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Abstract: Lung cancer is a deadly disease with a high mortality rate. Endobronchial ultrasonog-
raphy (EBUS) is one of the methods for detecting pulmonary lesions. Computer-aided diagnosis
of pulmonary lesions from images can help radiologists to classify lesions; however, most of the
existing methods need a large volume of data to give good results. Thus, this paper proposes a novel
pulmonary lesion classification framework for EBUS images that works well with small datasets.
The proposed framework integrates the statistical results from three classification models using the
weighted ensemble classification. The three classification models include the radiomics feature and
patient data-based model, the single-image-based model, and the multi-patch-based model. The
radiomics features are combined with the patient data to be used as input data for the random forest,
whereas the EBUS images are used as input data to the other two CNN models. The performance
of the proposed framework was evaluated on a set of 200 EBUS images consisting of 124 malignant
lesions and 76 benign lesions. The experimental results show that the accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, and area under the curve are 95.00%, 100%,
86.67%, 92.59%, 100%, and 93.33%, respectively. This framework can significantly improve the
pulmonary lesion classification.

Keywords: pulmonary lesion; endobronchial ultrasonography images (EBUS); convolutional neu-
ral network (CNN); radiomics features; random forest; gray-level co-occurrence matrix (GLCM);
weighted ensemble

1. Introduction

Cancer has been regarded as the leading cause of death among the world’s population
from past to present, and its prevalence is expected to rise steadily. Among many types of
common cancers, lung cancer is the leading cause of death, followed by colorectal, liver,
stomach, and female breast cancers. According to the International Agency for Research on
Cancer, there were 2.2 million new cases of lung cancer diagnosed and 1.8 million deaths
globally in 2020 [1]. The majority of lung cancer patients do not show symptoms until the
disease has advanced, but some early lung cancer patients may show the symptoms; there-
fore, early diagnosis can lower the mortality rate significantly [2]. Furthermore, lung cancer
can be cured, and treatment is more effective if it is detected early [3,4]. In general, there
are many techniques for diagnosis and staging of lung cancer such as computed tomog-
raphy (CT), positron emission tomography—computed tomography (PET–CT), magnetic
resonance imaging (MRI), and EBUS [5–7]. EBUS has become popular in recent years since
this technique utilizes no radiation and scans in real time. It is the most recent screening
technology for obtaining small wounds with minimal pain [8]. Although EBUS is a good
way to detect lung cancer early, its performance is limited by tissue superposition, which
can result in false-negative diagnoses [9].
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In clinical research, many researchers attempt to find criteria to distinguish pulmonary
lesions in EBUS images by using both retrospective and prospective methods [10–13].
According to previous research [14], the characteristics of malignant lesions in EBUS images
have a heterogeneous pattern, a short axis, presence of coagulation necrosis sign, round
shape, distinct margin, and absence of central hilar structure, while the characteristics of
benign lesions in EBUS images show the presence of calcification, nodal conglomeration,
and echo intensity. As a result, in visual tasks, precise and reliable EBUS interpretation
and lung cancer diagnosis are extremely challenging and also depend on the skills and
experiences of radiologists. Therefore, several computer-aided diagnosis (CAD) methods
have been proposed to address this problem.

Morikawa et al. [15] studied 30 malignant and 22 benign EBUS images from 60 patients
who were subjected to a bronchoscopy using histogram-based quantitative evaluation of
EBUS images. The regions of interest (ROIs) inside EBUS images were suitably selected by
experimenting with a phantom model submerged in water to extract six histogram features.
The extracted features of EBUS images were distinguished by using Mann–Whitney U tests.

Alici et al. [16] processed 1051 lymph nodes from 532 patients by using the sonographic
features such as grayscale, echogenicity, shape, size, margin, presence of necrosis, presence
of calcification, and absence of central hilar structure via EBUS images. Decision tree
analysis was applied to discriminate lymph nodes between benign and malignant.

Khomkham and Lipikorn [17] proposed two robust features that were extended from
a gray-level co-occurrence matrix (GLCM) as well as a technique for lung cancer classifica-
tion utilizing a genetic algorithm and support vector machines (SVM). The classification
performance with accuracy, sensitivity, specificity, and precision is 86.52%, 87.27%, 85.29%,
and 90.57%, respectively.

Gómez et al. [18] studied the performance of 22 co-occurrence statistics in conjunction
with six gray-scale quantization levels to identify breast lesions on ultrasound (BUS) images.
The 436 BUS images were utilized in this study; the number of carcinoma lesions was 217
and the number of benign lesions was 219. The best area under the curve obtained from
using 32 gray levels and 109 features was 0.81.

Radiomics analysis is also widely used in cancer diagnosis [15–18]. The concept of
radiomics analysis is to extract a massive number of quantitative features from medical
images by using shape features, first order features, second order features, or higher order
features. In recent years, deep learning (DL) methods have been used tremendously in
computer vision aided by advances in computation and very large amounts of data. In
comparison to traditional machine learning, deep learning can accurately detect appropriate
features for particular classification tasks and possibly clarify feature selection problems
without the need for complicated image processing pipelines and pattern recognition
procedures. As a superb method in DL technology, convolutional neural network (CNN)
has been significantly improved in image classification and object detection, including
medical imaging and it is now one of the dominant methods. CNN has been applied to
medical images to solve many different problems.

Jia et al. [19] presented a novel framework for properly classifying cervical cells based
on the strong feature CNN–support vector machine (SVM) model. The technique was
developed for merging the strong features recovered by GLCM and Gabor with abstract
features acquired from CNN’s hidden layers. Their method outperformed state-of-the-art
models with 99.3 percent of accuracy.

Tan et al. [20] proposed a modified CNN-based 3D-GLCM to classify polyps in colonog-
raphy. This model could handle a small number of datasets by using the advantage of
GLCM features. The experimental results show that CNN learning from GLCMs outper-
forms CNN on raw CT images in terms of classification performance. The model achieves
up to 91 percent accuracy by using two-fold cross-validation.

Islam et al. [21] created a deep learning approach consisting of the combination of
CNN and long short-term memory (LSTM) to autonomously diagnose COVID-19 via X-ray
images. The CNN was utilized for deep feature extraction, while LSTM was used for
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standard feature extraction and COVID-19 diagnosis. The experimental results reveal that
the suggested method obtained an accuracy of 99.4 percent.

Li et al. [22] used chest X-ray (CXR) images to assess the predictive performance of
DL models in the recognition and classification of pneumonia. In the pooling step, they
utilized bivariate linear mixed models. The results demonstrate that DL performed well in
differentiating bacterial from viral pneumonia and in categorizing pneumonia from normal
CXR radiographs.

Zhang et al. [23] developed a ResNet model for medical picture classification in smart
medicine by replacing global average pooling with adaptive dropout. The results of
the experiments on a GPU cluster indicate that the provided model delivered excellent
recognition performance without a significant loss in efficiency.

Cai et al. [24] developed a mask region–convolutional neural network (Mask R–CNN)
and ray-casting volume rendering algorithm-based detection and segmentation techniques
for lung nodule 3D visualization diagnosis. Mask R–CNN of weighted loss achieved
sensitivities of 88.1 percent and 88.7 percent, respectively.

Wang et al. [25] presented a new multiscale rotation-invariant convolutional neural net-
work (MRCNN) model for identifying different kinds of lung tissue using high-resolution
computed tomography. The suggested technique outperformed the most recent findings
on a public interstitial lung disease database.

Anthimopoulos et al. [26] proposed to use a deep CNN to categorize patch-based
CT image into seven groups, containing six distinct interstitial lung disease patterns and
healthy tissue. A new network architecture was created to capture the low-level textural
characteristics of lung tissue. According to the experiments, the categorization performance
was around 85.5 percent.

In 2019, Chen et al. [27] proposed the CAD system for differentiating lung lesions
via EBUS images using CNN. Because the dataset was small, data augmentation was
performed by flipping and rotating images. Then the fine-tuned CaffeNet–SVM was used
to differentiate lung lesions. The experimental results revealed that the proposed system to
achieve up to 85.4 percent accuracy.

In 2021, Lei et al. [28] proposed a low-dose CT image denoising method for improved
performance of lung nodule classification. Because scans have substantial noise, they have
significant influence on lung nodule classification. The proposed method enables coopera-
tive training of image denoising and lung nodule classification by utilizing self-supervised
loss and cross-entropy loss. According to the experiments, the simultaneous training of
image denoising and lung nodule classification increases the performance significantly.

Lei et al. [29] proposed a novel method for analyzing shape nodule with a CNN using
soft activation mapping. Soft activation mapping captures more fine-grained and discrete
attention regions to locate the low-grade malignant nodule. The results of the experiments
on the LIDC–IDRI dataset revealed that the proposed method outperformed state-of-the-art
models in terms of false positive rate.

Ensemble methods are techniques for developing multiple models and then combining
them to produce better results. Moreover, when compared to a single model, ensemble
approaches often produce more accurate results. Recently, an ensemble method has been
reported in a variety of fields. The ensemble method has been applied to medical images
to solve many different problems. Guo et al. [30] proposed an ensemble learning method
for COVID-19 diagnosis via CT obtained by using ordinal regression. This model could
enhance classification accuracy by learning both intraclass and interclass links between
phases. The experimental results revealed that as modified ResNet-18 was utilized as the
backbone; accuracy rose by 22% when compared to standard approaches.

However, most of the existing techniques need large datasets to yield satisfactory
results. Thus, this paper proposes a novel pulmonary lesion classification framework that
does not need a large training dataset by combining radiomics features and patient data
with standard features that are extracted from EBUS images as input data, then using
random forest, CNN, and weighted ensemble to classify pulmonary lesions.
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The structure of this paper is as follows: Section 2 describes the details of the materials;
Section 3 explains the proposed framework; the results and discussion are summarized in
Section 4; and Section 5 provides the conclusion.

2. Materials

The data used for evaluation of the proposed framework consist of both EBUS images
and patient data. The EBUS images were obtained by skilled radiologists from Phra-
mongkutklao Hospital, Bangkok, Thailand, between November 2011 and May 2016. The
EBUS images were obtained using an endoscopic ultrasound system (EU-ME1; Olympus)
and a 20 MHz miniature radial probe (UM-S20-17S; Olympus). The probe provides a
360-degree panoramic ultrasonic view of the lesion. The radiologists collected 200 EBUS
images from 200 patients. There are 124 malignant lesions and 76 benign lesions. The image
format is an 8-bit RGB image. The size of each image was cropped to 776 × 776 pixels.
Examples of different pulmonary lesion patterns in EBUS images are shown in Figure 1.
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Figure 1. Examples of different pulmonary lesion patterns in EBUS images: (a) benign lesion;
(b) malignant lesion (benign and malignant lesions were confirmed after core needle biopsy).

For patient data, both numerical and categorical data that were used consist of gender
(male, female), smoking history (smoker, no smoker, and ex-smoker), age (between 17 and
86), and lesion size (less than 3 cm, more than or equal to 3 cm) as shown in Table 1.

Table 1. Clinical details of the patients.

Malignant Benign

Number of patients 124 (74 male, 50 female) 76 (29 male, 47 female)
Age (Mean ± SD) 64.32 ± 13.21 57.63 ± 15.51
Lesion size ≥3 cm (75), <3 cm (49) ≥3 cm (38), <3 cm (38)

Smoking History non-smoking (52), smoking (35),
ex-smoking (37)

non-smoking (29), smoking (27),
ex-smoking (20)

3. Methods

The proposed pulmonary lesion classification framework is shown in Figure 2. The
framework is based on the integration of three modified machine learning models and the
weighted ensemble classification. The three modified machine learning models are the
radiomics feature and patient data-based model, the single image-based model, and the
multi-patch-based model.
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Figure 2. The framework of the proposed pulmonary lesion classification system.

3.1. Preprocessing

The preprocessing step consists of class balancing, mask generation, feature extraction,
and window of interest (WOI) selection. The class balancing was performed to generate
more data and balance the amount of training data for the models since our dataset contains
only 200 EBUS images. Then the EBUS images were converted to grayscale images to be
used in mask generation and the radiomics feature and patient data-based model, while the
original RGB EBUS images were used in the single image-based model and the multi-patch-
based model. Mask generation was performed to define the region of lesion for the single
image-based model and the multi-patch-based model. The window of interest selection
was performed to divide the region of lesion into small patches which were used for the
multi-patch-based model.

3.1.1. Class Balancing

Because the dataset is too small and there are more malignant images than benign
images, image augmentation, which is an effective way to increase the amount of data
without having to obtain new images, was performed to balance the data. The augmenta-
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tion methods used in this paper are rotation, vertical flipping, and horizontal flipping to
preserve the main characteristics of the images. The images were rotated by 90 and 180
degrees, and they were also flipped vertically and horizontally, as shown in Figure 3.
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Figure 3. Data augmentation for malignant and benign images.

Data augmentation combines both malignant strategy and benign strategy [26] to
balance data in both training classes; therefore, the images in malignant class were rotated
but were not flipped because there were more malignant images than benign images. From
200 EBUS images, 160 images (80% of the dataset) were used as training data and 40 images
(20% of the dataset) were used as test data. After augmentation, the total number of training
data for both classes increased from 160 to 602. The number of augmented malignant and
benign images is shown in Table 2.

Table 2. Distribution of EBUS images after class balancing.

Malignant Benign All

Original EBUS image data 99 61 160
Augmented image data 198 244 442
Total of training image data 297 305 602

3.1.2. Mask Generation

In this step, the mask that was used to represent the region of lesion within the
boundary in each EBUS image was generated. The mask generation consists of two main
parts: image enhancement and boundary detection. In the medical field, many techniques
have been introduced to enhance image quality [31,32]. Contrast stretching (CS) [33] is one
of the enhancement techniques that is used to deal with adjusting contrast and improving
image quality in the region of interest. By using CS, the bright components can be made
brighter, while the dark background can be made darker. CS operation on an image is
shown in Equation (1):

I(x, y) =


0, I(x, y) < L

I(x, y)γ, L ≤ I(x, y) ≤ H
1, I(x, y) > H

(1)

where I(x, y) is the original image, (x, y) are the coordinates of a pixel, I(x, y) is the
enhanced image, L is the low threshold intensity, H is the high threshold intensity, and γ is
a constant value.

After enhancing the images, the next step is boundary detection. There are many
boundary detection techniques [34–37] that can be applied, and the technique called ray
tracing is the technique that was used to detect the lesion boundary in this paper [37]. Once
the boundary was detected, the mask of the original image was generated by assigning 1 to
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the area inside the boundary and 0 to the area outside the boundary. Figure 4b shows the
mask of the original image in Figure 4a. Figure 4c shows the region of lesion that can be
obtained by performing AND operation between Figure 4a,b.
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interest; (d) WOIs in the intersection area of the region of interest and the ring.

3.1.3. Feature Extraction

There are several other important features that can be extracted from EBUS images
and can be utilized for lesion classification and texture analysis. Feature extraction is
performed to improve the performance of the classifier by searching for the most condensed
and informative set of features. Radiomics features are widely used in many fields of
pattern recognition, computer vision, and image classification. In this paper, the radiomics
features were extracted from the area of lesion inside the boundary, as shown in Figure 4c.
The radiomics features, which consist of six classes: shape-based 2D (9 features), GLCM
(24 features), gray-level dependence matrix (GLDM) (14 features), gray-level run length
matrix (GLRLM) (16 features), gray level size zone matrix (GLSZM) (16 features), and
neighboring gray tone difference matrix (NGTDM) (5 features), were extracted using the
pyradiomics package [38]. Another GLCM feature known as the adaptive weighted-sum of
the upper and lower triangular GLCM or AWS is also included in the radiomics features [17].
This feature is effective at determining heterogeneity, which is one of the most important
characteristics of malignancy. Besides radiomics features, four features were extracted from
patient data: gender, smoking history, age, and lesion size. The total number of features
is 89 features. All features used in this paper and their correlations are shown using the
correlation heat map [39] in Figure 5.
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3.1.4. WOI Selection

The last step of preprocessing is WOI selection which prepares the input data for
the multi-patch-based model. The WOI selection divides a lesion into small patches or
windows. The study by Morikawa et al. [15] found that the most suitable region of lesion is
the ring between 2 mm to 5 mm from the probe, thus the patches were selected from this
ring. The size of the patch was derived from the size of the biggest square window that can
fit within the ring which is 32 × 32 pixels. The patches in each ring are all the windows
that can be tiled inside the ring area as shown in Figure 4d.

3.2. The Proposed Framework

The proposed framework consists of three machine learning models that were used to
calculate the probability of being benign or malignant. The first model is based on radiomics
features and patient data, the second model is based on the original EBUS images, and the
third model is based on multiple patches of lesion.



Diagnostics 2022, 12, 1552 9 of 21

3.2.1. Radiomics Feature and Patient Data-Based Model

The first model consists of feature selection and classification as shown in Figure 6.
Feature selection was performed to reduce the number of features that are redundant
and irrelevant. Mutual information (MI) criterion [40] which is one of the feature selec-
tion techniques was used to select relevant features from radiomics features and patient
data. MI between feature and target class is a non-negative value that measures depen-
dency. It is equal to zero if and only if two variables are independent; higher value means
higher dependency.
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Figure 6. Block diagram of the radiomics feature and patient data-based model.

A subset of selected features that were obtained after applying mutual information
criterion were used as input to the random forest classifier (RF) [41]. RF is a supervised
machine learning classifier that is composed of as many decision trees on different samples
as possible and combines the output from all the trees. RF can decrease overfitting problems
in decision trees, as well as variation, and hence improve accuracy. RF is also one of a few
classifiers that can handle both categorical and numerical features. RF is trained on a subset
of selected features that contains both patient data and radiomics features. The output is
the probability of being benign or malignant, P1.

3.2.2. Single Image-Based Model

The second model uses the original EBUS images as input data for the fine-tuned
dense convolutional network 169 (DenseNet) [42]. DenseNet feature extractor was used to
extract both local and global characteristics from an image. These local characteristics focus
on the patterns of texture; i.e., homogeneity, heterogeneity, hyperechoic dot, hyperechoic
arc, anechoic area, and linear air bronchogram while global characteristics focus on shape,
size, and patterns of the texture of the whole lesion. DenseNet 169 architecture connects all
layers densely. Each layer receives input from the preceding layers and forwards its output
to the subsequent layers via its feature map. Its goal is to remove the redundant layer. Each
layer inherits collective knowledge from the layers before it. Consequently, the classification
layer receives data from all of the preceding layers as input data. DenseNet169 can produce
excellent results, but fine-tuning their hyper parameters requires expert knowledge, a large
dataset, and a significant amount of time, thus transfer learning [43] is used to solve such
problems. DenseNet 169 can reuse the previously trained model. The idea behind transfer
learning is to use a complicated and effectively pre-trained model, such as ImageNet, and
then apply the learned knowledge to a new problem with a small dataset (EBUS images
for this paper). DenseNet 169 is trained from ImageNet [44] and the weights from the
first convolutional layer in block 1 to the last convolutional layer in block 8 are frozen.
The classification layer was trained by EBUS images, separately. The output layer of the
fine-tuned DenseNet 169 for the single image-based model returned the probability of
being benign or malignant, P2. The architecture of the fine-tuned DenseNet 169 for the
single image-based model is shown in Figure 7 and the hyper-parameters of the model are
shown in Table 3.
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Figure 7. The architecture of the fine-tuned DenseNet 169 for the single image-based model.

Table 3. The hyper-parameters of DenseNet 169 architecture.

Hyper-Parameter Value

Optimizer Stochastic Gradient Descent
Learning rate 0.0001
Loss function Cross-entropy
Batch size 32

3.2.3. Multi-Patch-Based Model

The third model is called the multi-patch-based model because it uses all patches of size
32 × 32 pixels from each image as input to the proposed CNN. Since the input of this model
was the patch, the CNN feature extractor was used to extract only local characteristics. The
proposed CNN architecture for multi-patch images is shown in Figure 8.
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Figure 8. The architecture of the multi-patch-based model.

The architecture of the proposed CNN is shown in Figure 9. The input is convolved
by a series of four convolutional layers. The size of kernels of these convolutional layers
is set to 3 × 3. The numbers of kernels of four convolutional layers are 8, 16, 32, and 64,
respectively, as shown in Table 4. Every convolutional layer is followed by ReLU activation
and Max pooling. The kernel size of Max pooling layers is set to 2 × 2 with no padding.
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Figure 9. The architecture of the proposed CNN in the multi-patch-based model.

Table 4. The configuration of CNN for the multi-patch-based model.

Layer Type Kernel Size Stride Output Size

Data Input 3 × 32 × 32
Conv1 Convolution 3 × 3 1 8 × 32 × 32
Conv2 Convolution 3 × 3 1 16 × 31 × 31
Conv3 Convolution 3 × 3 1 32 × 30 × 30
Conv4 Convolution 3 × 3 1 64 × 29 × 29
FC5 Fully connected 256 × 1 × 1
FC6 Fully connected 2 × 1 × 1

Every convolutional layer is followed by pooling layer. The ReLU activation function is not shown for brevity.

The batch size which defines the number of samples that are propagated through
the network is set to 128. Dropout and batch normalization are also applied to prevent
overfitting problems. The two-dimensional output is flattened and SoftMax activation is
used to calculate the categorical probability distribution. The hyper-parameters of CNN
architecture are shown in Table 5.

Table 5. The hyper-parameters of CNN architecture for the multi-patch-based model.

Hyper-Parameter Value

Optimizer Adam
Learning rate 0.001
Loss function Cross-entropy
Batch size 128

Figure 10 depicts how we visualize the learned features. Although there are no
discernible structures, they are useful for classifying the texture of pulmonary lesions. Since
each image contains the classification results of multiple patches, the classification result
for each image can be obtained by using the decision threshold. The decision threshold
is used to classify whether a lesion in an image is benign or malignant by calculating the
probability of being malignant from the ratio of the patches that are classified as malignant
to the total number of patches of an image as defined by Equation (2).

P3(I) =
nM

nB + nM
(2)

where nM is the number of malignant patches, nB is the number of benign patches. If the
probability is less than the decision threshold value, T, then a lesion is classified as benign;
otherwise, malignant as defined by Equation (3).
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Class(I) =
{

1 i f P3(I) > T
0 otherwise

(3)

where P3(I) is the probability of being malignant I. Class 0 represents benign, and class 1
represents malignant.
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3.3. Weighted Ensemble Classification

The last step of the framework is to finally classify a lesion using the weighted ensem-
ble classification [45] with the probability distributions from the three models as defined by
Equation (4):

P(I) = w1P1(I) + w2P2(I) + w3P3(I), (4)

w1 + w2 + w3 = 1 (5)

where P(I) is the probability of being malignant, w1, w2, and w3 are the weight of each
model with the sum of these three weights equal to 1. P1 is the probability from the
radiomics feature and patient data-based RF, P2 is the probability from the single image-
based CNN, and P3 is the probability from the multi-patch-based CNN. If P(I) is less than
the cutoff value then a lesion is benign; otherwise, malignant. The optimal cutoff value is
defined by the value that yields the highest accuracy during the training.

3.4. Performance Evaluation

The proposed pulmonary lesion classification framework is evaluated on the dataset
that is randomly partitioned into two sets of 80:20. The training set consists of 80% of the
data, while the test set consists of the remaining 20% of the data.

The performance is measured using six statistical indicators: accuracy (Acc) sensitivity
(Sen), specificity (Spec), positive predictive value (PPV), negative predictive value (NPV),
and area under the curve (AUC) as defined by Equations (6)–(10).

Acc =
correctly detected cases

total cases
(6)

Sen =
correctly detected malignant cases

total malignant cases
(7)

Spec =
correctly detected benign cases

total benign cases
(8)

PPV =
correctly detected malignant cases

detected malignant cases
(9)

NPV =
correctly detected benign cases

detected benign cases
(10)
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4. Experimental Results and Discussion

This section presents the experimental setup and the experimental results with discussion.

4.1. Experimental Setup

All the experiments were performed on a workstation (Intel (R) Core (TM) 3.00 GHz
processor with 16 GB of RAM) and a NVIDIA GeForce GTX1650GPU. For preprocessing, the
experiments were performed using MATLAB R2020b. For the classification, the experiments
were implemented by python programming language with python libraries such as Keras,
pandas, Scikit-learn, and NumPy.

4.2. Experimental Results

The results of EBUS image enhancement, feature selection for the radiomics feature
and patient data-based model, and the classification results of the proposed framework are
described in this section.

4.2.1. EBUS Image Enhancement

To improve the quality of all EBUS images, the parameter setting for CS includes L and
H which were determined by sorting the intensity values of an image. From our dataset, the
optimal values for L and H were at 1 percentile and 99 percentiles of intensity values. The en-
hanced images and their histograms are shown in Figure 11. After EBUS image enhancement
was performed, more details of lesion components can be clearly seen. Figure 11a depicts the
original image, while Figure 11c depicts the enhanced image. The histograms of these two
images show that the range of intensity values was widened after using CS.
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Figure 11. (a) The original EBUS image; (b) the histogram of (a); (c) the enhanced EBUS image; (d)
the histogram of (c).
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4.2.2. Feature Selection

Mutual information was performed on radiomics features and patient data to select
only relevant features that are necessary for radiomics features and patient data-based
model, and the most effective number of selected features was 57 out of 89 features.
Figure 12 shows 57 features that were selected from both radiomics features and patient
data with MI scores greater than zero.
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4.2.3. Classification Performance

The performance of each model and the proposed classification framework were eval-
uated. For the radiomics feature and patient data-based model, the most suitable learning
parameters were determined through the training using data from 200 patients who have
both EBUS images and patient data. The RF classifier was performed on 57 features that
were selected by MI. The forest’s tree number was set to 1000, the Gini index was used
as the split quality measure, and the minimum number of samples required to divide an
internal node was set to two. Table 6 displays the RF performance. It can be seen that the RF
performance can achieve up to 85% of accuracy. The subset of relevant features consisting
of three patient data and 54 out of 85 radiomics features were chosen. This indicates that
radiomics features and patient data are important in the analysis of pulmonary lesions.
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Table 6. The classification performance of different classification models.

Acc (%) Sen (%) Spec (%) PPV (%) NPV (%) AUC

Radiomics feature and patient data-based model 85.00 92.00 73.33 85.19 84.62 0.8267
Single image-based model 75.00 88.00 53.33 75.86 72.72 0.7067
Multi-patch-based model 87.50 88.00 86.67 91.67 81.25 0.8733
Proposed framework 95.00 100 86.67 92.59 100 0.9333

The values in bold font indicate the best index values.

Figure 13a shows the confusion matrix of radiomics feature and patient data-based
model. From the test set of 40 EBUS images, two lesions out of 25 malignant lesions were
misclassified as benign, while four lesions out of 15 benign lesions were misclassified
as malignant.
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Figure 13. Confusion matrices: (a) the radiomics feature and patient data-based model; (b) the single
image-based model; (c) the multi-patch-based model; and (d) the proposed framework.

Figure 14 depicts the misclassification results from the radiomics feature and patient
data-based model. Figure 14a shows a malignant lesion that was misclassified as benign
because the texture of the lesion is homogeneous with no echoic arc and echoic dot, whereas
a benign lesion in Figure 14b was misclassified as malignant because its texture is heteroge-
neous, which is a common characteristic of malignant lesions, thus making it difficult to
classify correctly.

For the single image-based model, the original EBUS images of 200 patients were
augmented to obtain 602 images (305 images in the benign class and 297 images in the
malignant class). Figure 13b depicts the confusion matrix of the single image-based model
where three malignant lesions were misclassified as benign, and seven benign lesions were
misclassified as malignant.
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Figure 14. Misclassification of the radiomics feature and patient data-based model: (a) malignant
lesion was misclassified as benign; (b) benign lesion was misclassified as malignant.

Figure 15 depicts the misclassification of the single image-based model. Figure 15a
shows a malignant lesion that was misclassified as benign because the texture of the lesion
was quite smooth, which is a common feature of benign lesion. Figure 15b shows a benign
lesion that was misclassified as malignant because its texture is heterogeneous.
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as benign; (b) benign lesion was misclassified as malignant.

Next, the multi-patch-based model used the same image data of 200 patients that
were used for the single image-based model, but each image was divided into patches.
Depending on the region of lesion, the number of patches in each EBUS image can be
from one to fourteen. After augmentation and WOI selection, 6795 patches were obtained
with 3335 benign patches and 3460 malignant patches. After the model was trained by
6369 patches, each patch extracted from the test image was classified independently. The
classification result of each image was determined from the results of all patches using
the decision threshold. In this experiment, T was set to 0.63. It means that if the ratio of
the number of malignant patches to the total number of patches is greater than 0.63, this
EBUS image is classified as malignant; otherwise, it is classified as benign. The confusion
matrix of the multi-patch-based model is depicted in Figure 13c, which indicates that three
malignant lesions were misclassified as benign, while two benign lesions were misclassified
as malignant.



Diagnostics 2022, 12, 1552 17 of 21

Figure 16 depicts the misclassification results of the multi-patch-based model. Figure 16a
depicts a malignant lesion that was misclassified as benign, while Figure 16b depicts a
benign lesion that was misclassified as malignant. The main reason for misclassification of
Figure 16a is because the lesion region is too small, which allows only a few patches to be
used for classification; whereas the misclassification of Figure 16b is because the texture of
the lesion is heterogeneous.
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From the statistical results in Table 6, it can be seen that the radiomics feature and pa-
tient data-based model and the multi-patch-based model yield high accuracy regardless of
the number of image data; whereas the single image-based model yields the lowest accuracy.
The main problem of the single image-based model is that CNN needs a very large dataset
to obtain good results. However, the texture of the boundary and the surrounding areas
of a lesion are also important features, thus this paper proposes to integrate the statistical
results of the three models to perform the final classification using the weighted ensemble
classification to assign the weight to each model based on the classification performance.
In this paper, w1, w2, and w3 were set to 0.41, 0.08, and 0.51, based on the performance of
the models. The optimal cutoff was set to 0.53, which is defined by the value that yields the
highest accuracy during the training. The lesions were divided into two classes: benign
when P(I) ≤ 0.53 and malignant when P(I) > 0.53. The proposed framework’s confusion
matrix is depicted in Figure 13d, which indicates that all malignant lesions were correctly
classified, while only two benign lesions were misclassified as malignant.

Figure 17 depicts the effectiveness of the proposed framework. Figure 17a shows
the correct classification result of the proposed framework while two out of three clas-
sification results from three models are incorrect; i.e., the radiomics feature and patient
data-based model and the single image-based model misclassified benign lesion as ma-
lignant. Figure 17b shows the correct classification result of the proposed framework,
while two out of three classification results from three models are incorrect; i.e., the single
image-based model and the multi-patch-based model misclassified the malignant lesion
as benign.

Table 6 displays the classification performance of all classification models. The pro-
posed framework yields accuracy, sensitivity, specificity, positive predictive value, and a
negative predictive value of 95.00, 100, 86.67, 92.59, and 100, respectively. Furthermore,
by comparing the ROC curves and AUC values of all classification models in Figure 18,
the AUC value obtained by using the proposed framework is 0.9333, which is higher than
those of the other three models.
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Figure 17. Two out of three models misclassified a lesion, but the proposed framework can classify
correctly: (a) benign lesion was misclassified as malignant in radiomics feature and patient data-
based model and multi-patch-based model; (b) benign lesion was misclassified as malignant in single
image-based model and multi-patch-based model.
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The proposed framework performs well, but it still has some limitations. First, there is
no evidence that the proposed framework works well with other types of medical images.
Second, the number of patches depends on the region of lesion in each image, thus a lesion
with only a few patches can be easily misclassified in a multi-patch-based model.

5. Conclusions

In this paper, a novel pulmonary lesion classification framework for EBUS images
was proposed by integrating three classification models with the weighted ensemble
classification. The proposed framework works well with imbalanced data and small
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datasets. The radiomics feature and patient data-based model is suitable for any size of the
dataset because it classifies a lesion based on both radiomics features and patient data that
contain substantial amounts of relevant information, such as texture, shape, size, age, and
gender. It also works well for an imbalanced dataset. The single image-based model uses
the global characteristics of a lesion from the entire EBUS images to train the model. Thus,
the model can learn and extract the dominant features from an image by the model itself.
However, the disadvantage of this model is that it needs a large volume of data to obtain
good results. On the other hand, the multi-patch-based model uses local characteristics of
a lesion from each patch. By integrating these three models with the weighted ensemble
classification, the proposed framework can improve the classification results by using both
local and global characteristics of a lesion. The proposed framework achieves promising
pulmonary lesion classification results and outperforms individual models. Due to ethics
concerns, data insufficiency is a common problem in medical applications, and the proposed
framework can tackle this problem. In the future, the proposed framework will be tested
on different sets of medical images.

Author Contributions: Conceptualization, B.K. and R.L.; methodology, B.K. and R.L.; software,
B.K.; validation, B.K. and R.L.; formal analysis, B.K. and R.L.; investigation, B.K. and R.L.; writing—
original draft preparation, B.K.; writing—review and editing, R.L.; visualization, B.K.; supervision,
R.L.; project administration, R.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Anan Wattanathum, M.D. and Jutamas Dech-
sanga, M.D. of Phramongkutklao Hospital in Bangkok, Thailand, for providing EBUS images and
making recommendations about EBUS images. The authors would also like to thank the Development
and Promotion of Science and Technology Talents Project for providing financial support throughout
the doctoral program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Araujo, L.H.; Horn, L.; Merritt, R.E.; Shilo, K.; Xu-Welliver, M.; Carbone, D.P. Cancer of the lung: Non–small cell lung cancer and
small cell lung cancer. In Abeloff’s Clinical Oncology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1108–1158.e16.

3. Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjo-
mataram, I. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United
States. CA Cancer J. Clin. 2018, 68, 31–54. [CrossRef] [PubMed]

4. Wang, M.; Herbst, R.S.; Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 2021, 27,
1345–1356. [CrossRef]

5. Silvestri, G.A.; Gonzalez, A.V.; Jantz, M.A.; Margolis, M.L.; Gould, M.K.; Tanoue, L.T.; Harris, L.J.; Detterbeck, F.C. Methods
for staging non-small cell lung cancer: Diagnosis and management of lung cancer: American College of Chest Physicians
evidence-based clinical practice guidelines. Chest 2013, 143, e211S–e250S. [CrossRef]

6. Tanoue, L.T.; Tanner, N.T.; Gould, M.K.; Silvestri, G.A. Lung cancer screening. Am. J. Respir. Crit. Care Med. 2015, 191, 19–33.
[CrossRef]

7. Zaric, B.; Stojsic, V.; Sarcev, T.; Stojanovic, G.; Carapic, V.; Perin, B.; Zarogoulidis, P.; Darwiche, K.; Tsakiridis, K.; Karapantzos, I.;
et al. Advanced bronchoscopic techniques in diagnosis and staging of lung cancer. J. Thorac. Dis. 2013, 5, S359–S370. [CrossRef]
[PubMed]

8. Czarnecka-Kujawa, K.; Yasufuku, K. The role of endobronchial ultrasound versus mediastinoscopy for non-small cell lung cancer.
J. Thorac. Dis. 2017, 9, S83–S97. [CrossRef] [PubMed]

http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.3322/caac.21440
http://www.ncbi.nlm.nih.gov/pubmed/29160902
http://doi.org/10.1038/s41591-021-01450-2
http://doi.org/10.1378/chest.12-2355
http://doi.org/10.1164/rccm.201410-1777CI
http://doi.org/10.3978/j.issn.2072-1439.2013.05.15
http://www.ncbi.nlm.nih.gov/pubmed/24102008
http://doi.org/10.21037/jtd.2017.03.102
http://www.ncbi.nlm.nih.gov/pubmed/28446970


Diagnostics 2022, 12, 1552 20 of 21

9. Tian, Q.; Chen, L.A.; Wang, R.T.; Yang, Z.; An, Y. The reasons of false negative results of endobronchial ultrasound-guided
transbronchial needle aspiration in the diagnosis of intrapulmonary and mediastinal malignancy. Thoracic. Cancer 2013, 4, 186–190.
[CrossRef]

10. Kurimoto, N.; Murayama, M.; Yoshioka, S.; Nishisaka, T. Analysis of the internal structure of peripheral pulmonary lesions using
endobronchial ultrasonography. Chest 2002, 122, 1887–1894. [CrossRef]

11. Zheng, X.; Wang, L.; Chen, J.; Xie, F.; Jiang, Y.; Sun, J. Diagnostic value of radial endobronchial ultrasonographic features in
predominant solid peripheral pulmonary lesions. J. Thorac. Dis. 2020, 12, 7656–7665. [CrossRef]

12. Izumo, T.; Sasada, S.; Chavez, C.; Matsumoto, Y.; Tsuchida, T. Endobronchial ultrasound elastography in the diagnosis of
mediastinal and hilar lymph nodes. Jpn. J. Clin. Oncol. 2014, 44, 956–962. [CrossRef] [PubMed]

13. Hernández Roca, M.; Pérez Pallarés, J.; Prieto Merino, D.; Valdivia Salas, M.d.M.; García Solano, J.; Fernández Álvarez, J.;
Lozano Vicente, D.; Wasniewski, S.; Martínez Díaz, J.J.; Elías Torregrosa, C. Diagnostic value of elastography and endobronchial
ultrasound in the study of hilar and mediastinal lymph nodes. J. Bronchol. Interv. Pulmonol. 2019, 26, 184–192. [CrossRef]
[PubMed]

14. Zhi, X.; Chen, J.; Xie, F.; Sun, J.; Herth, F.J. Diagnostic value of endobronchial ultrasound image features: A specialized review.
Endosc. Ultrasound 2021, 10, 3.

15. Morikawa, K.; Kurimoto, N.; Inoue, T.; Mineshita, M.; Miyazawa, T. Histogram-based quantitative evaluation of endobronchial
ultrasonography images of peripheral pulmonary lesion. Respiration 2015, 89, 148–154. [CrossRef] [PubMed]

16. Alici, I.O.; Yılmaz Demirci, N.; Yılmaz, A.; Karakaya, J.; Özaydın, E. The sonographic features of malignant mediastinal lymph
nodes and a proposal for an algorithmic approach for sampling during endobronchial ultrasound. Clin. Respir. J. 2016, 10,
606–613. [CrossRef] [PubMed]

17. Khomkham, B.; Lipikorn, R. Pulmonary lesion classification from endobronchial ultrasonography images using adaptive
weighted-sum of the upper and lower triangular gray-level co-occurrence matrix. Int. J. Imaging Syst. Technol. 2021, 31, 1280–1293.
[CrossRef]

18. Gómez, W.; Pereira, W.C.A.; Infantosi, A.F.C. Analysis of co-occurrence texture statistics as a function of gray-level quantization
for classifying breast ultrasound. IEEE Trans. Med. Imaging 2012, 31, 1889–1899. [CrossRef]

19. Jia, A.D.; Li, B.Z.; Zhang, C.C. Detection of cervical cancer cells based on strong feature CNN-SVM network. Neurocomputing
2020, 411, 112–127.

20. Tan, J.; Gao, Y.; Liang, Z.; Cao, W.; Pomeroy, M.J.; Huo, Y.; Li, L.; Barish, M.A.; Abbasi, A.F.; Pickhardt, P.J. 3D-GLCM CNN: A
3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography. IEEE Trans.
Med. Imaging 2019, 39, 2013–2024. [CrossRef]

21. Islam, M.Z.; Islam, M.M.; Asraf, A. A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19)
using X-ray images. Inform. Med. Unlocked 2020, 20, 100412. [CrossRef]

22. Li, Y.; Zhang, Z.; Dai, C.; Dong, Q.; Badrigilan, S. Accuracy of deep learning for automated detection of pneumonia using chest
X-Ray images: A systematic review and meta-analysis. Comput. Biol. Med. 2020, 123, 103898. [CrossRef] [PubMed]

23. Zhang, Q.; Bai, C.; Liu, Z.; Yang, L.T.; Yu, H.; Zhao, J.; Yuan, H. A GPU-based residual network for medical image classification in
smart medicine. Inf. Sci. 2020, 536, 91–100. [CrossRef]

24. Cai, L.; Long, T.; Dai, Y.; Huang, Y. Mask R-CNN-based detection and segmentation for pulmonary nodule 3D visualization
diagnosis. IEEE Access 2020, 8, 44400–44409. [CrossRef]

25. Wang, Q.; Zheng, Y.; Yang, G.; Jin, W.; Chen, X.; Yin, Y. Multiscale rotation-invariant convolutional neural networks for lung
texture classification. IEEE J. Biomed. Health Inform. 2017, 22, 184–195. [CrossRef] [PubMed]

26. Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung pattern classification for interstitial lung
diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [CrossRef]

27. Chen, C.-H.; Lee, Y.-W.; Huang, Y.-S.; Lan, W.-R.; Chang, R.-F.; Tu, C.-Y.; Chen, C.-Y.; Liao, W.-C. Computer-aided diagnosis of
endobronchial ultrasound images using convolutional neural network. Comput. Methods Programs Biomed. 2019, 177, 175–182.
[CrossRef] [PubMed]

28. Lei, Y.; Zhang, J.; Shan, H. Strided Self-Supervised Low-Dose CT Denoising for Lung Nodule Classification. Phenomics 2021, 1,
257–268. [CrossRef]

29. Lei, Y.; Tian, Y.; Shan, H.; Zhang, J.; Wang, G.; Kalra, M.K. Shape and margin-aware lung nodule classification in low-dose CT
images via soft activation mapping. Med. Image Anal. 2020, 60, 101628. [CrossRef]

30. Guo, X.; Lei, Y.; He, P.; Zeng, W.; Yang, R.; Ma, Y.; Feng, P.; Lyu, Q.; Wang, G.; Shan, H. An ensemble learning method based on
ordinal regression for COVID-19 diagnosis from chest CT. Phys. Med. Biol. 2021, 66, 244001. [CrossRef]

31. Salem, N.; Malik, H.; Shams, A. Medical image enhancement based on histogram algorithms. Procedia Comput. Sci. 2019, 163,
300–311. [CrossRef]

32. Janani, P.; Premaladha, J.; Ravichandran, K. Image enhancement techniques: A study. Indian J. Sci. Technol. 2015, 8, 1–12.
[CrossRef]

33. Yang, C.-C. Image enhancement by modified contrast-stretching manipulation. Opt. Laser Technol. 2006, 38, 196–201. [CrossRef]
34. Chalana, V.; Kim, Y. A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans. Med.

Imaging 1997, 16, 642–652. [CrossRef] [PubMed]

http://doi.org/10.1111/1759-7714.12010
http://doi.org/10.1378/chest.122.6.1887
http://doi.org/10.21037/jtd-2020-abpd-004
http://doi.org/10.1093/jjco/hyu105
http://www.ncbi.nlm.nih.gov/pubmed/25121724
http://doi.org/10.1097/LBR.0000000000000550
http://www.ncbi.nlm.nih.gov/pubmed/30303859
http://doi.org/10.1159/000368839
http://www.ncbi.nlm.nih.gov/pubmed/25613475
http://doi.org/10.1111/crj.12267
http://www.ncbi.nlm.nih.gov/pubmed/25619495
http://doi.org/10.1002/ima.22517
http://doi.org/10.1109/TMI.2012.2206398
http://doi.org/10.1109/TMI.2019.2963177
http://doi.org/10.1016/j.imu.2020.100412
http://doi.org/10.1016/j.compbiomed.2020.103898
http://www.ncbi.nlm.nih.gov/pubmed/32768045
http://doi.org/10.1016/j.ins.2020.05.013
http://doi.org/10.1109/ACCESS.2020.2976432
http://doi.org/10.1109/JBHI.2017.2685586
http://www.ncbi.nlm.nih.gov/pubmed/28333649
http://doi.org/10.1109/TMI.2016.2535865
http://doi.org/10.1016/j.cmpb.2019.05.020
http://www.ncbi.nlm.nih.gov/pubmed/31319946
http://doi.org/10.1007/s43657-021-00025-y
http://doi.org/10.1016/j.media.2019.101628
http://doi.org/10.1088/1361-6560/ac34b2
http://doi.org/10.1016/j.procs.2019.12.112
http://doi.org/10.17485/ijst/2015/v8i22/79318
http://doi.org/10.1016/j.optlastec.2004.11.009
http://doi.org/10.1109/42.640755
http://www.ncbi.nlm.nih.gov/pubmed/9368120


Diagnostics 2022, 12, 1552 21 of 21

35. Tomar, N.K.; Jha, D.; Riegler, M.A.; Johansen, H.D.; Johansen, D.; Rittscher, J.; Halvorsen, P.; Ali, S. Fanet: A feedback attention
network for improved biomedical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 2021, 2103, 17235. [CrossRef]
[PubMed]

36. Jha, D.; Ali, S.; Tomar, N.K.; Johansen, H.D.; Johansen, D.; Rittscher, J.; Riegler, M.A.; Halvorsen, P. Real-time polyp detection,
localization and segmentation in colonoscopy using deep learning. IEEE Access 2021, 9, 40496–40510. [CrossRef]

37. Suraworachet, W.; Lipikorn, R.; Wattanathum, A. Pulmonary lesion boundary detection from an endobronchial ultrasonogram
using polar sector maximum intensity. Int. J. Electron. Electr. Eng. 2016, 4, 185–188. [CrossRef]

38. Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.-C.; Pieper, S.;
Aerts, H.J. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [CrossRef]

39. Roque, F.S.; Jensen, P.B.; Schmock, H.; Dalgaard, M.; Andreatta, M.; Hansen, T.; Søeby, K.; Bredkjær, S.; Juul, A.; Werge, T. Using
electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Comput. Biol. 2011, 7, e1002141.
[CrossRef]

40. Ross, B.C. Mutual information between discrete and continuous data sets. PLoS ONE 2014, 9, e87357. [CrossRef]
41. Azar, A.T.; Elshazly, H.I.; Hassanien, A.E.; Elkorany, A.M. A random forest classifier for lymph diseases. Comput. Methods

Programs Biomed. 2014, 113, 465–473. [CrossRef]
42. Wang, S.-H.; Zhang, Y.-D. DenseNet-201-based deep neural network with composite learning factor and precomputation for

multiple sclerosis classification. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 16, 1–19. [CrossRef]
43. Shermin, T.; Teng, S.W.; Murshed, M.; Lu, G.; Sohel, F.; Paul, M. Enhanced transfer learning with imagenet trained classification

layer. In Proceedings of Pacific-Rim Symposium on Image and Video Technology. In Pacific-Rim Symposium on Image and Video
Technology; Springer: Cham, Switzerland, 2019; pp. 142–155.

44. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 60, 1097–1105. [CrossRef]

45. Jimenez, D. Dynamically weighted ensemble neural networks for classification. In Proceedings of the 1998 IEEE International
Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227),
Anchorage, AK, USA, 4–9 May 1998; Volume 751, pp. 753–756.

http://doi.org/10.1109/TNNLS.2022.3159394
http://www.ncbi.nlm.nih.gov/pubmed/35333723
http://doi.org/10.1109/ACCESS.2021.3063716
http://doi.org/10.18178/ijeee.4.2.185-188
http://doi.org/10.1158/0008-5472.CAN-17-0339
http://doi.org/10.1371/journal.pcbi.1002141
http://doi.org/10.1371/journal.pone.0087357
http://doi.org/10.1016/j.cmpb.2013.11.004
http://doi.org/10.1145/3341095
http://doi.org/10.1145/3065386

	Introduction 
	Materials 
	Methods 
	Preprocessing 
	Class Balancing 
	Mask Generation 
	Feature Extraction 
	WOI Selection 

	The Proposed Framework 
	Radiomics Feature and Patient Data-Based Model 
	Single Image-Based Model 
	Multi-Patch-Based Model 

	Weighted Ensemble Classification 
	Performance Evaluation 

	Experimental Results and Discussion 
	Experimental Setup 
	Experimental Results 
	EBUS Image Enhancement 
	Feature Selection 
	Classification Performance 


	Conclusions 
	References

