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Abstract: Sample surveys are an essential approach used in veterinary research and investigation.
A sample obtained from a well-designed sampling process along with robust data analysis can
provide valuable insight into the attributes of the target population. Two approaches, design-based
or model-based, can be used as inferential frameworks for analysing survey data. Compared to
the model-based approach, the design-based approach is usually more straightforward and directly
makes inferences about the finite target population (such as the dairy cows in a herd or dogs in a
region) rather than an infinite superpopulation. In this paper, the concept of probability sampling
and the design-based approach is briefly reviewed, followed by a discussion of the estimations
and their justifications in the context of several different elementary sampling methods, including
simple random sampling, stratified random sampling, and one-stage cluster sampling. Finally, a
concrete example of a complex survey design (involving multistage sampling and stratification)
is demonstrated, illustrating how finding unbiased estimators and their corresponding variance
formulas for a complex survey builds on the techniques used in elementary sampling methods.

Keywords: sampling; survey methodology; design-based approach; unbiasedness; variance estimation

1. Introduction

Sample surveys, where data from a subset, or sample, of a population are used to
make inferences about that population, are a traditional research methodology which has
been widely used in veterinary research and investigation [1,2]. However, in this era of
“big data”, with modern techniques such as machine learning, bioinformatics, or other
computer-based technologies being increasingly used in veterinary research [3] across
areas such as animal behaviour [4] and disease detection [5] and prediction [6], the sample
survey is in danger of appearing “old fashioned” and “out-dated”.

However, the “old-fashioned” sample survey still has some advantages over cutting-
edge big data methodologies. Firstly, in a sample survey, information or data can be
collected actively in order to answer a specific research question, whereas the research
question that can be answered by “big data” techniques is dependent on what information
is available in the big data source. Secondly, in a well-planned sample survey the target
population can be framed in advance and followed by a well-designed sampling process
so that the samples are representative of the population [7]. This representativeness is
often not achieved during the passive “big data” collection process, with data often being
collected only from a particular subset of the target population—e.g., Revilla, et al. [8]
analysed more than 10.5 million measurements from ~13,000 pigs obtained using automatic
feeding systems. However, this dataset was collected from only one boar testing station,
making generalisation to the wider population potentially difficult. Finally, it is not
economically feasible to collect “big data” when novel information is required for some
specific research topics.
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Once the specific data for a research topic are collected, a rigorous and robust data
analysis is essential to gain insight from the sample survey. As per Alexis de Tocqueville:
“when statistics are not based on strictly accurate calculations, they mislead instead of
guide” [9]. Generally, there are two approaches for analysing survey data: the model-based
approach and the design-based approach [10]. The former is possibly better understood
by many veterinary researchers who have undertaken standard quantitative research
methodology training, as mainstream statistical training usually treats the observed data—
e.g., production data or diagnostic test outcomes—as realisations of some relevant random
variables. However, one important assumption in this method is usually overlooked—that
the underlying population is treated as a “superpopulation” which contains infinitely
many animals [11]. Strictly speaking, an estimated model parameter therefore refers to a
property of the hypothetical “superpopulation” rather than a characteristic of the finite
population which is of actual interest [7].

For example, suppose that simple random sampling had been implemented on a
dairy farm to study the prevalence of bovine digital dermatitis using a large sampling
fraction (~70% of the herd size). The analyst then fitted an intercept-only logistic regression
to estimate the intercept. As the intercept represents the logit of the prevalence, using a
suitable back-transformation, the analyst was then able to report the estimated prevalence
of digital dermatitis on the farm. However, given a large sampling fraction, this estimate
actually represents the prevalence of a hypothetical superpopulation from which the sample
was drawn rather than the prevalence on the farm of interest [12]. To make an inference
to the actual finite population, a superpopulation approach can be used [12]; however,
although mathematically correct, explaining the approach is likely to create difficulties in
communications with other rural professionals or companion animal practitioners.

The design-based approach for analysing survey data avoids the complexity in analy-
sis and communication seen with the model-based approach. One key advantage of the
design-based approach is that it focuses on inferences related to the target finite popula-
tion(s) without introducing extra assumptions about the parametric form of the outcome
variable. In addition, the analysis steps are consistent with the sampling steps, so the pro-
cess of checking for potential mistakes during the analysis process is clearer [13]. Thirdly,
the design-based approach has no requirement of an “assumed” probability distribution
dictated by the design itself [14]. The aim of this review article is to provide a comprehen-
sive introduction to the design-based approach for analysing survey data by (1) describing
the analytical methods for elementary probability sampling methods, including simple ran-
dom sampling, stratified random sampling, and cluster sampling, and (2) to demonstrate
the key ideas necessary to understand and interpret those analytical methods, as well as
how those ideas can be used to develop methods for any specific complex survey design.

2. Overview of Probability Sampling

First, we define a set U as a target population including M animals in a finite popula-
tion (e.g., animals on a farm or all >2-year-old Jersey cows in a region). There are various
ways to obtain samples which are just some subsets of U. Let us denote S for a particular
sample chosen from U, then S ⊂ U. With the proper subset notation “⊂”, we restrict the
sample size to being smaller than the population size. Suppose we want to obtain a random

sample with m animals, we could have
(

M
m
)
= L different samples: S1, S2, S3, . . . We can

then define a set “sample space” (denoted as Ω) that contains all these samples. With
probability sampling, a probability can be explicitly assigned for each of the samples, with
the constraint that ∑L

i=1 P(Si) = 1, as the axiom states that the probability of a sample space
is 1 and the union of all the samples forms the sample space. The probability of obtaining
each of the L samples does not have to be constant—i.e., P(S1) 6= P(S2) is absolutely
acceptable—and we can also restrict the probability of a particular sample to 0 if some
animals within the sample are considered inappropriate as study units. The other feature
of these samples is that two samples can include the same animals, and the probability of
an animal k being selected (πk) is calculated by summing the probabilities of all samples
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including this animal—i.e., πk = ∑S:k∈S P(S). An intuitive numeric example is displayed
in Figure 1. Eventually, we define the sampling weights wk as the reciprocal of the inclusion
probability πk for any type of sampling method [15]. Generally, it is recommended that
the veterinary researcher interprets the sampling weight of the animal k as the number of
animals in the target population represented by this animal (a deeper treatment of sampling
weights can be found in Gelman [16]; however, non-response adjustments are beyond the
scope of this article).

Figure 1. An intuitive explanation of the probability of a sample selection P(S) and the probability of an animal selection π.

3. Design-Based and Model-Based Approaches
3.1. Overview of Design-Based Approach

In the design-based approach, the observed value (production record or test outcome)
yk is not considered to be a realisation generated from some data generation mechanism
(or “population”); instead, it is regarded as a fixed constant, with the randomness arising
solely from the sample selection [17]. In plainer language, although yk is fixed, it remains
unknown unless the animal is selected in the sample [18]. If all animals are tested from a
given population, then the test results for all the animals are known without any uncertainty.
In contrast, if we only test a sample of these animals, the only outcomes that we know
are the animals included in the sample. If we randomly draw samples of a fixed size
repeatedly from a target population, a particular animal may not be sampled repeatedly
due to the randomness in the sample selection; hence, the sample statistics can vary across
the samples. That is the only source of randomness. Therefore, it is natural to define a
Bernoulli random variable to indicate whether an animal in the target population is also in
the sample. For example, if the kth animal is included in the sample, the Bernoulli random
variable Zk = 1; otherwise, it is Zk = 0. This random variable maps the (hypothetical)
animal ID in the population into numeric values for selection status. This idea is essential
when studying the properties of the estimators (unbiasedness) and deriving the variances
of these estimators [19].

The design-based approach is of particular value when the finite population charac-
teristics are of interest, as when a design-based approach is used, the researcher can direct
inferences about the finite target population, even if the sample size to population size ratio
is not small (i.e., when the finite population correction must be considered). For example,
the prevalence in a finite population is interpreted as the proportion of diseased animals
in that population. Assuming that 70% of the population is sampled, a design-based
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approach gives a direct estimate of this population proportion, which is often a key target
of veterinary investigations. In addition, the estimators (i.e., the rules or formulas) for
estimating the finite population characteristics are consistent with the sampling method.
Therefore, the estimation process is naturally understandable and easier to communicate
with non-statistically inclined veterinarians and researchers [20]. Finally, with the design-
based approach, the analyst does not need to decide which potential model generated the
data, as the observed values are treated as fixed constants. For example, if the average
milk production in a herd is of interest, one does not need to assume that milk yield from
a cow is generated from a normal random variable, particularly when it is not. One just
needs to calculate the sample mean as an estimate of the average milk production in the
herd. Finally, whether an estimator is unbiased (i.e., whether its expected value and the
true value of the parameter are effectively equivalent) is not dependent on the parametric
form of the observed value.

3.2. Overview of Model-Based Approach

Although this approach may be more familiar to researchers, we do not advocate this
approach in this paper from a practical point of view. As with most mainstream statistical
methods, this approach treats the observed value as a realisation of an underlying random
variable. For example, the test result yk of the kth animal is generated from a random
variable Yk, whose parametric form must be decided. If Yk is a Bernoulli random variable,
then with the model-based approach a likelihood-based method is the most common
approach for estimating the probability that a random animal will test positive. However,
this probability is not a finite population prevalence; it is more correctly interpreted as
a hypothetical infinite superpopulation prevalence. Although extra steps can help to
make an inference back to the finite population, this significantly adds complexity to
aspects of analysis and in communicating the results to stakeholders without a statistical
background [12]. The other major disadvantage of the model-based approach is that the
estimated parameters may be biased if the model is mis-specified [20].

4. Sampling Methods
4.1. Simple Random Sampling

Simple random sampling (SRS) is the most basic form of probability sampling. In this
process, all possible samples of a given size have the same probability of being selected—
i.e., P(S) is constant for every possible sample. As a result, all the animals in the population
have an equal probability of being included in the sample—i.e., the inclusion probability
π is the same for every animal [21]. This sampling process has been applied to many
veterinary studies, including recent investigations of lumpy skin disease [22], bovine
mastitis [23], and foot-and-mouth disease [24]. Despite its simplicity, in the right situation it
can be a powerful sampling method and provide the theoretical basis for more complicated
sampling methods. There are two forms of SRS—with and without replacement. In this
article, we will limit the discussion to SRS without replacement (the sample contains no
duplicated animals,) as this is by far the most common practice in veterinary research.

The statistics in which a researcher is usually interested are the properties of the
population, e.g., the average milk production of the herd or the prevalence of a disease
within the herd. We denote this finite population mean as µ and prevalence p is just a
special case of the finite population mean when the individual outcome value yk can only
be 1 or 0. In the SRS setting, estimating the mean is straightforward. However, for other
sampling processes this is not always the case; hence, it is easier to start to estimate the
finite population total before moving on to the mean (which is a linear function of the total).
To ensure a consistent methodology is used in this review, we will stick with the two-step
process—estimating the total first and then the mean or prevalence.

Suppose we have a herd with M animals, of which a sample of m animals has
been obtained using SRS. The Horvitz–Thompson (HT) estimator of the finite population
total is [25]:
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τ̂ = ∑m
k=1 wkyk =

M
m ∑m

k=1 yk. (1)

In the SRS setting, the sampling weight wk is a constant as the inclusion probability is
the same for every animal, such that πk ≡ P(Zk = 1) = m

M (see Appendix A for technical
details), where Zk is the Bernoulli random variable for selection and Zk = 1 if the animal k
is selected; otherwise, Zk = 0. The HT estimator is, by design, unbiased—i.e., its expected
value is equal to the true value of the finite population characteristic [7]:

E[τ̂] = E
[
∑m

k=1 wkyk

]
= wkE

[
∑M

k=1 ykZk

]
=

1
πk

∑M
k=1 ykE[Zk] =

M
m ∑M

k=1 yk
m
M

= ∑M
k=1 yk = τ,

where E[] is the expectation operator which takes all the possible values generated by
the random variable and returns the weighted average value, so E[Zk] = 1× P(Zk = 1) +
0× P(Zk = 0) = P(Zk = 1) = m

M .
The unbiased estimator for the mean y or the prevalence p̂ is, therefore:

y ≡ p̂ =
τ̂

M
=

1
m ∑m

k=1 yk. (2)

The proof is trivial. By observing Equation (2), we see that, in SRS, the sample mean or
sample proportion is the unbiased estimator for the population mean or prevalence. This
means that, for other sampling strategies, building up the sample mean from SRS will also
result in an unbiased estimator if done correctly.

To derive the variance of the estimator for the mean or the prevalence, it is also easier
to start with the variance of the total. The detailed derivation can be seen in Appendix B;
here, we only provide the formulas for the variances. First, the variance for the estimated
population total is:

Var(τ̂) =
M2

m

(
1− m

M

)
σ2, (3)

where σ2 =
∑M

k=1(yk−µ)2

M−1 is the variance of the finite population. In the special case where
we estimate prevalence, we can replace µ with p with some algebra (see Appendix B),
resulting in σ2 = Mp(1−p)

M−1 . Therefore, the variances for y and p̂ are given as follows:

Var(y) = Var
(

τ̂

M

)
=

σ2

m

(
1− m

M

)
, (4)

Var( p̂) =
(

M−m
M− 1

)
p(1− p)

m
. (5)

However, the finite population variance depends on an unknown quantity µ or p,

which we are attempting to estimate; in practice, we often replace σ2 with s2 = ∑m
k=1(yk−y)2

m−1 ,
which is the sample variance (or p with p̂). Therefore, the estimated variance for y and p̂ is:

V̂ar(y) =
s2

m

(
1− m

M

)
, (6)

V̂ar( p̂) =
(

1− m
M

) p̂(1− p̂)
m− 1

, (7)

where 1− m
M is usually referred to as the finite population correction factor [26].

To illustrate this process, consider an investigator who wants to estimate the preva-
lence of digital dermatitis in lactating cows in a dairy herd. A random sample of 100 cows
is obtained from a herd of 300 cows, of which 35 sampled cows are diagnosed as diseased.
These 35 cows have records yk = 1 and the remining 65 sampled cows have records
yk = 0. The estimated prevalence is calculated using Equation (2), thus it is 0.35. The
variance of this estimate is calculated using Equation (7). As the actual prevalence is
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unknown, we need to use the estimated prevalence to calculate the estimated variance:(
1− 100

300

)
0.35×(1−0.35)

100−1 = 0.0015.

4.2. Stratified Random Sampling

In the stratified random sampling procedure (STRRS), the target finite population
(e.g., the total number of animals within a herd) is partitioned into non-overlapping groups
based on some pre-defined attributes and each of the groups is referred to as a stratum.
These strata constitute the entire population; therefore, each animal belongs to a specific
stratum. Within each stratum, SRS is commonly used to sample animals, and the sampling
processes in the different strata are independent [27]. There is no requirement to select all
strata within a population. If only some strata are of interest (e.g., only those which include
lactating cows), these can be selected and strata that are not of interest can be excluded. If
this approach is used, it needs to be made clear that the target population is no longer the
entire finite population, but rather the population represented by the selected strata.

The finite population mean or prevalence is then estimated by pooling the information
from all the strata. Like SRS, STRRS is commonly used in veterinary research, for example
stratification by area. This allows the researcher to investigate prevalences and associations
across a country or a region—e.g., Heayns and Baugh [28] investigated the opinions of
veterinarians across the UK about serological testing to assess revaccination requirements
in dogs. In this study, each county of Great Britain was considered as a stratum and 10% of
the small animal veterinary practices within each stratum were randomly selected (if there
were fewer than 10 practices in a county, one practice was randomly chosen to represent
the county). Similarly, Atuman et al. [29] investigated dog ecology, dog bites, and rabies
vaccination rates in Bauchi, Nigeria, using STRRS. They stratified Bauchi into five areas,
and within each area randomly selected 10% of the streets for direct street counts and the
administration of a questionnaire. However, other sources of strata are also used—e.g., as
part of a randomised clinical trial of footrot treatments in Kashmir, India, Kaler, et al. [30]
allocated sheep with acute footrot to one of three treatments using STRRS, with the strata
being based on each sheep’s maximum footrot score. Stratification is useful to ensure that
the sample includes individuals which could otherwise be missed by chance in SRS due to
the limited number of individuals in their stratum. For example, at a certain period a pig
farm in Hong Kong may keep few finisher pigs, but many piglets and sows are present
on the farm. With SRS, it is likely that none of the finisher pigs is included in the sample,
therefore one can argue that there is error in the representation of the population which
could potentially dimmish the accuracy of the estimate. For this reason, it is also common
to sample a fixed number of individuals in each stratum. Compared to SRS, however, extra
information such as the variable used for stratification (membership) must be obtained for
all sampling units.

If STRRS has been used, care is required when pooling the information from the strata
in order to obtain an unbiased estimator for the finite population mean or prevalence. A
“natural” estimator for the mean/prevalence might involve summing up all the observed
values in the sample and dividing by the sample size (equivalent to the process of the SRS).
However, this estimator is unbiased if the sample size in each of the strata is proportional
to the actual size of the stratum—i.e., there has been proportional allocation (this is demon-
strated in more detail in Appendix C). The more general common approach to obtain an
unbiased estimator for the finite population mean or prevalence follows the two principles
we have mentioned: (1) following the actual sampling process and (2) starting with the
finite population total. Consider a farm with M animals. A researcher has created J strata
based on the ages of the animals. For the jth stratum, there are Mj animals, and clearly

M = ∑J
j=1 Mj. Suppose that mj animals are sampled using SRS independently from each

of the strata and that the value of the variable of interest is denoted as yjk for the kth animal
in the jth stratum.
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The unbiased estimator (using weight notation) for the finite population total:

τ̂ = ∑J
j=1 ∑

mj
k=1 yjkwjk, (8)

where wjk is the sampling weight which is the reciprocal of the inclusion probability πjk.
For STRRS, this is the probability of the kth animal in the jth stratum being selected.
However, writing the estimator in this form is not very intuitive, and it can be rewritten
into a different formula in order to provide a more intuitive and meaningful picture
for veterinary researchers. As SRS has been implemented within each of the strata, the
inclusion probability πjk for the kth animal in the jth stratum is simply the sample size mj

divided by the stratum size Mj, which leads to wjk =
1

πjk
=

Mj
mj

. Now, Equation (8) can be
rewritten as:

τ̂ = ∑J
j=1 Mj

∑
mj
k=1 yjk

mj
. (9)

This formula says that in order to estimate the finite population total, we need to first

compute the mean/prevalence for each of the strata yj ≡ p̂j =
∑

mj
k=1 yjk
mj

using the estimator
we have seen in SRS and then multiply it by the stratum size Mj to obtain the estimated
total for each stratum. We then sum up all these estimated stratum totals to obtain the
estimated finite population total. This is consistent with and follows the actual sampling
process, as well as producing an unbiased estimator:

E[τ̂] = ∑J
j=1 E

[
Mj

mj
∑

Mj
k=1 yjkZjk

]
= ∑J

j=1

Mj

mj
∑

Mj
k=1 yjkE

[
Zjk

]
= ∑J

j=1

Mj

mj
∑

Mj
k=1 yjk

mj

Mj
= ∑J

j=1 ∑
Mj
k=1 yjk = τ,

where Zjk is the Bernoulli random variable for selection, representing whether the kth animal

in the jth stratum is selected with an inclusion probability πjk, and E
[

Zjk

]
= πjk =

mj
Mj

due to
SRS. Once the estimated total is found, the estimated finite population mean or prevalence
is just the total divided by the population size:

y ≡ p̂ =
∑J

j=1
Mj
mj

∑
mj
k=1 yjk

M
. (10)

Since each stratum is independently sampled, building on the SRS, the variances for y
and p̂ using STRRS are also straightforward:

Var(y) =
1

M2 Var(τ̂) = ∑J
j=1

Mj
2

M2

(
1−

mj

Mj

)
σ2

j

mj
, (11)

Var( p̂) =
1

M2 Var(τ̂) = ∑J
j=1

Mj
2

M2

(
Mj −mj

Mj − 1

)
pj
(
1− pj

)
mj

, (12)

where both σ2
j and pj are unknown quantities representing the population variance and

prevalence in the jth stratum. Similar to the SRS, the estimated variances are obtained by
substituting estimated quantities into the unknowns, such as:

V̂ar(y) = ∑J
j=1

Mj
2

M2

(
1−

mj

Mj

)
s2

j

mj
, (13)

V̂ar( p̂) = ∑J
j=1

Mj
2

M2

(
1−

mj

Mj

)
p̂j
(
1− p̂j

)
mj − 1

, (14)
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where s2
j is the sample variance of the jth stratum and the formula is given in the

SRS section.
To illustrate this, consider an investigation of the seroprevalence of pseudorabies on a

farm where STRRS is used. First, pigs are divided into groups based on the five production
stages (strata): piglets, weaners, growers, finishers, and sows (breeding herds). The total
numbers of pigs in each stratum are 30, 30, 40, 20, and 60, respectively. Within each stratum,
a fixed number of pigs (10) are sampled using SRS and the numbers of infected pigs are
5, 6, 3, 2, and 7. The estimated prevalence can then be calculated using Equation (10):
30
10×5+ 30

10×6+ 40
10×3+ 20

10×2+ 60
10×7

30+30+40+20+60 = 0.506. The variance of this prevalence estimate can then be
estimated using Equation (14). This is carried out stratum by stratum; for example, for the

piglets, M1
2

M2

(
1− m1

M1

)
p̂1(1− p̂1)

m1−1 = 302

(30+30+40+20+60)2 ×
(

1− 10
30

)
× 5

10 ×
(
1− 5

10
)
÷ (10− 1).

This process is then repeated for all the strata, and the estimated variance is the sum of the
quantities calculated for each stratum. In the example, the final estimated variance is 0.004.

4.3. Cluster Sampling

In this sampling method, the animals in a finite population (animals in a herd, region,
or country) are aggregated into larger sampling units: clusters. A cluster is similar to
a stratum; however, the sampling process is different. In a cluster sampling procedure,
a set of (n) clusters is sampled using SRS from a population with N clusters. These
clusters are usually referred to as primary sampling units, and the members within each
cluster as secondary sampling units. Within the primary sampling units, all secondary
sampling units may be measured or observed (one-stage cluster sampling) or the secondary
sampling units may be sampled using SRS (two-stage cluster sampling). The selected
individuals within the selected clusters then form a sample of the finite population [26].
In contrast, in STRRS all strata of interest must be included, and SRS is usually used
to sample individuals within each stratum. These different sampling strategies mean
that the sources of variability in cluster sampling are different from those in STRRS. In
STRRS, the variability of the estimated population mean/prevalence arises only from
individual variability within a stratum. For cluster sampling, the variability of the estimated
population mean/prevalence comes from one or more sources [27]. In one-stage cluster
sampling, where all individuals in a selected cluster are included, the variability of the
estimated population characteristic or quantity is dependent on the variability between
clusters. In two-stage cluster sampling, where only a sub-sample is collected from selected
clusters, the variability of the estimated population characteristic comes from two sources:
the within- and between-cluster variabilities [31]. One advantage of cluster sampling is
that it overcomes some of the logistics issues associated with SRS or STRRS and therefore
generally requires less spending on administration and travel expenses. However, the
estimates provided by cluster sampling are usually less precise than those provided by
SRS, given the same sample size [27].

Cluster sampling is possibly the most widely used approach in livestock research.
Usually, a farm or a herd is regarded as a cluster and a number of farms/herds are selected.
This was the approach adopted by Getahun, et al. [32], who studied mastitis and antibiotic
resistance patterns in dairy cows in central Ethiopia. This design treated a farm as a
cluster and a number of farms were chosen using SRS; within each farm, all the dairy
cows were sampled. A similar approach was later used to estimate the prevalence of
bovine tuberculosis in southern Ethiopia [33]. In this study, the target population was
only cows above 6 months of age, and all cows above 6 months old were included on the
selected dairy farms (clusters). We list here three examples of two-stage cluster sampling
in veterinary research for interested readers [34–36]. In the rest of this section, we will first
provide insights into the estimation process for one-stage cluster sampling and do the same
for a two-stage cluster sampling where STRRS instead of SRS is used at the second stage
(essentially a complex sampling) with details.
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4.3.1. One-Stage Cluster Sampling

In one-stage cluster sampling, all animals within a farm are sampled; therefore, the
farm total τi = ∑Mi

k=1 yik is directly measured, where yik is the value of the variable of
interest measured for the kth animal on the ith farm given the herd size of Mi. Common
research tasks might be to estimate the farm-level and animal-level averages, such as the
average milk production or average number of positive animals per farm and average
milk production per cow or overall prevalence at the animal level. Suppose n farms are
sampled from N farms in a region using SRS. As before, to estimate the population mean or
prevalence it is always recommended to start by estimating the total. Since SRS is used for
sampling clusters, the unbiased estimator for the finite population total (e.g., the number of
all diseased dairy cows in a region) is straightforward and therefore given without proof:

τ̂ = ∑n
i=1 wiτi =

N
n ∑n

i=1 τi. (15)

The variance and estimated variance for this estimator can also be straightforwardly de-

termined by applying the theory introduced in the SRS section: Var(τ̂) = N2(1− n
N
) σ2

τ
n and

V̂ar(τ̂) = N2(1− n
N
) s2

τ
n , where σ2

τ and s2
τ are the finite population variance and sample vari-

ance (at the farm level), such that σ2
τ = 1

N−1 ∑N
i=1
(
τi − τ

N
)2 and s2

τ = 1
n−1 ∑n

i=1

(
τi − τ̂

N

)2
.

The estimated farm-level average and its corresponding variance and estimated variance
are straightforward:

yF =
τ̂

N
=

1
n ∑n

i=1 τi, (16)

Var(yF) =
(

1− n
N

)σ2
τ

n
, (17)

V̂ar(yF) =
(

1− n
N

) s2
τ

n
. (18)

The total number of animals in the region is M = ∑N
i=1 Mi. Hence, the estimated

average at the cow level is given by:

y ≡ p̂ =
τ̂

M
. (19)

The variances and estimated variances for the cow-level average or overall prevalence
are given as:

Var(y) ≡ Var( p̂) =
N2

M2

(
1− n

N

)σ2
τ

n
, (20)

V̂ar(y) ≡ V̂ar( p̂) =
N2

M2

(
1− n

N

) s2
τ

n
. (21)

Note that at the farm level, we work on counts of positive animals instead of binary
values even if we are estimating prevalence, therefore the variance formulas for y and p̂
are indistinguishable.

4.3.2. Two-Stage Cluster Sampling

The main purpose of this section is to illustrate the estimation process for a complex
survey—i.e., how to obtain the unbiased estimators and derive their corresponding vari-
ances. Suppose there are M dairy cows in a region with N dairy herds. The herd size for
herd i is Mi. The cows are separately managed based on a certain criterion; that is, within
the ith herd there are J groups, and within each of the groups there are Mij cows. The
groups can be treated as strata, as they are not overlapping and constitute the entire herd.
A research team is interested in knowing the prevalence of a disease among cows in this
region. Based on the demographic information, a two-stage cluster sampling is decided.
First, n herds will be selected using SRS. Within each of the sampled herds, STRRS will
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be used to sample cows from each of the strata in each of the herds. Before going to the
estimation process, we shall define some notations (Table 1).

Table 1. Quantities used in a two-stage cluster sampling design, where stratified random sampling is
implemented in the second stage.

N The number of dairy herds in the region.
n The number of dairy herds in the sample.

Mij The number of cows in the jth stratum in the ith herd.
mij The sample size in the jth stratum in the ith herd.

Mi
The number of cows in the ith herd (herd size for herd i),
Mi = ∑J

j=1 Mij.
mi The sample size for herd i.

M The total number of cows in the region,
M = ∑N

i=1 Mi.
yijk The disease outcome (1/0) of the kth cow in the the jth stratum in the ith herd.

τi
The total number of diseased cows in the ith herd,
τi = ∑J

j=1 ∑
Mij

k=1 yijk.

pi
The herd prevalence for the ith herd,
pi =

τi
Mi

.

τ
The total number of diseased cows in the region,

τ = ∑N
i=1 ∑J

j=1 ∑
Mij

k=1 yijk.

p The overall prevalence in the region,
p = τ

M .

The ultimate goal for this sample survey is to estimate p; however, as in the previous
examples it is the best to start by estimating the total τ. Additionally, the computation
process needs to be consistent with the actual sampling steps. Thus, we start by estimating
the total diseased animals in the jth stratum in the ith herd. Within each stratum, SRS is
used, therefore the estimated total can be computed based on Equation (1). The second
step is to estimate the total diseased animals in the ith herd. Because we used STRRS, this
can be achieved by adopting Equation (9). Finally, we can estimate the total number of
diseased animals in the region by using Equation (15), as SRS is used to select herds. Hence,
the unbiased estimated region total is computed in the following way:

τ̂ =
N
n ∑n

i=1 ∑J
j=1

Mij

mij
∑

mij
k=1 yijk. (22)

To prove that the outcome of this process is unbiased, we simplify the notation, letting

τ̂i = ∑J
j=1

Mij
mij

∑
mij
k=1 yijk. We know that τ̂i is unbiased (namely, E[τ̂i] = τi), because we have

used STRRS. Secondly, we specify a binary indicator variable Zi that = 1 if herd i is selected
or 0 if it is not. Let πi denote the probability that herd i is selected (inclusion probability of
a herd); we then have πi ≡ P(Zi = 1) = E[Zi] =

n
N , since SRS is used for the first stage of

selection (i.e., the selection of herds). Given that sampling within any herd is independent
of the sampling in any other herd and that τ̂i is independent of Z = (Z1, Z2, . . . , ZN),
we have:

E[τ̂] = E[E[ τ̂|Z]] = E
[
E
[
∑n

i=1
N
n τ̂i

∣∣∣Z]] = E
[
E
[
∑N

i=1
N
n Ziτ̂i

∣∣∣Z]] (partition theorem
for expectations)
= E

[
∑N

i=1 E
[

N
n Ziτ̂i

∣∣∣Z]] (the conditional expectation of a sum is the sum of the condi-
tional expectations)
= E

[
∑N

i=1
N
n E[Ziτ̂i|Z]

]
(expectation is a linear operator and N

n is a constant)

= E
[
∑N

i=1
N
n ZiE[ τ̂i|Z]

]
(knowing a vector means the same as knowing every element of

the vector; conditional on the selection status of every herd means knowing the selection
status of any herd)
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= E
[
∑N

i=1
N
n ZiE[τ̂i]

]
(τ̂i and Z are independent)

= E
[
∑N

i=1
N
n Ziτi

]
(unbiased estimator for stratified random sampling for each herd)

= ∑N
i=1

N
n τiE[Zi] = ∑N

i=1
N
n τi

n
N = ∑N

i=1 τi = τ (linear property of expectation).

Therefore, the unbiased estimator for the overall prevalence is simply:

p̂ =
τ̂

M
=

N
nM ∑n

i=1 ∑J
j=1

Mij

mij
∑

mij
k=1 yijk. (23)

In order to find the variance formula for p̂, it is easier to start with τ̂. It is necessary
to first identify the sources of variability. In this two-stage cluster sampling process, we
have between- and within-herd variances. The variance partition formula can thus de-
compose the total variance into two parts: Var(τ̂) = Var(E[τ̂|Z]) +E[Var(τ̂|Z)] , where
Var(E[τ̂|Z]) measures the variability between herds and E[Var(τ̂|Z)] measures the vari-
ability within a herd. Since SRS is implemented at the herd level, according to Equation (3),
we have:

Var(E[τ̂|Z]) = Var
(
E
[
∑N

i=1
N
n

Ziτ̂i

∣∣∣∣Z]) = Var
(

∑N
i=1

N
n

Ziτi

)
= N2

(
1− n

N

)σ2
τ

n
,

where σ2
τ = 1

N−1 ∑N
i=1
(
τi − τ

N
)2. This part of the variance is the same as that of one-stage

cluster sampling, since the herd sampling procedures are exactly the same. The detailed
derivation is essentially the same as the derivation of variance in SRS (see Appendix B).

For the within-herd component of the variance, E[Var( τ̂|Z)], the formula inside the
expectation operator, Var( τ̂|Z) = E[τ̂2

∣∣Z]−E[ τ̂|Z]2 according to the conditional variance
formula. The detailed mathematical derivation is available in Appendices D and E provides
the statistical theorems required in this paper. Here, we only give an essential intermediate
result: E[Var( τ̂|Z)] = N

n ∑N
i=1 Var(τ̂i). Since STRRS is implemented within each herd,

Var(τ̂i) can be easily obtained from Equation (11) or Equation (12) depending on the nature
of yijk. In our particular example, where yijk takes a binary value (either 1 or 0), we have

Var(τ̂i) = ∑J
j=1

M2
ij

mij

(
1− mij

Mij

)Mij pij(1−pij)
Mij−1 . Generally, Var(τ̂i) = ∑J

j=1
M2

ij
mij

(
1− mij

Mij

)
σ2

ij.
Therefore, the general formula for the variance of τ̂ is given as:

Var(τ̂) =
N2

n

(
1− n

N

)
σ2

τ +
N
n ∑N

i=1 ∑J
j=1

M2
ij

mij

(
1−

mij

Mij

)
σ2

ij, (24)

where σ2
ij =

(
1

Mij−1

)
∑

Mij
k=1 (yijk − µij)

2, µij is the unknown mean of the jth stratum in the
ith herd. When yijk takes a binary value, the special form is given by applying the method
introduced in the SRS section (see Equation (5)):

Var(τ̂) =
N2

n

(
1− n

N

) 1
N − 1 ∑N

i=1

(
τi −

τ

N

)2
+

N
n ∑N

i=1 ∑J
j=1

M2
ij

mij

(
1−

mij

Mij

)
Mij pij

(
1− pij

)
Mij − 1

. (25)

Again, this variance depends on some unknown quantities which we have estimated.
These estimates can then be used to replace these unknown quantities, as we have done
previously. Thus, the estimated variance (general form) will be:

V̂ar(τ̂) =
N2

n

(
1− n

N

)
σ̂τ

2 +
N
n ∑n

i=1 ∑J
j=1

M2
ij

mij

(
1−

mij

Mij

)
s2

ij, (26)

where σ̂τ
2 = 1

n−1 ∑n
i=1

(
τ̂i − τ̂

N

)2
. Note the difference between σ̂τ

2 and s2
τ in the one-stage

cluster sampling; s2
ij =

(
1

mij−1

)
∑

mij
k=1 (yijk − yij)

2 is the sample variance within the jth
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stratum in the ith herd, with yij =
1

mij
∑

mij
k=1 yijk being the estimated sample mean. When

yijk takes a binary value, the special form is given as:

V̂ar(τ̂) =
N2

n

(
1− n

N

)( 1
n− 1

)
∑n

i=1

(
τ̂i −

τ̂

N

)2
+

N
n ∑n

i=1 ∑J
j=1 M2

ij

(
1−

mij

Mij

)
p̂ij
(
1− p̂ij

)
mij − 1

. (27)

Finally, the variance and estimated variance for p̂ are found simply by multiplying
the results of Equations (25) and (27) by a constant 1

M2 . The same process can be applied to
find the variance and estimated variance for y when yijk is not limited to binary values. A
numerical illustration example in this design would be tedious to present manually; we
have therefore provided the Python code for computation (see the Supplementary Materials:
Python code for the two-stage cluster sampling where stratification is implemented within
the clusters).

5. Sample Size Consideration

Although the paper has focused principally on the estimation of outcomes of interest,
sample size calculations are also a critical part of the study design process. For ready-to-use
sample size calculation formulas, readers are directed to Stevenson 2021 [37]. However,
for a complex survey where the formula needs to be derived on a case-by-case basis, it
is of value to briefly introduce the principles behind the sample size calculation. The
formulas for sample size calculations are closely related to the sampling distributions of
the estimators. The investigator needs to come up with an expected value for the finite
population characteristic of interest and then think about how precise the estimate needs to
be. The narrower the sampling distribution of an estimator, the more precise the estimate
needs to be (and thus the larger the sample size). Therefore, it is natural to think what the
sampling distribution is and which quantity defines the spread of the distribution.

Here, we use the SRS as an example, as the SRS serves as the theoretical basis for other
more complicated sampling methods. Suppose that in the SRS for estimating prevalence
in a finite herd, the sampling distribution for p̂ is approximately normal, with mean = p
and variance =

(
M−m
M−1

)
p(1−p)

m (see Equation (5) of this paper for the variance formula) [27].
Note that for sample size calculations as opposed to calculating the variance of an estimator
from the empirical data, we use the theoretical variance formula instead of the estimated
variance formula. Clearly, the variance determines the spread of a distribution and it is a
function of the sample size m; thus, this is the equation we are targeting.

The investigator then needs to specify the expected prevalence p = p0 and think about
the quantiles (qα/2 and q1−α/2) of this sampling distribution at the 1− α confidence level
(usually, we set 1− α = 0.95). These quantiles can be interpreted as the farthest acceptable
estimates from the expected prevalence, and qα/2 = −q1−α/2 due to the symmetry of
the normal density curve. This suggests that P(−q1−α/2 ≤ p̂ ≤ q1−α/2) = 1− α. Let SE
denote the square root of the variance in this specific example. Standardisation gives
p̂−p0

SE ∼ N(0, 1); thus, ± q1−α/2−p0
SE = ±z1−α/2, where ±z1−α/2 are the quantiles of standard

normal distribution that we know—for example, ±z1−α/2 ≈ ±1.96 for 95% confidence.
We thus need to find a sample size value which makes z1−α/2SE equal to the absolute
difference (d) between the farthest acceptable estimate and the expected prevalence. Now,
it is just a matter of solving this equation. With a little algebra, the sample size is:

m =
z2

1−α/2Mp0(1− p0)

(M− 1)d2 + z2
1−α/2 p0(1− p0)

. (28)

6. Conclusions

This paper has provided a brief overview of the principles of probability sampling
and the design-based approach for estimating finite population characteristics. In addition,
we summarised the analytical methods for various commonly used sampling methods in
detail. Instead of feeding the formulas to the readers, we have attempted to introduce and
illustrate the ideas to help the readers understand, interpret, derive, and prove the unbiased
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estimators of the design-based samples and their corresponding variance formulas. We
hope the ideas and methods presented in this paper can inspire the readers, so that the
readers are encouraged to find the proper estimators and corresponding variances in their
own sample surveys.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vetsci8060105/s1, File S1: Python code for the two-stage cluster sampling where stratification
is implemented within the clusters.
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Appendix A

First: we consider the simple random sampling scenario. In a population with M
animals, let a Bernoulli random variable Zk denote whether animal k is selected. Zk = 1
if the individual k is selected; otherwise, Zk = 0. Let πk ≡ P(Zk = 1) be the inclusion
probability that animal k is selected. Claim that πk ≡ P(Zk = 1) = m

M for a sample with a
fixed sample size m. We shall apply the principle introduced in the section “Overview of
probability sampling” to prove. For a sample with a fixed sample size m, there are in total(

m
M

)
ways to obtain a sample. In the simple random sampling, all possible samples of a

given size have the same probability of being selected—that is, P(S) = 1(
m
M

) = m!(M−m)!
M! .

The inclusion probability πk is calculated by summing the probabilities of all samples

including the animal k—i.e., πk = ∑S:k∈S P(S). There are
(

m− 1
M− 1

)
scenarios that a sample

contains the animal k. As once the animal k is fixed, we need to choose another m − 1

animal from the rest M − 1 animals to form a sample. We then just need to add
(

m− 1
M− 1

)
P(S)s up to obtain πk. Therefore, πk =

(
m− 1
M− 1

)
m!(M−m)!

M! = (M−1)!
(m−1)!(M−m)!

m!(M−m)!
M! = m

M .

Building on the idea of the simple random sampling, the inclusion probability for
stratified random sampling is easy to derive. Let Zjk ∼ Bern

(
πjk

)
represent whether the

kth animal in the jth stratum is selected, where πjk is the inclusion probability. For the jth
stratum, πjk =

mj
Mj

, as simple random sampling is implemented within the stratum.

For the cluster sampling, let Zik ∼ Bern(πik) represent whether the kth animal on
the ith farm is selected. Let random variable Zi ∼ Bern(πi) represent whether the ith
farm is selected. Given a one-stage cluster sampling scenario, if the farm is selected, all
animals within the farm must be selected—namely, P(Zik = 1|Zi = 1) = 1. As simple
random sampling is used to select farms, πi ≡ P(Zi = 1) = n

N . By the law of total probabil-
ity, πik ≡ P(Zik = 1) = P(Zik = 1|Zi = 1)P(Zi = 1) + P(Zik = 1|Zi = 0)P(Zik = 0). If the
farm is not selected, the probability of the animal on this farm being selected is 0, namely,
P(Zik = 1|Zi = 0) = 0, therefore πik = n

N . The inclusion probability for the two-stage

https://www.mdpi.com/article/10.3390/vetsci8060105/s1
https://www.mdpi.com/article/10.3390/vetsci8060105/s1
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cluster sampling is similar; the difference is P(Zik = 1|Zi = 1) 6= 1, but this depends on the
sampling method used within a farm.

Appendix B

The well-known results for the variance formulas in the simple random sampling
will be derived here. For a finite population with size M, we have Z1, Z2, . . . , ZM Bernoulli
random variables representing the selection of the animals. These are identically dis-
tributed with the same marginal distribution, such that Zk ∼ Bern(πk); however, they are
not independent, as P(Zk = 1|Zl = 1) 6= P(Zk = 1), where k 6= l. The probability of the
second animal being selected depends on the first animal’s selection result. For a Bernoulli
random variable, we know that E[Zk] = P(Zk = 1) = πk = m

M if the sample size is m;
Var(Zk) = m

M
(
1− m

M
)
. Therefore, E

[
Z2

k
]
= Var(Zk) + E[Zk]

2 = m
M . If k 6= l, the proba-

bility that both animals are selected is P(Zk = 1, Zl = 1) = P(Zl = 1)P(Zk = 1|Zl = 1) =
m
M

m−1
M−1 , and E[ZkZl ] = ∑Zk ∑Zl

zkzlP(Zk = zk, Zl = zl) = P(Zk = 1, Zl = 1) = m
M

m−1
M−1 .

Therefore, the covariance of Zk and Zl is computed as:

Cov(Zk, Zl) = E[ZkZl ]−E[Zk]E[Zl ] =
m
M

m− 1
M− 1

− m
M

m
M

= −
(

1− m
M

)( 1
M− 1

)
m
M

.

Now the variance of the estimated finite population total τ̂ shall be derived as:

Var(τ̂) =Var
(M

m ∑m
k=1 yk

)
= M2

m2 Var
(

∑M
k=1 ykZk

)
= M2

m2 Cov
(

∑M
k=1 ykZk , ∑M

l=1 yl Zl

)
= M2

m2 ∑M
k=1 ∑M

l=1 ykylCov(Zk , Zl)

= M2

m2

{
∑M

k=1 y2
kVar(Zk) + ∑M

k=1 ∑M
l 6=k ykylCov(Zk , Zl)

}
= M2

m2

{
∑M

k=1 y2
k

m
M
(
1− m

M
)
−∑M

k=1 ∑M
l 6=k ykyl

m
M
(
1− m

M
)( 1

M−1

)}
= M2

m2
m
M
(
1− m

M
)( 1

M−1

){
(M− 1)∑M

k=1 y2
k −∑M

k=1 ∑M
l 6=k ykyl

}
= M

m
(
1− m

M
)( 1

M−1

){
(M− 1)∑M

k=1 y2
k −

[(
∑M

k=1 yk

)2
−∑M

k=1 y2
k

]}
= M

m
(
1− m

M
)( 1

M−1

){
M ∑M

k=1 y2
k −

(
∑M

k=1 yk

)2
}

= M2

m
(
1− m

M
)( 1

M−1

){
∑M

k=1 y2
k −

(∑M
k=1 yk)

2

M

}
= M2

m
(
1− m

M
)( 1

M−1

){
∑M

k=1 y2
k −M

(
∑M

k=1 yk
M

)2
}

= M2

m
(
1− m

M
)( 1

M−1

){
∑M

k=1 y2
k −Mµ2

}
== M2

m
(
1− m

M
)( 1

M−1

){
∑M

k=1 y2
k − 2Mµ2 + Mµ2

}
= M2

m
(
1− m

M
)( 1

M−1

){
∑M

k=1 y2
k − 2µMµ + Mµ2

}
= M2

m
(
1− m

M
)( 1

M−1

){
∑M

k=1 y2
k − 2µ ∑M

k=1 yk + ∑M
k=1 µ2

}
= M2

m
(
1− m

M
)( 1

M−1

){
∑M

k=1 y2
k − 2µyk + µ2

}
= M2

m
(
1− m

M
)( 1

M−1

){
∑M

k=1(yk − µ)2
}

.

Observe that ∑M
k=1(yk−µ)2

M−1 is the finite population variance σ2, therefore:

Var(τ̂) =
M2

m

(
1− m

M

)
σ2,

which is the Equation (3) shown in the main body of the text. In our particular case, yk is
binary valued, we shall let µ ≡ p and y ≡ p̂, therefore:

σ2 = 1
M−1 ∑M

k=1(yk − p)2 = 1
M−1 ∑M

k=1
(
y2

k − 2pyk + p2) = 1
M−1 ∑M

k=1 y2
k − 2p ∑M

k=1 yk + ∑M
k=1 p2 = Mp−2pMp+Mp2

M−1

=
M(p−p2)

M−1 = Mp(1−p)
M−1 .

and the variance of the estimated finite population prevalence are:

Var( p̂) ≡ Var(y) =
1

M2 Var(τ̂) =
1

M2
M2

m

(
1− m

M

)
σ2 =

(
1− m

M

) 1
m

Mp(1− p)
M− 1

=

(
M−m

M

)
1
m

Mp(1− p)
M− 1

=

(
M−m
M− 1

)
p(1− p)

m
,

which is Equation (5) shown in the main body of the text. Since the variance depends
on the unknown quantity p, we shall replace the finite population variance σ2 with the

sample variance s2 = ∑m
k=1(yk− p̂)2

m−1 . With the same algebra, s2 = mp̂(1− p̂)
m−1 . Therefore, the

estimated variance is:
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V̂ar( p̂) =
1

M2 V̂ar(τ̂) =
1

M2
M2

m

(
1− m

M

)
s2 =

1
m

(
1− m

M

)mp̂(1− p̂)
m− 1

=
(

1− m
M

) p̂(1− p̂)
m− 1

,

which is the Equation (7) shown in the main body of the text.

Appendix C

In the stratified random sampling section, we mentioned a “natural” estimator for the
prevalence on a farm—that is:

p̌ =
1
m ∑J

j=1 ∑
mj
k=1 yjk.

This sums up all the observed values in the sample and divides by the sample size.
This estimator is generally biased; to see why, let us suppose that we sampled the entire
herd (herd size = M):

p = 1
M ∑J

j=1 ∑
Mj
k=1 yjk =

1
M ∑J

j=1 Mj pj

E[ p̌] = 1
m ∑J

j=1 E
[
∑

Mj
k=1 Zijyjk

]
= 1

m ∑J
j=1 ∑

Mj
k=1 yjkE

[
Zjk

]
= 1

m ∑J
j=1 Mj pj

mj
Mj

= 1
m ∑J

j=1 mj pj 6= 1
M ∑J

j=1 Mj pj = p

∴ E[ p̌]− p 6= 0 =⇒ p̌ is a biased estimator.

However, under the proportional allocation, the sample size in each of the strata is
taken in proportion to the actual size of the corresponding stratum, that is mj = CMj,

then ∑J
j=1 mj = C ∑J

j=1 Mj =⇒ m = CM . With a little algebra, we can see that
mj
m =

Mj
M ;

therefore, E[ p̌] = p.

Appendix D

In the two-stage cluster sampling, the variance of the estimated total comes from two
sources. Based on the variance partition formula, Var(τ̂) = Var(E[τ̂|Z]) +E[Var(τ̂|Z)] ,
where Var(E[τ̂|Z]) measures the variability between herds and E[Var(τ̂|Z)] measures the
variability within a herd. Since simple random sampling is implemented at the herd level,
Var(E[τ̂|Z]) is relatively easier to derive by following the method shown in the simple
random sampling scenario.

Here, we focus on deriving the variance formula for the within-herd component
E[Var( τ̂|Z)]. We apply the conditional variance formula inside the expectation operator:
E[Var( τ̂|Z)] = E

[
E[τ̂2

∣∣Z]−E [τ̂|Z] 2
]
. We will work on the two terms inside the expecta-

tion operator, then apply the expectation. A gentle courtesy here is to explain the notations
again. A Bernoulli random variable Zi ∼Bern(πi) represents whether the herd i is selected,
and we have πi ≡ P(Zi = 1) = E[Zi] = E

[
Z2

i
]
= n

N . Sampling within any herd is indepen-
dent of the sampling in any other herd and τ̂i is independent of Z = (Z1, Z2, . . . , ZN).

Var( τ̂|Z) = E[τ̂2
∣∣Z]−E [τ̂|Z] 2 = E

[(
∑N

i=1
N
n Ziτ̂i

)2
∣∣∣∣Z]− (∑N

i=1
N
n Ziτi

)2

= E
[

∑N
i=1

N2

n2 Zi
2τ̂i

2 + ∑N
i=1 ∑N

h 6=i
N2

n2 τ̂iτ̂hZiZh

∣∣∣Z]− (∑N
i=1

N
n Ziτi

)2

= N2

n2 ∑N
i=1 E

[
Zi

2τ̂i
2
∣∣Z]+ N2

n2 ∑N
i=1 ∑N

h 6=i E[ τ̂iτ̂hZiZh|Z]−
(

∑N
i=1

N
n Ziτi

)2

= N2

n2

(
∑N

i=1 Zi
2E
[

τ̂i
2
∣∣Z]+ ∑N

i=1 ∑N
h 6=i ZiZhE[ τ̂iτ̂h|Z]−∑N

i=1 Zi
2τi

2 −∑N
i=1 ∑N

h 6=i ZiZhτiτh

)
= N2

n2

(
∑N

i=1 Zi
2E
[
τ̂i

2]+ ∑N
i=1 ∑N

h 6=i ZiZhE[τ̂iτ̂h]−∑N
i=1 Zi

2τi
2 −∑N

i=1 ∑N
h 6=i ZiZhτiτh

)
(τ̂i and Z are independent random variables, real valued functions f and g defined for

τ̂i and Z are also independent random variables; this justifies E
[

τ̂i
2
∣∣Z] = E

[
τ̂i

2] as f and
g are a quadratic and an identity functions, respectively; more generally τ̂i, τ̂h and Z are
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independent, thus f (τ̂i, τ̂h) and g(Z) are independent; this justifies E[ τ̂iτ̂h|Z] = E[τ̂iτ̂h] as
f (τ̂i, τ̂h) = τ̂iτ̂h and g(Z) = Z)

=
N2

n2

(
N

∑
i=1

Zi
2E
[
τ̂i

2
]
+

N

∑
i=1

N

∑
h 6=i

ZiZhE[τ̂i]E[τ̂h]−
N

∑
i=1

Zi
2τi

2 −
N

∑
i=1

N

∑
h 6=i

ZiZhτiτh

)

(sampling independently from the farms implies independence between τ̂i and τ̂h, for
two independent random variables, E[τ̂iτ̂h] = E[τ̂i]E[τ̂h])

= N2

n2

(
∑N

i=1 Zi
2
{
E[τ̂i]

2 + Var(τ̂i)
}
+ ∑N

i=1 ∑N
h 6=i ZiZhτiτh −∑N

i=1 Zi
2τi

2 −∑N
i=1 ∑N

h 6=i ZiZhτiτh

)
= N2

n2

(
∑N

i=1 Zi
2τi

2 + ∑N
i=1 Zi

2Var(τ̂i)−∑N
i=1 Zi

2τi
2
)
= N2

n2 ∑N
i=1 Zi

2Var(τ̂i).

∴ E[Var( τ̂|Z)] = E
[

N2

n2 ∑N
i=1 Zi

2Var(τ̂i)
]
= N2

n2 ∑N
i=1 E

[
Zi

2]Var(τ̂i) =
N
n ∑N

i=1 Var(τ̂i)

(sampling independently from the farms).

Appendix E

1. Joint probability: P(A, B) = P(A|B)P(B),
2. Independence of two events: P(A|B) = P(A),
3. Law of total probability: P(A) = P(A|B)P(B) + P(A|Bc)P(Bc),
4. Expectation of a discrete random variable: E[X] = ∑x x f (x),
5. Property of expectation: E[aX + b] = aE[X] + b,
6. Variance of a random variable: Var(X) = E

[
X2]−E[X]2

7. Property of variance:

• Var(aX + b) = a2Var(X),
• If X1, X2, . . . , Xn are mutually independent, then Var(∑n

i=i Xi) = ∑n
i=i Var(Xi),

8. Bias: Bias
(
θ̂
)
= E

[
θ̂
]
− θ, unbiasedness implies Bias

(
θ̂
)
= 0,

9. Expectation for a function of two random variables: E[g(X, Y)] = ∑x ∑y g(x, y) f (x, y),
10. Covariance: Cov(X, Y) = E[XY]−E[X]E[Y],
11. Properties of covariance:

• Independence between X and Y =⇒ Cov(X, Y) = E[XY]−E[X]E[Y] = 0,
• Var(X) = Cov(X, X),
• Cov(aX + b, cX + d) = acCov(X, Y),

• Cov
(

∑n
i=1 Xi, ∑n

j=1 Xj

)
= ∑n

i=1 ∑n
j=1 Cov

(
Xi, Xj

)
= ∑n

i=1 Var(Xi) + ∑n
i=1 ∑n

j 6=i

Cov
(
Xi, Xj

)
,

12. Conditional expectation: E[X|Y] is a random variable subject to the variation of X,
13. Properties of conditional expectation:

• Independence between X and Y =⇒ E[X|Y] = E[X] and E[g(X)|Y] = E[g(X)],
• E[g(Y)|Y] = g(Y) and E[g(Y)X|Y] = g(Y)E[X|Y],
• E[aX + bY|Z] = aE[X|Z] + bE[Y|Z],

14. Partition theorem for expectations: E[X] = E[E[X|Y]],
15. Variance partition formula: Var(X) = Var(E[X|Y]) +E[Var(X|Y)],
16. Conditional variance formula: Var(X|Y) = E

[
X2
∣∣Y]−E[X|Y]2.
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