes or exclude
the hour of the desired output (We name this experiment as
Exclusive). It is important to note that the frequency of soil
moisture data is three hourly with the simulated value described
as an instantaneous value during the first hour of the three
hourly interval. Hence, the exclusive/inclusive setup is intended
to test how much does the rainfall occurring during the first
hour of the three hour period has a significant effect on the soil
moisture value. For more details on the NWM soil moisture
calculation, readers are advised to review the NWMuser manual
(https://water.noaa.gov/about/nwm).

Figure 2A shows the first experimental setup in which a
prediction at the current hour “h” is calculated based on the
sequence inputs starting two hours before the current hour and
ends including the input at the current hour “h”. This setup is
called inclusive setup with sequence length 3. While Figure 2B
shows the second experimental setup in which a prediction at the
current hour “h” is calculated based on the sequence inputs
starting three hours before the current hour and ends
including the input at the previous hour “h−1”. Note that both
figures show an unfolded representation of the ConvLSTM over
the specified hours.

After using the grid search technique for hyperparameters
tuning and evaluating a large number of ConvLSTMmodels with
various configurations and based on the empirical results, we
found that the best model should be set up as follows: The
number of filters in each ConvLSTM layer is 64, 64, 50, and
32 respectively. A kernel size of 3 × 3 and the default hyperbolic
tangent “tanh” activation function is used in each layer. To keep
the same height and width at 65 and 55, all layers are configured
using the same padding technique.

The final layer which is a convolutional layer has only one filter
and the kernel size is 1 × 1 and uses the same padding technique.
The activation function used in this layer is the sigmoid function
to generate an output in the range 0–1.
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Model Tuning
Due to the nature of our prediction problem and the anticipated
complex structure and the large number of parameters of the
ConvLSTM model, considerable attention has been paid to
avoiding the overfitting problem. Several regularization strategies
can be used for reducing or preventing overfitting and helping the
DL models to generalize when tested on unseen data. To speed up
training and ensure high performance and stability of our model
while removing the need for using typical regularization methods
such as dropout, our model applies the batch normalization method
Ioffe and Szegedy, 2015 between every two contiguous ConvLSTM
layers. Different optimizers have been tested. Consequently,
RMSprop (Tieleman and Hinton, 2012) was selected based on
the model performance. The output prediction is in the range
0–1 so we were able to use the binary cross-entropy as the loss
function as it outperformed the mean squared error loss function.

EXPERIMENTAL SETUP

The ConvLSTMmodel is implemented in python using Keras library
with Tensorflow as a backend. We used the free online Google Colab
service which provided us with free access to a Tesla K80GPU. In this
study, we produced a total of 12 DL models, four of them are pure
CNN models and the rest are ConvLSTM models. The four CNN
models vary based on two combinations of predictors, which we
chose as examples to test the sensitivity of the models to the variation
in predictors. It is important to note that MRMS rainfall and NLCD
LULC were used in all models. We also performed exclusive CNN
runs that utilized the values of the two combination of variables from
hour “h−1” instead of the current hour “h” (Figure 2). The two
combinations of variables beside rainfall and LULC are as follows:

1. Downward longwave radiation flux, downward short-wave
radiation flux, and moisture availability. We refer to models

utilizing this combination as the three-variables model for the
remainder of this article.

2. Downward longwave radiation flux, downward short-wave
radiation flux, moisture availability, storm surface runoff,
and baseflow-groundwater runoff. We refer to models
utilizing this combination as five-variables models.

In addition to the same predictor combinations used for the
CNN models, we used different sequence lengths (3 h and 5 h)
and different setups (i.e., inclusive and exclusive) for the
ConvLSTM models. Furthermore, we picked one of the top-
performing ConvLSTM models and applied to it the inter-
observation technique to test the model’s capability in
producing hourly SM predictions. Table 1 summarizes the
three hourly DL models produced in this study.

Data Preprocessing for Three Hourly
Predictions (Original Soil Moisture Product
Temporal Resolution)
As a preprocessing step, per each channel, min-max
normalization to the 0–1 range is applied on the dataset
inputs. The purpose of this min-max normalization is to
ensure that all data points (pixels) are scaled similarly such
that all pixels act as equally significant features. The soil
moisture output (available every three hours) is min-max
normalized into the range 0–1 as well. The whole dataset is
then converted into 4,142 sequences of three or five hours based
on the model sequence (e.g., Figure 2).

Data Preprocessing for Hourly Prediction (in
Between Observations)
To test the data gap filling prediction capabilities of our models,
another testing setup is used to predict SM every hour. As an

FIGURE 2 | Unfolded representation of the ConvLSTM. (A) A single ConvLSTM sequence formation for an inclusive setup with a sequence length of three hours.
(B) A single ConvLSTM sequence formation for an exclusive setup with a sequence length of three hours.
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example, Figure 3 shows how multiple exclusive three hourly
sequences are constructed to predict the soil moisture every hour.
Inputs at hours 0, 1, and 2 are used to predict the output at hour �
3, and inputs at hours 1, 2, and 3 are used to predict the output at
the next hour which is hour � 4, etc. Similarly, the setup can be
applied to the 5 hourly sequences as well.

Training, Validation, Testing Set Preparation
For training and testing the ConvLSTM model, the dataset is
divided into two parts: a training set that contains three or five-
hour sequences starting from August 1st, 2016 till July 31st, 2017
and a testing set that contains three or five-hour sequences

starting from August 1st, 2017 till December 31st, 2017. That
divides the dataset into a 12months training set and a fivemonths
testing set. Moreover, the training set is randomly divided into a
90% training set which is used to train the model and the
remaining 10% is used as a validation set for tuning the model
hyper-parameters while training. All model variations were
trained using backpropagation for a maximum allowed
number of epochs equal to 50 and a batch size equal to 5. The
number of epochs is selected empirically when the error and
validation loss stops improving (early stopping). The average
number of epochs that satisfied this criterion is approximately 30
epochs.

TABLE 1 | Summary of model combinations used in the study. The number of models within each category is shown in the parentheses. Categories are based on the
number of additional variables included (in addition to MRMS rainfall and NLCD LULC).

Model category (count) Additional predictors Sequence length (hours) Model setup

CNN 3 variables (two models) Downward longwave radiation flux, downward short-wave
radiation flux, and moisture availability

N/A Inclusive or exclusive

CNN 5 variables (two models) Downward longwave radiation flux, downward short-wave
radiation flux, moisture availability, storm surface runoff,
and baseflow-groundwater runoff

N/A Inclusive or exclusive

ConvLSTM 3 variables (four models) Same as CNN 3 variables 3 or 5 Inclusive or exclusive
ConvLSTM 5 variables (four models) Same as CNN 5 variables 3 or 5 Inclusive or exclusive

FIGURE 3 | Multiple ConvLSTM input sequences output prediction every one hour “Exclusive” Sequence length is three hours.
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RESULTS

A total number of 12 DLmodels were created in this study, four of
them are CNN-only models and the rest are ConvLSTM models.
As described in the methods section, if the model uses the
predictor data from a sequence ending in the current time
step (i.e., lag 0 h) we call it an inclusive model. If the model
uses the information of a sequence ending one hour before the
current time step (i.e., lag 1 h) we call it an exclusive model. There
are no LSTM sequences for CNN-only models and we only have
four CNN models corresponding to the two combinations of
variables in an inclusive and exclusive modes. In the case of
ConvLSTM models, we tried two types of sequences that can
utilize information from three or five-time steps. Thus, the total
number of ConvLSTM models is eight (2 variable combinations,
2 time sequences, exclusive or inclusive).

Overall Training and Testing Performance of
Deep Learning Models
We started the analysis by looking at the overall performance of
the models represented by the time series of the spatial average
SM value calculated for the entire domain (65 × 55). This is done
by obtaining the average of the domain values for each time step
and presenting them as time series. Figure 4 shows the
performance of the six inclusive models. In order to assess the
performance of the simulation results (red lines) compared to the
reference SM values (black lines), we calculated the normalized
root mean square error as a percentage of the mean reference SM,
as well as the correlation coefficient between the two time series.
As seen in the figure, the least performing models are the CNN-
only models shown in panels (A) CNN 3 variable, and (D) CNN 5
variables. Meaning, the ConvLSTM models consistently

outperformed the CNN-only models. The figure also shows
that the three variables models (panels a through C)
outperformed the five variables models (D through E). This
suggests that the two added variables (surface and subsurface
runoff) did not help improve the model training process.
Moreover, the ConvLSTM models with a sequence length of 3
outperformed those with a sequence length of 5. This suggests
that including information beyond 3 h in the past is not useful for
the training process.

Figure 5 is the same as Figure 4 but for the exclusive
configuration. As seen in the figure, the exclusive
configuration models performed slightly better compared to
their corresponding models in the inclusive configuration. This
suggests that the information from the current time step is less
relevant to the training process compared to that of the previous
time steps. Given that the SM provided by the NWM represents
instantaneous values during the first hour of a 3 h time step (as
described in the NWM manual), this might explain why the
rainfall, runoff, and moisture availability information at the end
of that first hour did not contribute to the SM value (due to the
time needed for infiltration). The figure also shows relative
performance between the exclusive models that is consistent
with what is observed in Figure 4 (i.e., 3 variables
outperformed 5 variables, and sequence 3 slightly
outperformed sequence 5).

Spatial Performance
In this subsection, we investigate the models’ performance in
more detail where we focus on the performance in a spatial
context. This is done by calculating the skill score percent
normalized root mean squared error (NRMSE%) and the
correlation coefficient using the time series of each pixel rather
than the domain average. Each pixel has its own two time series of

FIGURE 4 | Time series of training and testing domain average for inclusive models. The red line represents the predicted data while the black line represents our
reference SM product. Panel (A) shows the times series of CNNwith 3 variable, (B)ConvLSTM sequence 3 with 3 variables, (C)ConvLSTM sequence 5 with 3 variables,
(D) CNN with 5 variables, (E) ConvLSTM sequence 3 with 5 variables, and (F) ConvLSTM sequence 5 with 5 variables. Training data is from August 2016 through July
2017, while testing data is from August 2017 through December of 2017.
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reference and predicted SM, similar to what is shown in the
previous section.We then calculated the skill scores on a pixel-by-
pixel basis and plotted them spatially. To calculate the (NRMSE
%), we normalized the RMSE as a percentage of the mean of the
reference SM. Thus, we start by showing the mean SM field of our
domain in Figure 6. The white clusters in the figure depict water
body areas where SM is not to be measured (also shown in
Figure 1). The highest soil moisture clusters are located in the
wetland areas in the Teche region and immediately east of
Lafayette Parish. It is important to note that volumetric SM
depends on soil storage capacity, thus the values at highly

developed areas have high values (e.g., the city of Lafayette).
In contrast to natural LULC areas, which vary in SM over time,
the SM content for developed areas is constantly high due to low
soil storage capacity (almost impervious).

Figure 7 shows the spatial NRMSE% fields for the study area.
A common feature in all subplots of this figure is that NRMSE% is
higher in some clusters that correspond to cultivated crops and
pasture/hay LULC areas. This is due to the low-mean SM values
over these areas (Figure 6); this magnifies the effect of errors
when compared to the mean values. On the other hand, NRMSE
% is always very low over the city of Lafayette (red dot), which is
the opposite of the previous case since the SM values are always
high in this area (because urban LULC has little water storage
capacity) easing the effect of errors when compared to the mean
SM value. As seen in Figure 7, although the best performing
models from the previous subsections are generally the same;
their performance varies within the domain. Moreover, the
variables added in the five-variables models’ configuration did
not add to the quality of the models making the three variables
models’ overall spatial performance better. In addition, the
exclusive configuration models consistently outperformed the
inclusive configuration models. Visually, the exclusive
sequence 3 model with 3 variables is the best overall
performance. Overall, most ConvLSTM models had errors
consistently less than 10% over most of the domain.

Figure 8 shows the spatial correlation fields for the study area.
The results shown in this figure are consistent with those
presented in Figure 7. Nevertheless, despite the very low
NRMSE% over the Lafayette area, the correlation is very low.
This might be due to the variability of SM values in this area
is low (always high volumetric SM as presented in the model).
This is difficult for the models to replicate precisely given the high

FIGURE 5 | Time series of training and testing domain average for exclusive models. The red line represents the predicted data while the black line represents our
reference SM product. Panel (A) shows the times series of CNNwith 3 variable, (B)ConvLSTM sequence 3 with 3 variables, (C)ConvLSTM sequence 5 with 3 variables,
(D) CNN with 5 variables, (E) ConvLSTM sequence 3 with 5 variables, and (F) ConvLSTM sequence 5 with 5 variables. Training data is from August 2016 through July
2017, while testing data is from August 2017 through December of 2017.

FIGURE 6 | Average spatial SM field for the study area. White clusters
depict water bodies in the study area. Black polylines depict parish
boundaries, while the red dot represents the location of the city of Lafayette.
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variability in SM everywhere else in the study area. Sequence 3
exclusive model with 3 was again the best overall performer.

To complement the visual investigation of the spatial plots in
Figure 7, box plots of NRMSE% for all models are shown in
Figure 9A. The figure suggests that inclusive models had higher
variability in their pixel values which in turn affected their
median (red line) and mean (black diamond) values. Overall,
the ConvLSTM 3 variables models with sequence length 3 were
the best performing models.

Figure 9B is similar to Figure 9A but for correlation values.
All outperforming models had a good correlation with median
values approaching 0.8. The mean values for these models are
slightly less than the median values suggesting that the models
had a significantly poor performance in certain pixels compared
to the overall model performance.

Effect of Land Use/Land Cover
The performance of the models with regards to the corresponding
LULC is examined by averaging the performance statistics
(NRMSE% and correlation) of each model over a given LULC
type. For example, the first box in Figure10A shows the
distribution of the mean NRMSE% values obtained from each
model for the developed open space LULC. As expected, the best
NRMSE% performance corresponds to high intensity developed

areas (Figure 7). The least performing LULC is the shrub/scrub
areas and deciduous forest. All other LULC categories performed
similarly. We produced the same analysis for the correlation
values in Figure 10B. The least correlation was observed over
high intensity developed areas similar to what is shown in
Figure 10. Most of the other LULC categories performed
similarly in terms of correlation.

Data Gap Filling Capability
The capability of the DL models in predicting inter-observations
is explored. As described earlier in this article, the frequency of
the reference SM grids is 3-hourly. To predict the values every
three hours, we generated several predictor sequences that end at
(inclusive) or one hour prior to (exclusive) the desired prediction
time step. Nevertheless, our models are not limited to predicting
at the reference observations. It is of course important to produce
predictions at the exact time steps of the reference SM to be able
to validate the predictions. However, once the DL model
predictive capabilities are validated, it can be used to predict
at time steps whenever enough predictor sequences are available.
Meaning, if a prediction is made at a certain time step, we do not
need to wait for another 3 h to make another prediction, but
rather predict after one hour only using the sequence of the
previous 3 or 5 h of predictors. This can be explained easily using

FIGURE 7 | Spatial NRMSE% fields for the study area. The top two rows
represent 3 variable and 5 variable models in inclusive configuration, while the
last two rows are the same but for exclusive configuration. The first column
represents CNN-only models, while the second represents ConvLSTM
with sequence length of 3, and finally the last column is for ConvLSTM with
sequence length 5.

FIGURE 8 | Spatial correlation fields for the study area. The top two rows
represent the 3 variable and 5 variable models in inclusive configuration, while
the last two rows are the same but for exclusive configuration. The first column
represents CNN-only models, while the second represents ConvLSTM
with sequence length of 3, and finally the last column is for ConvLSTM with
sequence length 5.
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SMAP observations as an example. If the satellite overpass
frequency is approximately every three days, we are not
limited to making observations once every three days but
rather make predictions based on the frequency of the used
predictors in the middle of overpasses. This process is very
similar to temporal downscaling.

In order to illustrate this capability, we examine the model
performance for the period between November 22, 2017, and
November 25, 2017, using one of the top-performing models
ConvLSTM sequence 3 with 3 variables in an inclusive setup
(Figure 11). The red asterisks represent the predictions
performed every 3 h while the green squares represent the
hourly predictions. As expected, both hourly and 3 hourly
predictions overlap at the times of reference observations. This
is because we used the same model that was trained using the
training period of observations, but fed it with additional
predictor sequences in the prediction step. As illustrated in
Figure 11, this allowed for a higher detail (temporal

resolution) in the prediction time series especially during peak
events where one would expect more activity in between the
original time steps of three hours.

DISCUSSION

In this article, we developed DL models to predict SM over
Lafayette parish and its surroundings in southwest Louisiana,
United States. The area is covered mostly by open areas
(cultivated crop, scrub/scrub, pasture/hay) and wetlands.
The remainder of the study area is covered by developed
areas with different intensities mostly within the city of
Lafayette. The first set of models are CNN models that take
spatial autocorrelation into account, and as such are well-
suited to capture spatial patterns. The second type of model
developed in this study, ConvLSTM models, combine the
spatial capabilities of CNN models with the time series

FIGURE 9 | Box plots showing the NRMSE% (A) and correlation (B) for all models. The top edge of each box represents the 75th percentile while the bottom edge
represents the 25th percentile. The red lines represent the median (50th percentile) and the black diamonds represent the mean value for each model.
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FIGURE 10 | Box plots showing the NRMSE% (A) and correlation (B) for all models corresponding to each LULC. The top edge of each box represents the 75th
percentile while the bottom edge represents the 25th percentile. The red lines represent the median (50th percentile) and the black diamonds represent the mean value
for each LULC.

FIGURE 11 | Time series of predicted 3-h spatial averaged SM (Red asterisks) vs 1-h spatial averaged (Green squares).
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accounting capabilities of LSTM models. Our experimental
setup was designed to show the added value of using the
predictors’ sequence information from previous time steps
in improving the models’ predictive capabilities. The work
presented in this article shows that adding information from
past observations can significantly improve the models’
predictive capabilities. In addition, we tested the value of
adding more predictors on the models’ performance using
up to 5 predictors in combination with rainfall and LULC. This
article did not focus on finding the optimal combination of
variables or sequence length but rather on the relative
performance that adding additional information can have
on the models. Our results show that ConvLSTM models
can predict SM values spatially with mean and median pixel
NRMSE% values close to 5% and maximum values below 10%.
The models performed relatively better in terms of NRMSE%
in areas where the mean reference SM is higher. Mean and
median pixel correlation values of most of the ConvLSTM
models were between 0.7 and 0.8. This indicates good
agreement between the predicted and reference SM; and
that they significantly outperformed CNN models. The
NRMSE% and correlation coefficient values are much better
while predicting the mean value of the entire domain with
NRMSE% values as low as 2.9% and correlation values are
above 0.9. Moisture availability defined as the ratio of actual to
potential evapotranspiration added the most value to the
models’ predictive abilities. LULC type had a significant
effect on the performance of the models where areas with
higher SM variability exhibiting higher error values and areas
with consistently high SM values such as developed areas
exhibiting lower error values. Besides, we were able to
perform additional analysis to show the predictive ability of
the DL models between observations. This is especially useful
for applications such as filling of satellite observations in
between overpasses. The models produced in this study can
be scaled and applied to other SM products and geographical
regions. Another interesting aspect of the study is that it has
been conducted entirely using free open-source computational
resources provided by Google Colab. The models are digitally
stored in an HDF5 file format and can be easily loaded and
trained using additional data when available. The codes used in
this article can be obtained from the link are available to
download freely (please check the article data sharing
information).

CONCLUSION

In this article, we presented a new approach for data-based SM
prediction using ConvLSTM DL models. The models can be
generalized and scaled to predict SM observations from other
sources. The main reason we decided to use the SM output of
the NWM is due to its long available record and its high
resolution in space and time. As more accurate SM
observations (e.g., those collected by SMAP) are available in

the future, the models can be easily modified to be trained to
predict them. The following conclusions are made based on the
results of the study:

1. ConvLSTM models produced significantly improved SM
prediction in comparison to CNN models indicating the
significance of including past information in predicting the
current state of SM.

2. Additional predictors such as storm surface runoff and
baseflow-groundwater runoff (5 variables models) did not
improve the performance of the models.

3. The past observation sequence length of 3 h allowed the
ConvLSTM models to outperform CNN models
significantly. Nevertheless, adding additional information
from previous time steps (e.g., sequence length of 5 h) did
not improve the performance of the models and in some cases
caused deterioration of the models’ performance.

4. ConvLSTM models can replicate hydrologic models’ results
with mean and median pixel-based NRMSE% around 5% and
correlation coefficients around 0.8 using different sources of
inputs that were not used to derive the hydrologic models. This
is a good indicator that the models can be generalized to
predict other sources of SM observations such as SMAP. The
NRMES% and correlation for mean areal SM prediction over
the study area of the best performing models were 2.9% and
0.91 percent respectively.

5. ConvLSTM models can predict SM value between the
observations of our reference SM. This is an important
feature that can allow the models to predicted SM
observations of products like SMAP between satellite
overpasses.
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