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Abstract

Septic cardiomyopathy is one of the most serious complications of sepsis or septic shock. Basic

and clinical research has studied the mechanism of cardiac dysfunction for more than five dec-

ades. It has become clear that myocardial depression is not related to hypoperfusion. As the

heart is highly dependent on abundant adenosine triphosphate (ATP) levels to maintain its con-

traction and diastolic function, impaired mitochondrial function is lethally detrimental to the

heart. Research has shown that mitochondria play an important role in organ damage during

sepsis. The mitochondria-related mechanisms in septic cardiomyopathy have been discussed in

terms of restoring mitochondrial function. Mitochondrial uncoupling proteins located in the

mitochondrial inner membrane can promote proton leakage across the mitochondrial inner

membrane. Recent studies have demonstrated that proton leakage is the essential regulator of

mitochondrial membrane potential and the generation of reactive oxygen species (ROS) and ATP.

Other mechanisms involved in septic cardiomyopathy include mitochondrial ROS production and

oxidative stress, mitochondria Ca2þ handling, mitochondrial DNA in sepsis, mitochondrial fission

and fusion, mitochondrial biogenesis, mitochondrial gene regulation and mitochondria autophagy.

This review will provide an overview of recent insights into the factors contributing to septic

cardiomyopathy.
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Introduction

Sepsis is defined as an immune and inflam-

matory response that is capable of inducing

multi-organ dysfunction.1 Recent data indi-

cate that mortality rate from sepsis or septic

shock is approximately 40% in intensive

care units (ICU).2 It is the main cause of

death among patients in hospital and the

mortality is as high as 28.7% despite prog-

ress having been made in its treatment.2,3 In

the US, the mortality rate due to sepsis is

higher than that from prostate cancer,

breast cancer and AIDS combined, and

this figure is growing annually.4–6 The

high morbidity and mortality associated

with sepsis and septic shock make them

the 10th most common cause of death in

the US.7 An important organ system fre-

quently involved in sepsis is the cardiovas-

cular system, with septic cardiomyopathy

being one of the most serious complications

associated with sepsis or septic shock,

which may progress to left and right heart

systolic and diastolic failure.8 Basic and

clinical research has studied its mechanism

of dysfunction for more than five decades.
In 1951, a hyperdynamic state was iden-

tified in patients with sepsis or septic shock,

which was the first cardiovascular event

shown to be caused by sepsis.9 In subse-

quent famous studies, fluid therapy was

attempted in these patients and appropriate

and sufficient volume resuscitation was

demonstrated to be one of the most effec-

tive therapeutic treatments for sepsis.10

However, in the mid-1980s, many clinicians

found that some septic patients had normal

or even a slightly higher cardiac output with

descended ejection fraction and stroke

volume.11 It was also shown that septic

patients with cardiovascular dysfunction

had a higher mortality rate than those with-

out cardiovascular dysfunction.12 From

then on, researchers paid more and more

attention to septic cardiomyopathy and

attempted to clarify the mechanism of this
critical manifestation.

A number of studies identified that myo-
cardial depression was not related to hypo-
perfusion as an adequate oxygen supply
had already been proved in experiments
on human and animals, while a circulating
depressant factor in septic shock, which was
first proposed fifty years ago,13 must play
an important role in heart dysfunction.14

Other mechanisms like mitochondrial dys-
function/apoptosis, cellular damage, cell
signalling, autonomic dysfunction,
decreased coronary blood flow, increased
heat shock protein or adhesion molecules
and myocardial hibernation phenomenon
were proposed with the development of
scientific theory and technology.15

Nevertheless, an increasing number of stud-
ies had focused on myocardial energy
metabolism as cells, which seemed unable
to maintain proper metabolism in septic
patients.16–18 Consequently, this imbalance
led to energy failure and even death.19 It
was demonstrated that cardiomyocyte
injury occurred in sepsis-induced cardiac
dysfunction, but there was almost no cell
death.20 It is particularly important to find
the correct treatment to repair cell function.
More specifically, many researchers identi-
fied mitochondrial dysfunction as the key
pathological change in septic cardiomyopa-
thy.21,22 Since the heart is one of the organs
that is highly dependent on abundant aden-
osine triphosphate (ATP) levels to maintain
its contraction and diastolic function,
impaired mitochondrial function is lethally
detrimental to the heart. According to car-
diac pathophysiology, energy depletion
resulting from mitochondrial dysfunction
would contribute to significant myocardial
damage,23 such as diabetic cardiomyopa-
thy, ischaemic reperfusion injury and heart
failure.24,25 A series of mitochondria-
related mechanisms in septic cardiomyopa-
thy have been explored in order to find a
way to restore mitochondrial function. This
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review will provide an overview of recent

insights into the factors contributing to

septic cardiomyopathy.

Mechanism of mitochondrial

dysfunction in septic

cardiomyopathy

Mitochondrial dysfunction in sepsis can

cause continuous damage to cells and

organs. Reactive oxygen species (ROS)
like superoxide are increased during sepsis

and evoke oxidative and nitrosative

injury.26,27 Increased superoxide can result

in the inhibition of oxidative phosphoryla-

tion complexes, decreased O2 consumption

and mitochondrial membrane potential

(�W).28 As a consequence, the release of
ROS increases.28 In addition, the increased

levels of uncoupling proteins increase the

extent of proton leakage.29 Mitochondrial

permeability transition pores (mPTP) open

due to increased Ca2þ.30 Hence, oxidative

damage happens to the inner mitochondrial

membrane. In addition, inappropriate
mitochondrial autophagy (mitophagy)

leads to the reduction of mitochondrial

mass and dysfunctional mitochondria.31 In

summary, ATP regeneration is a complex

process, and once the heart lacks energy,

damage to cardiac function may follow.

Mitochondrial ROS production

and oxidative stress

Complexes I and III of the respiratory

chain in mitochondria produce small

amounts of ROS physiologically.32

However, sepsis is a disease accompanied

by increased oxidative stress, and large

amounts of ROS come from activated neu-

trophils.33 In addition, azotized stress leads

to the oxidation of xanthine and its reactive

nitrite increased in plasma. While in serum,

the antioxidant capacity is diluted because
of decreased levels of antioxidants like

vitamin C, vitamin E, unconjugated biliru-
bin, uric acid, and other unknown factors.34

Intracellularly, the concentration of oxi-
dized glutathione dimmers increase while
amounts of glutathione drop.35 A large
body of evidence strongly suggests that
ROS and reactive nitrogen species led to
specific impairments of oxidative phosphor-
ylation in the septic myocardium (e.g. com-
plex I, complex IV, F0F1 dysfunctions),36,37

especially myocardial cell mitochondria.
Research has demonstrated that the activity
of inducible mitochondrial nitric oxide syn-
thase was obviously increased in a septic
mouse model, which led to the growth of
peroxynitrite ONOO�.38 It is clear that
nitric oxide (NO) and its derivatives play
an indisputable role in the regulation of car-
diovascular function and vascular tone.39

Research has shown that ONOO– has a neg-
ative influence on myocardial mitochondrial
dysfunction in sepsis.38 Nevertheless, we
should realize that there is a casual relation-
ship between NO and heart function, since
NO is not only produced by cardiac mito-
chondria but it is also found in other intracel-
lular locations and it is produced in different
cell types. To prevent and alleviate oxidative
damage, researchers have been searching for
suitable antioxidants, such as mitochondria-
targeted vitamin E,40 mitochondria-targeted
antioxidant MitoQ,41 and vitamin C.42

These antioxidants represent an attractive
treatment for mitochondrial injury.
However, in order to gain wider acceptance,
more clinical experiments are needed to con-
firm the practical use of antioxidants.

Mitochondrial Ca2þ handling

One of the most important steps in regen-
erating ATP is building up a proton gradi-
ent that is dependent on the impermeability
of the inner mitochondrial membrane
(IMM). Evidence shows that the electron
transport chain that pumps protons to
maintain the chemiosmotic energy gradient
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is based on the impermeability of the IMM.
Although mPTP is formed due to a sudden
change in the IMM and the influence of
other substances, as it is located in the
inner mitochondrial membrane it is mainly
mediated by Ca2þ.43 During sepsis, mito-
chondrial Ca2þ content is raised by
increased Ca2þ leaking from the sarcoplas-
mic reticulum and decreased Ca2þ uptake
into the same organelle.44 Researchers
found that inhibition of nicotinamide ade-
nine dinucleotide phosphate oxidase 2 pre-
served intracellular calcium handling,
mitochondrial function and played a pro-
tective role in sepsis-induced cardiomyopa-
thy.45 Ca2þ overload can result in the
mPTPs opening and becomes the trigger
of sequential pathological changes; and
for myocardial cells, mPTP opening can
lead to activation of caspase proteins, and
ultimately to cardiomyocyte contractile
dysfunction.46,47 For the heart in sepsis,
the abnormal transport of calcium is an
important factor affecting heart function.48

An animal study showed that cytokines like
tumour necrosis factor-a and interleukin-1b
were released and affected calcium leak-
age.49 This disorder proved that sepsis can
weaken cardiomyocyte contractility in iso-
lated rat heart model,49 and there was no
difference in the damage between right and
left ventricles.50 Prevention of mPTP open-
ing through decreased calcium leakage
can reduce the activation of cytochrome
c release.51

Mitochondrial DNA in sepsis

With the development of molecular biolo-
gy, researchers now recognize the role of
pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular
patterns (DAMPs) in the occurrence and
development of disease. Among the
known DAMPs, mitochondrial DNA
(mtDNA) has become the focus of consid-
erable research.52 MtDNA is a circular

molecule that encodes the key proteins
involved in the oxidative phosphorylation
system.53 In addition to its coding function,
mtDNA is also involved in cellular immune
functions.54 Like bacteria, mtDNA is a
component that can be recognized as a
DAMP by the immune system and triggers
or promotes a series of defence reactions.55

Multiple in vivo and in vitro studies have
demonstrated that mtDNA can be trans-
ferred from mitochondria to the cytosol
via mPTPs, and thus any pathological
changes leading mPTP opening will
increase the leakage of mtDNA.56,57 In
2013, the first study of mtDNA in ICU
patients found that the levels of circulating
mtDNA were significantly higher in non-
survivors than survivors.58 Subsequently,
another study found that plasma mtDNA
levels in patients with sepsis was greater
than in healthy controls.59 Consequently,
the authors demonstrated via an in vivo
experiment that the high concentration of
mtDNA was able to increase neutrophil
viability.59 However, delayed neutrophils
apoptosis and local accumulation were
associated the poor outcome in patients
with sepsis.59

Mitochondrial fission and fusion

It is widely known that mitochondria are
hyperdynamic organelles and that their
morphology is inextricably linked to their
function.60 Fission and fusion are the deter-
minative factors in mitochondrial morphol-
ogy. Balanced and proper mitochondrial
membrane fission and fusion support
the reliable production of mitochondria,
while abnormal morphology cannot meet
the metabolic demands.61,62 Usually, the
changes of structures caused by the
fusion/fission processes are observed
within 24 h.63 Very recent research has dem-
onstrated that proper mitochondrial fusion
and fission can regulate mitochondrial func-
tion and maintain heart development.64
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Different inner or outer membrane fusion
and fission depends on proteins encoded
by different genes (outer membrane
fusion: mitofusin-1 and mitofusin-2
[MFN1 and MFN2 genes], phospholipase
D family member 6 [mitoPLD; PLD6
gene]; inner membrane fusion: mitochondri-
al dynamin like GTPase [L-OPA1 gene];
outer membrane fission: death associated
protein kinase 2 (DAPK2 gene, also
known as DRP1); inner membrane fission:
mitochondrial dynamin like GTPase
[S-OPA1 gene], mitochondrial fission pro-
cess 1 [MTFP1 gene, also known as
MTP18). In a septic mouse model, scientists
found that thioredoxin 1 overexpression
can alter the ultrastructure in the mitochon-
drial cristae accompanied by increased
expression of mitochondrial dynamin like
GTPase (OPA1) gene and activation of
the dynamin 1-like (DNM1L gene, also
known as DRP1) gene.65 In addition, it
has been proved that the inhibition of
unbalanced mitochondrial fission through
the inhibitor Mdivi-1 can protect organs
function inendotoxaemia.66

Mitochondrial biogenesis

In addition to mitochondrial fission and
fusion, mitochondrial biogenesis is the
other main component of the mitochondrial
mass control system. Physiologically, crea-
tion of new and healthy mitochondria in
terms of biogenesis is important to meet cel-
lular metabolic energy demands.67 It has
been reported that mitochondrial biogene-
sis may partially counteract mitochondrial
protein depletion, helping to maintain func-
tionality and energetic status in the critical-
ly ill patients.68 During sepsis, excess ROS
and free radical generation damage mito-
chondria and result in impaired mitochon-
drial synthesis, while biogenesis becomes
decreased in early sepsis and increased in
later sepsis.32 Endotoxin causes the activa-
tion of oestrogen-related receptor alpha,

peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1a).69

Mitochondrial synthesis can be affected by
regulating the above substances. A study
suggested that acetylcholine promoted
mitochondria biogenesis via the PGC-1a
pathway and improved mitochondrial func-
tion.70 Some other studies also have dem-
onstrated that increased biogenesis can
improve the prognosis in sepsis, and
the inhibition of biogenesis can increase
mortality.71,72 However, it appears that
redundant biogenesis can aggravate mito-
chondrial function. For example, a study
demonstrated that the overexpression of
PCG1-a resulted in an over-dose of biogen-
esis and led to heart failure.73 Thus, we need
to do further research on biogenesis in
order to more clearly understand its effect
on mitochondrial and organ function.

Mitochondrial genes

One of the molecular mechanisms that
occurs in mitochondria during trauma or
sepsis is mitochondrial gene modification,
though there are limited publications in
this field. In a mouse model of haemorrhage
trauma, the transcriptional profile of mito-
chondria genes was changed by the trauma
and led to worsened heart function.74 To
date, no specific gene changes have been
identified in cardiac muscle cells during
sepsis. However, in a hepatic model, a
mutation in the ATPase subunit-8 partially
protected mice against endotoxaemic stress,
most probably leading to better hepatic
energy status despite elevated oxidative
stress.75 It has become popular to research
the circadian rhythms and to some extent
clock genes appear to control mitochondri-
al function. For example, disruption of the
clock genes affects the immune response,
which in turn induces proinflammatory
mediators, leading to bioenergetic decay
and formation of ROS.76 More basic and
clinical research is required to determine
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the role of mitochondrial and clock genes in
the prediction of disease development and
prognosis. More importantly, evidence if
required to determine whether these two
types of genes can work as effective treat-
ments for diseases.

Mitochondrial autophagy

As discussed above, mitochondrial impair-
ment can be lethal to cells, initiating the
necrotic or apoptotic cell death pathways.
The body has a series of mechanisms that it
can use to correct sepsis-related organ dys-
function caused by abnormal mitochondria.
Apart from generation of new and func-
tionally normal mitochondria (biogenesis),
removal of dysfunctional mitochondria is
another key mechanism of organ recov-
ery.76 This removal of mitochondria via
autophagy is known as mitophagy.76

Damaged mitochondria are isolated by
autophagosomes and ultimately degraded
by fusion with lysosomes.77 Morphological
and biochemical evidence indicates that
mitophagy is associated with recovery, sug-
gesting that this process has something to
do with cardiac recovery from sepsis.78

Mitochondrial autophagy was activated
during sepsis in PARK2-deficient mice and
PARK2 exerted additional protective roles
in sepsis-induced mitochondrial and cardiac
contractile dysfunction.79 Many studies put
mitophagy as a therapeutic target to
improve heart function. Current data dem-
onstrate that the hypophosphorylated form
of IjappaBb (an inhibitor of nuclear factor
kappa B) at Ser313 is beneficial to the heart
in sepsis through enhancement of autoph-
agy and inhibition of apoptosis.80 Other
research indicates that fasudil prevented
lipopolysaccharide-induced heart oxidative
stress by inhibiting RhoA/ROCK from
activating the autophagic processes.81

In addition, lysosome reformation
mediated by cobalt protoporphyrin IX or
transcription factor EB may be involved

in cardioprotection against

lipopolysaccharide-induced septic insults,

and may be a novel mechanism for protect-

ing the heart against oxidative stress.82

Uncoupling proteins in

mitochondria

Mitochondrial uncoupling proteins (UCPs)

located in the mitochondrial inner mem-

brane can promote the leakage of protons

across the mitochondrial inner mem-

brane.29 It is an essential regulator of mito-

chondrial membrane potential, which can

disperse the mitochondrial proton gradient

by translocating Hþ across the inner mem-

brane, and finally influencing ATP genera-

tion.83,84 Physiologically, uncoupling can

decrease mitochondrial ROS production

and increase heat generation.29 UCPs are

part of a protein family consisting of five

subtypes.85 The UCP molecule is composed

of six hydrophobic membrane-spanning

a-helices, which are responsible for creating

the channel within the inner membrane.86

Furthermore, the a-helices are arranged

into three cassettes; the latter ones being

connected by amino, carboxyl termini and

two loops.86 The loops are implicated in the

control of access to the channel.86 UCPs

possess a binding site for purine nucleotides

in order to inhibit the uncoupling activity

physically.87 The essential function of

UCP1 is to produce the heat from brown

adipose tissue (BAT) to maintain body tem-

perature.88 UCP2 through to UCP5 have

been found in fungi, plants and ani-

mals.84,85 All five subtypes of UCPs can

be expressed in mammalian cells and have

different tissue distributions.88 UCP1 is

mainly distributed in BAT, but is also

found in other places such as white adipose

tissue, pancreatic b cells, retinal cells and

skeletal muscle.88 It plays an important

role in glucose metabolism.88 UCP2 is the

most common protein in this family, as it is
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found in various tissues, such as the central

nerve system, kidney, heart, liver, pancreas,

spleen, thymus and macrophages.89 UCP3

is mostly found in BAT and skeletal muscle,

and despite of high sequence similarity with

UCP1, it has no thermoregulation proper-

ties and its physiological functions remain

unknown.90 The UCP4 and UCP5 genes

have less sequence similarity with UCP1,

and they are mostly expressed in the

brain.91 Recently, it was hypothesized that

the UCP4 and UCP5 genes originate from a

common ancestral gene and are probably

responsible for ATP transportation.91

Uncoupling protein 2 can be regulated at

various levels; at the molecular level (gene,

mRNA and protein transcriptional, trans-

lational, turn-over), proton conductance

and by pharmacological regulation.89

Recent research identified two of the most

common gene polymorphisms: the promot-

er variant –866G>A and the codon 55

missense polymorphism.92 The former poly-

morphism can promote higher UCP2

mRNA expression,93 while the latter poly-

morphism can reduce the degree of uncou-

pling in pathological process.94 To date, the

four most common transcription regulatory

proteins and their relative transcription

factor binding sites that are involved in

the regulation of human UCP2 transcrip-

tion are the peroxisomal proliferator-

activated receptors,95,96 PGC-1a,97,98

forkhead box protein A1,99 and the

SMAD family.100 MicroRNAs and hetero-

geneous nuclear ribonucleoprotein K

induce a totally new layer of protein regu-

lation after transcription.101,102 It has been

found that UCP2 expression can be modu-

lated by different drugs. For example, aden-

osine monophosphate-activated protein

kinase activator can up-regulate UCP2 acti-

vation.103,104 However, some chemothera-

peutic drugs like doxorubicin and taxol

can down-regulate UCP2 expression and

influence the cardiac function.103–106

In contrast to the single function of
UCP1, UCP2 is more related to organ func-
tion as it can be found in several tissue and
organs.89 The wide distribution of UCP2
means that it is involved in regulating
metabolism, including ROS production,
food intake, glucose control, and immunity;
and some pathologies, such as heart failure,
diabetes, and cancer.107 A number of stud-
ies highlight the importance of UCP2 in
cardiovascular diseases.108,109 ROS are ele-
vated in some pathological processes,
including sepsis-induced cardiomyopathy,
cardiac reperfusion injury, and diabetic car-
diomyopathy.110–112 Redundant ROS can
stimulate proton leakage, thus leading to
decreased UCP2 activity and reduced gen-
eration of ROS.113 UCP2 plays a protective
role in the heart via this negative feedback
loop.114 For the human heart, modulation
of UCP2 level appears increased in oxida-
tive stress status.111 Uncoupling of
oxidative phosphorylation diminishes
superoxide formation by complex I.115 In
addition, uncoupled substances might
inhibit superoxide formation by complexes
I and III by virtue of their antioxi-
dant ability.116

Evidence suggests that UCP2 has a pro-
tective effect on myocardial damage and
down-regulated UCP2 is associated with a
failing heart.108 UCP2 up-regulation atten-
uated ROS generation and prevented mito-
chondrial Ca2þ overload, significantly
suppressing markers of cell death.117 In a
UCP2 gene silencing animal model,
UCP2–/– mice were more likely to have
damaged mitochondrial morphology and
function, suggesting UCP2 may play a pro-
tective role in cardiomyocytes under septic
conditions.110 Decreased membrane poten-
tial and ATP content, depletion of mtDNA
and increased ROS were aggravated by
silencing of UCP2.118 In addition, research-
ers found that UCP2 had a regulatory role
in the activation of p38 mitogen-activated
protein kinase, nuclear factor kappa B and
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the expression of downstream inflammatory
mediators in H9C2 cells stimulated with
septic serum.109

Conclusions

Mitochondria account for one third of the
volume of cardiomyocytes and have an
important role to play in the regulation of
ROS generation and ATP production,
which is important for maintaining heart
function and cardiomyocyte survival.
Therefore, any modification of mitochon-
dria may contribute to cardiovascular dis-
eases. There is considerable research
evidence to show that UCP2 acts as an
essential protein in mitochondrial function,
by decreasing ROS generation and increas-
ing ATP production. This protective feed-
back loop helps organs to recover their
functions after sustaining damage. More
research is needed to develop new drugs
or promising therapeutic approaches that
could potentially be used to reverse the
mitochondrial damage associated with sev-
eral diseases. Further research about UCP
activity and regulation could advance our
understanding of myocardial depression.
The increasing interest in sepsis will allow
novel research tools to be used to develop
effective treatments in the future.
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