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Abstract

Aging is the largest risk factor for a variety of noncommunicable diseases. Model

organism studies have shown that genetic and chemical perturbations can extend

both lifespan and healthspan. Aging is a complex process, with parallel and interact-

ing mechanisms contributing to its aetiology, posing a challenge for the discovery of

new pharmacological candidates to ameliorate its effects. In this study, instead of a

target‐centric approach, we adopt a systems level drug repurposing methodology to

discover drugs that could combat aging in human brain. Using multiple gene expres-

sion data sets from brain tissue, taken from patients of different ages, we first iden-

tified the expression changes that characterize aging. Then, we compared these

changes in gene expression with drug‐perturbed expression profiles in the Connec-

tivity Map. We thus identified 24 drugs with significantly associated changes. Some

of these drugs may function as antiaging drugs by reversing the detrimental changes

that occur during aging, others by mimicking the cellular defence mechanisms. The

drugs that we identified included significant number of already identified pro-

longevity drugs, indicating that the method can discover de novo drugs that melio-

rate aging. The approach has the advantages that using data from human brain

aging data, it focuses on processes relevant in human aging and that it is unbiased,

making it possible to discover new targets for aging studies.
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1 | INTRODUCTION

Life expectancy has increased steadily in many countries worldwide.

As aging is the major risk factor for multiple pathologies, including

cardiovascular diseases, neurodegenerative disorders and cancer

(Niccoli & Partridge, 2012), finding interventions that can increase

health during aging is of importance. Lifespan of laboratory model

organisms can be greatly extended by genetic and environmental

interventions, which also improve health and function during aging

(Clancy et al., 2001; Lucanic, Lithgow, & Alavez, 2013; Xiao et al.,

2013). Many of these interventions target components of the nutri-

ent‐sensing network and decrease the activity of IGF/insulin and/or

TOR signalling (Fontana, Partridge, & Longo, 2010). Moreover, diet-

ary restriction (DR), decreased food intake without malnutrition, can

increase lifespan and further supports the importance of nutrient‐
sensing pathways in aging (Fontana & Partridge, 2015).

Pharmacological intervention can also extend animal lifespan.

The DrugAge database reports drug‐induced lifespan extensions up

to 1.5‐fold for Caenorhabditis elegans, 1.1‐fold for Drosophila
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melanogaster and 31% for Mus musculus (Barardo et al., 2017). Some

of these chemicals may mimic the effects of DR (Fontana et al.,

2010). For example, resveratrol, which induces a similar gene expres-

sion profile to dietary restriction (Pearson et al., 2008), can increase

lifespan of mice on a high‐calorie diet, although not in mice on a

standard diet (Strong et al., 2013). Rapamycin, directly targets the

mTORC1 complex, which plays a central role in nutrient‐sensing net-

work and has an important role in lifespan extension by DR (Mair &

Dillin, 2008). Rapamycin extends lifespan by affecting autophagy and

the activity of the S6 kinase in flies. However, it can further extend

the fly lifespan beyond the maximum achieved by DR, suggesting

that different mechanisms might be involved (Bjedov et al., 2010).

Nevertheless, the mechanisms of action for most of the drugs are

not well known.

Several studies have taken a bioinformatics approach to discover

drugs that could extend lifespan in model organisms. For instance,

the Connectivity Map (CMap), a database of drug‐induced gene

expression profiles, has been used to identify DR mimetics and

found 11 drugs that induced expression profiles significantly similar

to those induced by DR in rats and rhesus monkeys (Calvert et al.,

2016). Another study generated a combined score reflecting both

the aging relevance of drugs based on the GenAge database and GO

annotations as well as the likely efficacy of the drugs in model

organisms, using structural analyses and other criteria such as solu-

bility (Ziehm et al., 2017). A machine learning approach has been

used to identify prolongevity drugs based on the chemical descrip-

tors of the drugs in DrugAge database and GO annotations of their

targets (Barardo et al., 2017). Using DrugAge as a training set, the

results reflect the known pathways in aging, and thus identified anti-

cancer and antiinflammatory drugs, compounds related to mitochon-

drial process and gonadotropin‐releasing hormone antagonists.

Another study took a pharmacological network approach to charac-

terize antiaging drugs, first screening a large library of 1,280 com-

pounds for lifespan extension in C. elegans. The 60 hits from the

screen were used to construct a pharmacological network and clus-

tered in certain pharmacological classes, mainly related to oxidative

stress (Ye, Linton, Schork, Buck, & Petrascheck, 2014).

Whereas most studies have focussed on model organisms, one

study used the known prolongevity drugs from the Geroprotectors

database (Moskalev et al., 2015) and asked whether these could be

functional in humans (Aliper et al., 2016). Using young and old

human stem cell expression profiles, they calculate a geroprotective

score based on the GeroScope algorithm, which scores drugs based

on the drug targets and age‐associated expression changes in related

pathways (Zhavoronkov, Buzdin, Garazha, Borisov, & Moskalev,

2014). Testing the top hits in senescent human fibroblast cultures,

they suggest several geroprotectors for humans as well as showing

the potential in using human gene expression data for drug studies.

Although previous studies tried to discover drugs that can affect

aging, they all focus on genes or drugs related to lifespan regulation.

The role of these drugs in promoting healthy aging in humans is still

an open question. In this study, using gene expression data for

human brain aging, we aimed to discover not only new prolongevity

drugs but also those that can improve health during aging. Human

brain undergoes substantial structural changes with age, including

changes in brain weight, white and grey matter volumes. Accompa-

nied by the altered intercellular communication and synaptic loss,

these changes bring about cognitive decline, neurodegeneration and

memory loss (Salthouse, 2009). The biological processes showing a

change in expression include pathways related to synaptic and cogni-

tive functions as well as proteostasis (Lu et al., 2004), suggesting

gene expression changes in the aging brain could be used as a surro-

gate to find drugs to target detrimental effects.

Here, we extended the previous approaches to identification

of new antiaging drugs for humans, by focusing directly on human

aging data. We used a framework that does not require any prior

knowledge and is thus robust to biases in the literature and data-

bases on aging. Moreover, using human age‐series data, this

methodology has the potential to discover drugs affecting both

lifespan and healthspan. Through a meta‐analysis of multiple gene

expression data sets, we first compiled a robust signature that

characterizes aging in human brain. We then used drug‐induced
RNA expression profiles deposited in CMap (Lamb, 2006) to iden-

tify a list of potential drug candidates that could influence human

brain aging. We then assessed the performance of the method in

relation to previous knowledge and identified novel candidate

geroprotective drugs.

2 | RESULTS

2.1 | Analysis of age‐related changes in RNA
expression in human brains

We analysed data from seven, published, microarray‐based studies

of age‐related changes in RNA expression (Barnes et al., 2011; Ber-

chtold et al., 2008; Colantuoni et al., 2011; Kang et al., 2011; Lu

et al., 2004; Maycox et al., 2009; Somel et al., 2010, 2011 ). The

data came from 22 different brain regions, and the ages of the

donors ranged from 20 to 106 years (Figure 1a and Supporting

Information Figure S1a). The data for each brain region in each study

were analysed separately, resulting in 26 data sets.

To characterize the association between the gene expression and

age, we calculated the Spearman correlation between the expression

level and age, for each gene, in each data set separately. We first

calculated the number of significant changes (FDR‐corrected
p < 0.05) in each data set (Supporting Information Figure S2).

Whereas there were two data sets with a large number of significant

changes, most of the data sets did not show substantial significant

change. This can be explained by several factors, most importantly

(a) most of the data sets had a small sample size, providing insuffi-

cient power to detect changes in most of the cases; and (b) Spear-

man's correlation test calculates significant monotonic changes,

whereas it is likely that many of the changes are not exclusively

monotonic throughout aging. Thus, we applied another approach,

using the correlation coefficient to capture significant trends across

data sets, instead of within a data set (see Methods). Whereas the
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p‐value is affected by the number of the samples and the strength

of the monotonic relationship (Figure 1b), the sign of the correlation

coefficient can be used to capture consistent trends of up‐ or down-

regulation once coupled with an appropriate testing scheme. This

strategy requires the data sets to be concordant and reflect genuine

age‐related changes. We first investigated whether this assumption

was valid. To assess the concordance among data sets, we used

Spearman's correlation coefficients and calculated the correlation

between expression–age correlations between data sets (Figure 1c).

We observed a weak correlation with a median pairwise correlation

coefficient of 0.29. To calculate the significance of this correlation,

we developed a stringent permutation scheme specifically designed

to account for the dependence between genes as well as the data

sets (see Methods for detail). We concluded that a median correla-

tion coefficient of 0.09 would be expected by chance and that our

observation (median ρ = 0.29), is statistically significant (p < 0.001).

Based on these correlations, data sets clustered according to the

data source rather than to the brain region. This observation is in

line with the previous studies suggesting that aging‐related changes

are small and heterogeneous, making them difficult to detect (Somel,

Khaitovich, Bahn, Pääbo, & Lachmann, 2006). We therefore tested

for significant correlations across data sets from different studies.

When we excluded the correlation coefficients among the data sets

generated by the same studies, we still observed a significant corre-

lation coefficient of 0.22 (permutation test p < 0.001, ρ = −0.002

would be expected by chance), showing that we have significant cor-

relations among different data sources as well. Using these correla-

tions, we proceeded to compile the aging signatures, reflecting

consistent trends.

2.2 | Defining the aging signature

To construct a robust aging signature, we identified the age‐related
changes that were observed across all data sets, irrespective of the

effect size. We thus focussed on global age‐related changes in the

brain, rather than region‐specific changes, and the set of genes that

showed gene expression changes in the same direction across all

data sets (Figure 2a). This profile consisted of only 100 upregulated

and 117 downregulated genes (Supporting Information Table S2, Fig-

ures S3 and S4), “the aging signature”.
To establish the robustness of the aging signature, we calculated

the statistical significance of the number of consistent changes with

the same permutation scheme used to test the correlations among

data sets. This methodology randomizes the age of each individual,

making it possible to test the null hypothesis where there is no asso-

ciation between expression and age while retaining the dependence

between genes and data sets (see Methods for details). The number

of consistent expression changes across brain regions was significant

(p < 0.001; Figure S6a,b), establishing that the aging signature

indeed has biological meaning.

To further test the robustness of the aging signature, we used an

independent data set, consisting of gene expression in human brain

generated by the GTEx Consortium (Ardlie et al., 2015), consisting of

data from 99 individuals, 13 brain regions and ages between 20 and

79 (Supporting Information Figure S1a, and Table S1). These data

were generated using RNA‐seq, allowing us to assess the robustness

of the aging signature to different technology platforms. We used

pipeline previously applied to the microarray data to calculated age‐
related expression changes for each gene in each brain region
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separately. The pairwise correlations between the GTEx data sets

were higher than with the other data set, and they tended to cluster

together (Supporting Information Figure S5). We found 1,189 upreg-

ulated and 1,352 downregulated genes that showed the same direc-

tion of change across all GTEx brain regions (Supporting Information

Table S2), compared with only 100 and 117 in the microarray aging

signature. A likely explanation is that samples from different brain

regions from the same individuals were used in GTEx, whereas the

microarray aging signature combined seven independent studies and

different microarray platforms. The numbers of shared expression

changes based on permutations were 127 and 131.5, for down‐ and
upregulated genes, suggesting a higher false positive rate in the

GTEx data set. Nevertheless, the numbers of consistent up‐ and

downregulated genes in the GTEx data set were also significant

(p = 0.001; Supporting Information Figure S6c,d). The numbers of

common up‐ and downregulated genes across the GTEx and microar-

ray signatures were 50 and 48, respectively, both statistically signifi-

cant (binomial test p < 2.2e‐16 for both), demonstrating that the

aging signature was reproducible.

2.3 | Biological processes associated with the aging
signature

We next investigated the biological processes associated with the

microarray aging signature. Using the genes that were consistently

expressed in all data sources as background, we did Gene Ontology
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enrichment tests for consistently up‐ and downregulated genes, sep-

arately (Figure 3, Supporting Information Table S3 [upregulated],

Table S4 [downregulated]). Downregulated genes were enriched in

synaptic functions and biosynthetic processes (FDR‐corrected
p < 0.05), whereas differentiation and proliferation‐related categories

showed enrichment for the upregulated genes (FDR‐corrected
p < 0.05). These results are consistent with the findings of earlier

brain aging transcriptome studies (Lu et al., 2004; Naumova et al.,

2012; Xue et al., 2007). Oddly, ossification‐related biological pro-

cesses also showed significant enrichment for the upregulated genes.

However, except for one gene, these ossification‐related categories

shared all genes with the more generic development‐related cate-

gories. Thus, this result could be interpreted as a general upregula-

tion of the development‐related processes rather than ossification‐
related categories.

We repeated the enrichment analysis using the GTEx aging sig-

nature and found 194 and 256 GO BP categories as significantly

associated with down‐ and upregulated genes, respectively (Support-

ing Information Tables S7 and S8). As the number of genes in the

GTEx signature is higher, we had more power to detect smaller

changes and thus had a higher number of significant associations.

However, the effect sizes (odds ratios) for each GO BP category cal-

culated for microarray and the GTEx aging signature were correlated

(Figure S7). Correlations between the odds ratios calculated for all of

the GO categories calculated in both methods were 0.46 and 0.37,

for the enrichment in the down‐ and upregulated genes, respectively.

Correlations increase when we considered only the GO categories

that are significantly associated with at least one of the aging signa-

tures: 0.55 and 0.60, for the enrichment in the down‐ and upregu-

lated genes, respectively. This further shows that the aging

signatures are robust. The categories enriched in downregulated

genes included biological processes related to neuronal and synaptic

functions, autophagy, posttranslational modifications and translation

(see Supporting Information Table S7 for the full list). Processes

related to response pathways, immune response, macromolecule

organization and lipid metabolism showed enrichment in upregulated

genes (see Supporting Information Table S8 for the full list). Interest-

ingly, categories related to ossification were also among the GO cat-

egories significantly associated with upregulation, based on GTEx

data.

2.4 | Mapping the aging signature onto drug‐
perturbed expression profiles

The Connectivity Map is a database of drug‐perturbed gene expres-

sion profiles (Lamb, 2006). It consists of 6,100 gene expression pro-

files for 1,309 drug perturbation experiments performed on five

different cell lines. The CMap algorithm uses a modified Kol-

mogorov–Smirnov test statistic to calculate the similarity of a drug‐
perturbed expression profile to the gene expression profile used to

query the database. A positive similarity score means that the drug‐
perturbed expression profile is similar to the query, whereas a nega-

tive score indicates a negative correlation (Figure 2b). Based on the

random permutations, the statistical significance of the similarity

score for each drug is calculated. Thus, the p‐value shows the proba-

bility of finding the same association when a random signature is

supplied. We queried the CMap database and identified drugs that

showed significant associations in either direction with the aging sig-

natures. To determine the robustness of this procedure, we queried

the CMap data using the microarray aging signature, and the top

trans-synaptic signalling
trans-synaptic signalling

thioester biosynthetic processtyntster biosyntnthbiosyntthosyster b ynbiothioethioester bioste sbs or es the

cofactor biosynthetic processor bi rocer

coenzyme biosyntheticthehenthynth
processssocesssss

thioester metabolic process(a) (b)

F IGURE 3 Gene Ontology Biological Process Categories significantly enriched in (a) down‐ and (b) upregulated genes in the microarray
aging signature. Red circles represent the genes, and diamonds show the significantly associated GO categories, where FDR adjusted p < 0.05.
The size of the diamonds represents the effect size (odds ratio)
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500 upregulated and 500 downregulated genes from the GTEx aging

signature (see Methods). The correlation was significant (r = 0.52,

p < 2.2e‐16; Supporting Information Figure S3a) showing that the

two aging signatures produce reproducible overlaps with the CMap

database. To test the reproducibility and not bias the results due to

the technology used to generate the data, we preferred not to

combine aging signatures but report the resulting drug hits from the

two signatures separately. Nevertheless, it is noteworthy that the

drug similarity scores, generated using the overlap between

signatures, show significant correlation with the lists generated using

both microarray and GTEx signatures (Supporting Information

Figure S12).

Querying the CMap database, we identified 13 drugs significantly

associated (FDR‐corrected p < 0.05) with the microarray aging signa-

ture (Table 1 and Figure 4). Four of these drugs were previously

shown to extend lifespan in worms or flies in at least one experi-

ment (Supporting Information Table S9). The number of prolongevity

drugs rediscovered using this methodology was statistically signifi-

cant (p = 0.004), and only one drug would be expected based on

10,000 random permutations of drugs. Repeating the same analysis

with the GTEx aging signature, we identified 18 drugs, seven of

which were in common with the microarray results, including the

four known prolongevity drugs. In total, 24 drugs were significantly

associated with at least one of the aging signatures. The correlation

between the drug similarity scores for these 24 drugs calculated

based on the microarray and GTEx data was 0.88 (p < 9.44e‐09;
Supporting Information Figure S3b), indicating high concordance. As

the similarity scores show high correlation, the rest of the results will

be presented for the 24 drugs that are associated with at least one

of the aging signatures.

Overall, the method rediscovered seven known prolongevity

drugs in DrugAge database (p = 0.00023, based on 100,000 random

permutations): resveratrol, LY‐294002, wortmannin, sirolimus (also

known as rapamycin), trichostatin A, levothyroxine sodium and gel-

danamycin (Supporting Information Table S9).

2.5 | Targets of the drugs

Next, we investigated the targets of these 24 drugs, using the

ChEMBL, PubChem and DrugBank databases as well as through

manual curation of the literature (Table 1), and whether these targets

were previously implicated in aging, using GenAge human and model

organism databases (Figure 5). Except for four (rifabutin, securinine,

thioridazine, trifluoperazine); all drugs or their target genes had been

previously implicated in aging. Moreover, the drug–target association
network showed several clusters with multiple drugs sharing the

same targets: (a) Quinostatin was in the same cluster with two

known prolongevity drugs, wortmannin and LY‐294002, targeting

PI3 K subunits; (b) tanespimycin and alvespimycin shared the same

target with another DrugAge drug, geldanamycin, targeting HSP90;

(c) vorinostat shared one of its targets, HDAC6, with trichostatin A,

another DrugAge drug; (d) thioridazine and trifluoperazine had dopa-

mine and serotonin receptors as targets; and (e) irinotecan and

camptothecin shared TOP1 as their target. The fact that drugs tar-

geting the same proteins/acting through the same mechanism had

similar CMap similarity scores (Figure 4) further shows that our

results are biologically relevant and reflects potential mechanisms to

target aging.

TABLE 1 The drugs that are significantly associated (FDR‐
corrected p < 0.05) with at least one of the aging signatures

Drug name
Array
score

GTEx
score Target or mechanism of action

Securinine −0.65* −0.50* GABRA1‐5, GABRB1‐3

Levothyroxine
sodium

−0.41 −0.47* THRA, THRB

Cinchonine −0.2 −0.65* CYP2D6

Geldanamycin −0.45* −0.38* HSP90AA1

15‐delta
prostaglandin

J2

−0.38* −0.42* PPARG

Rifabutin −0.16 −0.6* BCL6

Atropine oxide −0.35* −0.17 –

Tanespimycin −0.18 −0.31* HSP90AA1

Alvespimycin −0.08 −0.33* HSP90AA1

Vorinostat 0.02 −0.41* HDAC1, HDAC2, HDAC3,
HDAC6

Trichostatin A 0.09 −0.3* HDAC6, HDAC7, HDAC8

Trifluoperazine 0.32* 0.13 DRD2, DRD3, DRD4, HTR2A,

HTR2C

Tretinoin 0.42* 0.12 RARA, RARB, RARC

LY‐294002 0.38* 0.21* PI3KCG

Thioridazine 0.35* 0.25 DRD2, DRD3, DRD4, HTR2A,

HTR2C

Sirolimus 0.28* 0.33* mTOR

Wortmannin 0.29* 0.42* PI3KR1, PI3KCA, PI3KCG

Resveratrol 0.42 0.48* SULT1B1, YARS, LTA4H, TTR,

NQO2, PTGS2, PTGS1, MAT2B,

CSNK2A1, CYP3A4, ESR1,
PPARG, SIRT1, SIRT5, CYP1A2,
CYP1A1, CYP1B1, NCOA2,

TNNC1

Emetine 0.52* 0.41 Protein synthesis inhibition

Daunorubicin 0.43 0.52* TOP2A, TOP2B

GW‐8510 0.47 0.55* CDK2, CDK5

Irinotecan 0.39 0.78* TOP1

Camptothecin 0.63* 0.56 TOP1

Quinostatin 0.86* 0.76* PI3KCA

Notes. Drug names in bold shows the drugs in DrugAge database.

“Score” is the mean similarity score given in the CMap output, based on

KS test.

*The similarity scores denoted with asterisk show the significant associa-

tions. The list is ordered by the mean of the similarity scores from nega-

tive to positive. Target or mechanism of action is manually curated from

literature (the relevant literature is given in the Supporting Information)

or extracted from CHEMBL, DrugBank and PubChem databases. The tar-

gets written in bold are found in the GenAge model organism or GenAge

human databases.
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2.6 | Drugs can act both by reversing aging effects
and mimicking responses

The general expectation from an “omics”‐based drug repurposing

study is the identification of drugs that can reverse the abnormalities

detected in the disease state, that is, identification of drugs with

negative similarity scores (Duran‐Frigola, Mateo, & Aloy, 2017). Fol-

lowing the same logic, one might expect drugs with antiaging poten-

tial to have negative scores. Interestingly, some of the known

prolongevity drugs had positive similarity scores to the aging signa-

tures, meaning that the drug‐induced profile was similar to the aging

signature. A plausible explanation for this observation is that aging

signatures may partly reflect cellular defence responses, helping to

alleviate the damaging effects of aging.

2.7 | Characterizing the biological functions
associated with prolongevity drugs

To identify the biological processes associated with the changes that

were reversed or mimicked by the prolongevity drugs, we used the

drugs documented in DrugAge that were rediscovered in our analy-

sis. We grouped the microarray aging signature into five categories,

based on the expression changes in aging (up or down), and the pro-

longevity drug‐induced profile (up, down or inconsistent; Supporting

Information Table S5). To compile the prolongevity drug profile, for

each probe‐set in the microarray aging signature, we asked whether

the seven DrugAge drugs induced similar changes. If the same direc-

tion of change was induced by more than half of these DrugAge

drugs, then we included these changes in the prolongevity drug pro-

file (see Methods for the details). We then analysed the biological

processes associated with the genes in these categories. The number

of genes is small, with no significant changes after multiple test cor-

rection. We therefore report the associations based on the highest

odds ratios only. For genes downregulated in aging, the changes

mimicked by the drugs were associated with autophagy and meta-

bolic processes (Supporting Information Table S6), whereas for

upregulated genes, prolongevity drugs tended to mimic the changes

in protein complex/cellular complex assembly‐related functions and

to reverse the changes observed in protein localization and immune‐
related functions (Supporting Information Table S6). These findings

are consistent with the mechanism of action for the most well‐
known prolongevity drugs. For example, sirolimus (rapamycin) is an

immunosuppressant approved for human use, and similar drugs can

enhance the response of elderly humans to immunization against

influenza (Mannick et al., 2014).

2.8 | Similarity among significant drugs based on
the expression changes at the functional level

To analyse the similarities among drugs based on expression level

changes, we performed a gene‐set enrichment analysis (GSEA) for

the drug‐induced expression profiles, including all genes irrespective

of whether a given gene is in the aging signature (see Methods). To

measure the similarity between drugs, we calculate the Spearman

rank correlation coefficients between the enrichment scores and

then cluster drugs based on these correlation coefficients. Notably,

drugs targeting the same proteins or pathways, for example, PI3 K

inhibitors LY294002, wortmannin and quinostatin, clustered

together. Using this functional level approach, we grouped drugs into

four groups: (a) known prolongevity drugs; (b) drugs clustering

together with at least one prolongevity drug; (c) drugs which clus-

tered together but did not cluster with any known prolongevity

drugs; and (d) drugs which did not cluster with any other drugs (Sup-

porting Information Figure S10).

2.9 | Aging signature in other tissues

As our analysis is based on an aging signature compiled using only

the brain tissue, we also explored whether this signature is represen-

tative of the other tissues. A plausible way to approach this question

is repeating the same analysis using other tissues. However, it is not

straightforward because (a) the number of data sets available for the

other tissues limits the capacity of our approach to compile

atropine oxide

securinine

geldanamycin

levothyroxine sodium

cinchonine

rifabutin

tanespimycin

vespimycin

trichostatin A

vorinostat

sirolimus

wortmannin

L

thioridazine

tretinoin

tr razine

quinostatin

irinotecan

camptothecin

emetine

resveratrol

daunorubicin

Array GTEx

F IGURE 4 Similarity score table for the drugs having at least
one significant association with the aging signatures. Each row
corresponds to a drug and columns correspond to two independent
aging signatures—using the microarray and the GTEx data sets. The
size of score labels indicates the significance of the results (FDR‐
corrected p < 0.05). The row labels written in bold indicates the
drugs in the DrugAge database
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consistent signatures, increasing false positives; and (b) we find that

the aging‐related changes in other tissues are not as consistent as in

brain (Supporting Information Figure S11a). Thus, we choose another

approach and asked whether the direction of change for the aging

signature we compiled is similar to the direction of change in other

tissues (Supporting Information Figure S11c). We also tested the sig-

nificance of the similarity in the direction of change based on ran-

dom permutations. As expected, GTEx brain data showed the

highest per cent similarity to the array signature. Eight of 35 data

sets showed more dissimilarity for the downregulated genes (i.e., per

cent similarity was lower than 50%), whereas only two were statisti-

cally significant, namely, liver and atrial appendage. Similarly, only 6/

35 data sets showed more dissimilarity for the upregulated genes,

whereas none was significant. We repeated the analysis with the

GTEx signature and observed similar results with only exception that

there were five data sets with significant dissimilarity for the down-

regulated genes (Supporting Information Figure S11e). Thus, it is

possible that brain signature includes some brain‐specific changes

but based on significant similarity, we can say it is also representa-

tive of other tissues.

3 | DISCUSSION

In this study, using gene expression data, we identified a set of drugs

that are likely to modulate aging in the human brain. Using a meta‐
analysis approach, we generated a reproducible aging signature that

represents multiple brain regions and is independent of the platform

used for the detection of expression. Using CMap, we identified

drugs highly associated with this aging signature. Based on the Dru-

gAge database, seven of these drugs were previously tested on

model organisms and prolonged lifespan in at least one experiment.

The fact that we successfully rediscovered a statistically significant

number of known lifespan modulators, without using any prior drug

aging information, suggests that the other drugs that we identified

also have a high potential to be modulators of the aging process/

lifespan. Eleven of these had targets implicated in aging, based on

GenAge database (Tacutu et al., 2018). These targets include exten-

sively studied aging‐modulators such as PI3 K subunits and histone

deacetylases. We also identified a group of novel candidates that are

not in aging databases, which can offer new targets and mechanisms

to modulate aging. These include drugs targeting serine/threonine,

v m
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F IGURE 5 Schematic representation of the drug–target associations as a network. Blue and red nodes show drugs and targets,
respectively. The drugs with a light blue background are present in DrugAge database and the targets with a pink background are in either
GenAge model organism or GenAge human databases

8 of 14 | DONERTAS ET AL.



muscarinic acid, and GABA(A) receptors, protein translation and

BCL6 gene. Moreover, as we used human expression data, the drugs

we identified may affect not only lifespan but also the healthspan by

improving the cognitive functions. Indeed, some of the drugs or their

targets, for example, tretinoin targeting RAR genes and GW‐8510
targeting CDK2 and CDK5, were previously linked to neuroprotec-

tive functions or neurodegenerative diseases. A literature research

presented in Supporting Information provides more information on

the potential mechanisms of these top drugs and their potential

effect on both lifespan and healthspan in humans.

“Omics”‐based drug repurposing studies, such as the CMap, aim

to identify drugs reversing the profile induced by a biological state

of interest. Aging is a time‐dependent, complex phenomenon, which

induces subtler changes compared to development (Dönertaş et al.,

2017), or to a disease state such as Alzheimer's (Avramopoulos, Szy-

manski, Wang, & Bassett, 2011). The “omics” profile reflects two

potentially distinct contributions: the detrimental effects which occur

with age (e.g., accumulation of mutations) and the potentially benefi-

cial responses to those changes (e.g., the immune response). As a

result, CMap similarity score is not conclusive on its own. To charac-

terize the potential effects of drugs on aging (anti‐ or proaging

drugs), we use three different approaches: (a) comparison of the

drug‐induced expression profiles with the known prolongevity drug

profile (Supporting Information Figure S9); (b) functional analysis of

the drug‐induced gene expression changes (Supporting Information

Figure S10); and (c) compilation of literature on the drugs and tar-

gets (Supporting Information). On the basis of these analyses we

suggest that eight of seventeen drugs (quinostatin, trifluoperazine,

thioridazine, vorinostat, alvespimycin, tanespimycin, rifabutin and 15‐
d prostaglandin J2), which are not in DrugAge, are likely to have

positive effects, whereas topoisomerase inhibitors (camptothecin,

irinotecan and daunorubicin) can be detrimental and could act as

proaging drugs. Four of the remaining drugs, which are cinchonine,

securinine, emetine and tretinoin, do not cluster closely with any

known prolongevity drugs in Supporting Information Figure S10. Lit-

erature, however, suggests cinchonine and securinine are likely to

have negative effects (see Supporting Information), whereas emetine

and tretinoin could act as antiaging drugs. GW‐8510 and atropine

oxide could not be classified because neither the clustering results

nor literature evidence are conclusive.

It is important to note that none of the cell lines used to generate

the CMap data originates from the brain. The assumption for using

the CMap algorithm is that the effect we see in diverse cell lines

reflects the global profile of the drug perturbation and thus should be

also transferable to the brain. However, it is possible that drugs have

cell or tissue‐specific effects. Even if the drugs induce the same

expression changes in brain cells, an important question is: Can they

cross the blood–brain barrier to target the brain? If some of these

drugs have side effects on the CNS, it might be an indication that

these drugs can affect the brain and can be repurposed to target brain

aging. Only eight of the 24 compounds have reported side effects,

and all of them have at least one reported effect on the nervous sys-

tem, based on MedDRA system organ classes (Supporting Information

Table S10). This implies that these drugs can affect CNS, although we

do not have information on their ability to cross the barrier. The rest

may or may not cross the barrier to influence the expression in the

brain, but they may also improve health by targeting generic changes

throughout the body. The aging signatures from brain tissue show a

modest but significant similarity to expression profiles from nonbrain

tissues (Supporting Information Figure S10). Thus, it is possible that

we identified not only drugs specifically targeting aging in the brain

but also drugs targeting aging in other tissues. It is also possible that

there are drugs which can target brain aging with more potency, but

we cannot identify them because we do not have drug‐induced
expression profiles for brain cells. Another important technical draw-

back is that the data we used to generate the aging signature are bulk

RNA expression data sets, where the expression profile is an average

of all the cell types in the human brain. Focusing on the changes that

are observed ubiquitously across all brain regions, we aimed to focus

on global changes which are unlikely to be driven by cell type differ-

ences. However, future data sets generated using single‐cell expres-
sion profiling can greatly improve the understanding of both the aging

process itself and how the interventions work.

To summarize, this study provides an unbiased identification of

drugs that can target human brain aging. We first compiled a set of

gene expression changes that can characterize human brain aging and

asked whether there are drugs which alter the expression of the same

genes. We identified 24 drugs, seven of which were among known

prolongevity drugs. Our analysis suggests that antiaging drugs may

act by mimicking the response, whereas it is also possible that they

can reverse the detrimental changes in aging. On the basis of the lit-

erature research, we concluded that some of the drugs we identified

can directly modulate the lifespan, whereas some are more likely to

function by improving the cognitive functions and promoting the

healthy aging. We are in the process of experimentally testing a group

of the drugs that we have identified. We hope the information pre-

sented in this study will guide research community to further test and

identify chemical modulators of the aging process in humans.

4 | METHODS

4.1 | Data sets

To define the gene expression changes during aging, we only

included data sets with samples across different ages. In this way,

we calculated the changes that occur monotonically throughout the

aging process, rather than looking at differences in the young and

old group. Data sets used in this study are all published data sets

and include both microarray and RNA‐seq data. The preprocessing

steps for each are described below.

4.1.1 | Microarray data sets

We used seven microarray‐based RNA expression studies with sam-

ples from 22 brain regions that are not mutually exclusive (Supporting

Information Table S1). Data from different brain regions are processed
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and analysed separately, resulting in 26 data sets. The number of indi-

viduals in each data set ranges between 11 and 148. The total number

of individuals is 304, and the total number of samples is 805 (after

removing the outliers). Some studies include samples covering the

whole lifespan. However, in this study, we only considered samples

above 20 years of age, which corresponds to the age at first repro-

duction in human societies (Walker et al., 2006). Previous human brain

aging studies using transcriptome data have also suggested gene

expression patterns before and after the age of 20 are discontinuous

(Colantuoni et al., 2011; Dönertaş et al., 2017). As we are interested

in finding consistent tendencies in terms of the direction of change,

which can characterize aging, we only included samples above

20 years of age. As a result, the samples included in the analysis had

ages between 20 and 106. The microarray data were downloaded

from NCBI GEO (Barrett et al., 2013) using the accession numbers in

Supporting Information Table S1. Using “affy” (Gautier, Cope, Bolstad,
& Irizarry, 2004) or “oligo” (Carvalho & Irizarry, 2010) libraries in R,

RMA background correction is applied to the expression data. The

data are then log2‐transformed and quantile‐normalized (using “pre-
processCore” library in R). By visual inspection of the first and second

principal components of the probe‐set expression levels, outliers were

excluded from the further analysis (Supporting Information Table S1).

The age distributions for the data sets after outlier removal are given

in Supporting Information Figure S1a. Gene annotations for the

probe‐sets are obtained from the Ensembl database using the “bio-
maRt” library (Durinck, Spellman, Birney, & Huber, 2009) in R. Because

the annotations for the probe‐sets used in Kang et al. (2011) and

Colantuoni et al. (2011) are not available in Ensembl, we used the GPL

files deposited in GEO. If Ensembl gene IDs are not provided in the

GPL files, Entrez gene IDs were extracted and converted to Ensembl

Gene IDs using the “biomaRt” package. Probe‐set‐level expression
information is then mapped to gene IDs. In order not to duplicate

expression values, we excluded the probe‐sets corresponding to mul-

tiple genes. Expression values for the genes with multiple probe‐sets
were summarized using the mean expression levels. The PCA plots for

the samples using gene expression levels are given in Figure S1b.

4.1.2 | RNA‐seq data set

We analysed transcriptome data generated by GTEx project (v6p)

(Ardlie et al., 2015). Samples are filtered based on the cause of

death circumstances (4‐point Hardy Scale). Only the cases with a

death circumstanceof 1 (violent and fast deaths due to an accident)

and 2 (fast death of natural causes) are used for the downstream

analysis and the samples with illnesses are excluded. Among all tis-

sues, only the ones having at least 20 samples are considered. We

also excluded “Cells—Transformed Fibroblasts” category to include

only the samples from tissues. As a result, 35 data sets (17 major

tissue type) are used for the downstream analysis, 13 of which

were from the brain. The final set that we analysed includes 2,152

(623 for the brain) samples from 120 (99 for the brain) individuals.

The genes with median RPKM value of 0 are also excluded from

data. The RPKM values provided in the GTEx database are log2‐

transformed and quantile‐normalized for the downstream analysis.

Similar to the microarray data, we excluded the outliers based on

the visual inspection of the first and second principal components

(Supporting Information Table S1). Distribution of the ages and the

PCA plots after outlier exclusion are given in Supporting Informa-

tion Figure S1.

4.1.3 | Batch correction

In this study, each data set is analysed separately, and only the gene

expression changes that are consistent across all data sets are con-

sidered for the downstream analysis. As multiple data sets are not

combined, and data sets generated at different laboratories using dif-

ferent platforms unlikely to have the same confounders, we did not

apply a correction method other than quantile normalization and

outlier removal based on the PCA (using probe‐set‐level expression
data for microarrays and gene‐level expression data for RNA‐seq as

described above). Moreover, most of the data sets have a homoge-

nous sample set as the number of samples is low and for the data

sets with a large number of samples, we do not detect any cluster-

ing.

4.2 | Age‐related expression changes and the aging
signature

The Spearman rank correlation coefficients between age and gene

expression levels are used to measure age‐related expression

changes. Instead of combining the data sets, we calculated the

Spearman correlation for each gene, for each data set separately. As

a result, each gene had two measures to assess its age‐related
expression: (a) a correlation coefficient (ρ), indicating the strength

and the direction of change with age; and (b) a p‐value, showing the

significance of the association. The p‐values are corrected for multi-

ple testing using p.adjust function in R, with method = “FDR” argu-

ment. As the power to detect significant changes in each data set is

different and the sample size is small for most of the data sets, for

the downstream analysis we only used the correlation coefficients

(ρ) and assessed the significant gene expression change tendencies

that are consistent in all data sets. When a gene is upregulated by

age throughout the lifespan, then it would have a positive Spear-

man's correlation coefficient that is close to one. In contrast, a gene

would have negative correlation coefficient if it is downregulated.

When the association is not strong, the magnitude of the correlation

coefficient decreases, but the sign still reflects the direction of

change that is observed in most of the time points. We used the

sign of correlation coefficient, that is, the direction of change, to

compile the set of genes that show consistent changes across all

data sets. This set of genes is referred to as the “aging signature.”
The aging signature, thus, does not reflect the dramatic changes in

gene expression but captures consistent trends that are observed

across all data sets. The statistical significance of the aging signature

is calculated using a permutation scheme, testing the significance of

the consistency.
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4.3 | Permutation test

We used a permutation scheme that we developed earlier (Dönertaş

et al., 2017), to simulate the null hypothesis that there is no associa-

tion between age and the gene expression, while retaining the depen-

dence between genes and the data sets. Particularly, the ages of

individuals in each study are permuted (randomized) 1,000 times, and

if that individual donated multiple samples for different brain regions,

each sample is annotated with the same age. Then, the Spearman cor-

relation coefficient between these randomized ages and the gene

expression value for all genes are calculated. In this way, we retain the

dependence between genes (e.g., those regulated by the same tran-

scription factor) and the samples (e.g., donated by the same individu-

als). Permutations are performed using “sample” function in base R.

Using the correlation coefficients calculated through permuta-

tions performed as explained above, we tested (a) significance of the

correlations among data sets; (b) significance of the finding the same

or a higher number of consistently up‐ or downregulated genes, that

is, the aging signature. To test the significance of the correlations

among data sets, we calculated the correlations between the expres-

sion–age correlation coefficients calculated using the permutations.

We constructed the distribution for the median correlation coeffi-

cient among data sets (distribution of the 1,000 values) and calcu-

lated how many times the randomized values have higher correlation

than the value we calculate using the real ages. In this way, we cal-

culate an empirical p‐value. The median of the permuted values

reflects the value that would be expected by chance. Similarly, to

test the significance of the aging signature, we compiled permuted

aging signatures, for 1,000 times, and asked how many times we

have the same or higher value than the calculated number of genes

in the microarray or GTEx aging signatures. In this way, we calculate

the empirical p‐value and median of the number of shared tenden-

cies based on permutations, reflecting what would be expected by

chance.

4.4 | Gene ontology enrichment

Using “topGO” and “org.Hs.eg.db” libraries in R, we performed a

functional analysis of the aging signature. Using GO categories with

more than 10 annotated genes, we applied an enrichment test for

the Gene Ontology (GO; Ashburner et al., 2000) Biological Process

(BP) categories.

4.5 | Connectivity map analysis

A list of genes showing a consistent change in aging (the aging signa-

ture) is used to query CMap (Lamb, 2006). As CMap input requires

probe‐set ids, the “biomaRt” package in R is used to convert the gene

list to the probe‐set ids that are compatible with the CMap data. The

probe‐sets that are in both up‐ and downregulated probe‐set lists are
excluded from both lists. The final lists are used to query CMap data-

base to associate the aging signature with the drug‐perturbed expres-

sion profiles in the database. The resulting p‐values are FDR‐corrected

to account for multiple testing and adjusted p < 0.05 is used as the

significance threshold.

The aging signature compiled using the GTEx data had more

than 500 probe‐sets in both up and down lists. As the algorithm

requires an input with <500 entries, we used the ones with the

higher magnitude of expression change (median Spearman's rank

correlation coefficients across 13 brain regions). To show that this

does not bias the results, we repeated this step for 1,000 times

by randomly selecting 500 of the probe‐sets in the GTEx aging

signature. To automatize this process, we reimplemented CMap

algorithm in R and calculated the drug similarity scores using the

“rankMatrix.txt” data provided on the CMap website. Drug similar-

ity scores generated using the top 500 and randomly selected

500 of the GTEx aging signature showed a significant correlation

(median ρ = 0.81, range = 0.80, 0.82), suggesting that this

approach does not bias the results.

4.6 | Searching the drug databases for CMap drugs

Entries in CMap are composed of the drug names, which are gener-

ally the catalogue names for the drugs from chemical vendors. Simi-

larly, DrugAge drugs also do not have an ID that is possible to map

across different databases. The DrugAge database was retrieved on

11th May 2017, from the DrugAge website. To compare the drugs

in CMap and the DrugAge, we first used the PubChem database

(Kim et al., 2016) to make a transition across different sources. We

obtained PubChem compound IDs for each drug in CMap and Dru-

gAge using PubChem API accessed through R programming environ-

ment and “RCurl” and “jsonlite” libraries.

4.7 | Targets of the drugs that are significantly
associated with aging

We compiled the drug–target associations for the drugs signifi-

cantly associated with aging mostly through literature research. For

the cases where the database entries are manually curated and

consistent, we used CHEMBL (Bento et al., 2014), DrugBank (Law

et al., 2014) and PubChem (Kim et al., 2016). We downloaded

GenAge model organism and human data sets (Tacutu et al., 2018)

on 10th October 2017 using GenAge website. Using the human

orthologues for the model organisms (genage_models_orthologs_ex-

port.tsv) and the human data set, we asked whether any of the

drug targets were previously shown to be implicated in aging. To

construct the drug–target network, we used “ggnetwork” package

in R.

4.8 | The prolongevity drug expression profile

To compile a set of gene expression changes that can be associated

with the known prolongevity drug profile, we first downloaded the

preprocessed data matrix with the drug‐induced expression changes

(“amplitudeMatrix.txt” from CMap FTP server ftp://ftp.broadinsti

tute.org/distribution/cmap). Using this matrix, for the seven
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prolongevity drugs in DrugAge that are among the significant associ-

ations according to our analysis, we generated a prolongevity drug

profile. We first identified the drug‐induced gene expression changes

for each of these seven drugs and each of the probe‐sets that are in

the microarray aging signature. For each drug–probe‐set pair, we

take the direction of change that is observed in at least 60% of the

experiments (using different doses or different cell lines) as the

effect of that drug on the expression of that probe‐set. After decid-
ing on the individual drug effects, we took the type of change

observed in at least four of seven drugs as the prolongevity drug

profile. The reason why we do not seek a perfect overlap among dif-

ferent drugs is to allow potentially different mechanism of actions to

be included in the prolongevity drug profile. As a result, we got five

categories: (a) increase in aging, increased by the drugs; (b) increase

in aging, decreased by the drugs; (c) decrease in aging, increased by

the drugs; (d) decrease in aging, decreased by the drugs; and (e) the

ones that are not affected consistently by the drugs. The full list of

genes in the first four categories is given as Supporting Information

Table S5. We also asked whether any of the GO Biological Pro-

cesses is enriched in any of the first four categories and thus did an

enrichment analysis. We calculated the odds ratio for each GO cate-

gory by keeping the type of change in aging the same. For example,

we asked whether a GO category is enriched in genes that increase

in aging and also increased by the drugs, compared to the genes that

increase in aging but decreased by the drugs. Because the number

of genes is small, it is not possible to detect significant associations

after correcting for multiple testing, and thus, we only report the

odds ratios for the categories (Supporting Information Table S6). We

also compared the known prolongevity drug profile we compiled

with the profile induced by the 24 drugs identified in the study (Sup-

porting Information Figure S9). We calculated the percentage of

probe‐sets that show the same type of change as the prolongevity

drug profile. For this, we again only considered probe‐sets that show

the same type of change in at least 60% of the experiments per

drug.

4.9 | Gene‐set enrichment analysis for drug‐induced
changes

Using the “amplitudeMatrix.txt” downloaded from the CMap web-

site, we determined the expression changes at the gene level for

each drug. We first subset the matrix to include only the experi-

ments for the 24 significant drugs we found. We then mapped

the probe‐set ids (total number of probe‐sets = 22,283) to Entrez

gene ids using the Ensembl biomaRt package in R. We map

19,222 probe‐sets to genes, excluding examples where the same

probe‐set id maps to multiple genes (628 multigene probe‐set ids

in total). The genes with more than one probe‐set id are repre-

sented by taking the median expression change induced for the

probe‐sets (number of genes = 12,064). When the experiments for

each drug are treated separately, we noticed that the results were

confounded by cell line. Thus, we then summarized multiple

experiments for each drug by taking the median of the change

they induce. In this way, we trimmed the cell‐line‐specific effects.

Then the expression changes (for 12,064 genes) for each drug (24

drugs) are rank ordered. Using clusterProfiler package and “gse-
KEGG” and “gseGO” functions, we performed GSEA for the gene

expression changes induced by each drug separately. For the

KEGG pathway analysis, we only considered the pathways with at

least 50 genes (188 pathways), and for GO analysis, we only con-

sidered Biological Process categories with at least 50 and maxi-

mum of 200 genes (1589 categories).

4.10 | Comparing brain aging signature to other
tissues

We calculated the proportion of genes that show a change in the

same direction with the aging signature compiled using brain data.

The proportions are calculated for aging signatures compiled using

the array and GTEx brain data, separately. We also analysed upregu-

lated and downregulated genes separately to observe any differential

pattern. To calculate the significance of similarity or dissimilarity, we

performed 10,000 permutations as follows: (a) N number of genes,

where N is the number of genes in a particular group (array/GTEx

and up‐/downregulated), were selected randomly from a given GTEx

data set; (b) the proportion of changes in a given direction is calcu-

lated; and (c) using the distribution of these proportions, we asked

how many times we obtain a value as extreme as the proportion cal-

culated for that tissue and assign empirical p‐value.

4.11 | Side effects

Using compound PubChem IDs, we subset the Side Effect

Resource (SIDER 4.1; Kuhn, Letunic, Jensen, & Bork, 2016), a

database of adverse drugs reactions for marketed medicines. The

latest version of SIDER codes the side effects using the Medical

Dictionary for Regulatory Activities (MedDRA), an adverse event

classification dictionary. To obtain term at the system level, we

mapped the lowest level MedDRA terms in SIDER (LLT codes) to

MedDRA System Organ Class terms (SOC codes) using hierarchical

files downloadable from the MedDRA Web‐based browser

(https://tools.meddra.org/wbb/). A total of eight drugs among the

24 had labelled side effects.
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