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Metamaterial and photonic crystal structures are
central to modern optics and are typically created
from multiple elementary repeating cells. We demon-
strate how one replaces such structures asymptotically
by a continuum, and therefore by a set of equations,
that captures the behaviour of potentially high-
frequency waves propagating through a periodic
medium. The high-frequency homogenization that we
use recovers the classical homogenization coefficients
in the low-frequency long-wavelength limit. The
theory is specifically developed in electromagnetics
for two-dimensional square lattices where every cell
contains an arbitrary hole with Neumann boundary
conditions at its surface and implemented numerically
for cylinders and split-ring resonators. Illustrative
numerical examples include lensing via all-angle
negative refraction, as well as omni-directive antenna,
endoscope and cloaking effects. We also highlight the
importance of choosing the correct Brillouin zone and
the potential of missing interesting physical effects
depending upon the path chosen.

1. Introduction
Photonic crystal (PC) media [1,2] and metamaterials [3]
are topical areas in optics, and both involve non-
resonant or resonant interactions created by waves
within periodic structures. Such structures are of
considerable current interest [4], with applications to
invisibility and cloaking [5], among others. In photonics,
a typical structure may involve multiple cylindrical
holes [6], and in metamaterials, the peculiar properties
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Figure 1. (a) An infinite square array of SRRswith the elementary cell shown as the dashed line inner square. (b) The irreducible
Brillouin zone, inwavenumber space, used for square arrays in perfectly periodicmedia based around the elementary cell shown
of length 2l (with l = 1).

of split-ring resonators (SRRs) [7] are typical building blocks. In both cases, the physics is
neatly encapsulated and displayed by dispersion diagrams that relate the Bloch wavenumber
in the irreducible Brillouin zone to the frequency; these illustrate essential features such as
band gaps of frequencies where propagation in an infinite periodic structure is disallowed.
Such dispersion diagrams for infinite periodic media can then be used to design the size and
geometry of structural elements within a cell to create particular optical features. We turn to
arrays of cylindrical holes and to SRRs in order to illustrate the versatility of a new technique that
creates effective homogenized models, even at high frequencies, and in doing so also uncover
details of how the SRR geometry affects the metamaterial properties. In this article, we treat a
specific polarization in electromagnetism, transverse electric (TE), whereby the magnetic field
is perpendicular to the plane of periodicity, and we consider perfectly conducting structural
elements, such that the holes have a Neumann condition upon them; this is of particular interest
as there has been discussion that homogenization theory is invalid for this case.

Many materials of abiding interest in physics are created from periodically repeating cells
such as those of figure 1a, which shows a square array of SRRs with a square cell as
the dashed square. Given such a medium, with, say, a defect or many hundreds of cells
within a macrocell, it is attractive to replace it with an effective medium on a macroscale;
naturally, one hopes that the effective replacement continuum model material captures the
behaviour created by the microscale. For long waves, in the quasi-static low-frequency limit,
there is an established theory, homogenization theory [4,8–11], that replaces a microstructured
medium with an averaged macroscale model; this is highly successful and an attractive
approach for low-frequency waves with wavelengths many times the typical cell size. However,
many of the features of interest in real PCs, or other periodic structures, such as all-angle
negative refraction (AANR) [12,13] or ultra-refraction [14] occur at high frequencies where the
wavelength and microstructure dimension are of similar orders. Therefore, the conventional low-
frequency classical homogenization clearly fails to capture the essential physics, and a different
approach to distill the physics into an effective model is required. Fortunately, a high-frequency
homogenization (HFH) theory, developed in Craster et al. [15], is capable of capturing features
such as AANR and ultra-refraction for some model structures [16]. Somewhat tangentially,
there is existing literature in the analysis community on Bloch homogenization [17,18] and, in
particular, Hoefer & Weinstein [19], which is related to what we call HFH. There is also literature
on developing homogenized elastic media, with frequency-dependant effective parameters,



3

rspa.royalsocietypublishing.org
ProcRSocA469:20120533

..................................................
based upon periodic media [20]. There is therefore considerable interest in creating effective
continuum models of microstructured media that break free from the conventional low-frequency
homogenization limitations. In this article, we turn our attention to microstructures of abiding
interest, perfectly conducting holes (in TE polarization) that have been much studied in the
literature [21] and to the topical SRR metamaterial structure [7,22]; for both cases, we illustrate
how the general HFH model is used and the asymptotic behaviour of the dispersion curves found.
Interesting details such as the behaviour at crossing points, and degenerate behaviour, where
the local behaviour in the dispersion curve switches from quadratic to linear are all found from
effective macroscale equations that have the microscale completely captured within coefficients.
In the SRR case, the homogenization procedure must be performed numerically, and this is done
here; hence, with minor modifications, the methodology can now be applied to any geometry
within a cell.

On the topic of quasi-static homogenization, a series of papers [23–25] draws perplexing
conclusions about the possibility of using homogenization at all, even for the lowest acoustic band
in the dispersion diagram. For doubly periodic perfectly conducting inclusions with Dirichlet
(transverse magnetic (TM) polarization, i.e. with an electric field perpendicular to the plane of
periodicity) boundary conditions, there is no intercept of the acoustic branch with the origin,
and conventional homogenization fails; there is no controversy with this deduction. Notably,
the HFH has no such failing, as shown in Craster et al. [15]. The discrepancy in the literature
is with (cylindrical) perfectly conducting inclusions with Neumann (TE polarization) boundary
conditions for which analytical multi-pole methods [24] produce linear asymptotics as the
acoustic branch approaches zero wavenumber and the precise behaviour is not replicated by
conventional homogenization; the slope of the asymptotics is important as it is related to the
effective refractive index of the medium for long waves. Furthermore, if the cylinders have finite
dielectric properties, then the limits of zero conduction and of zero wavenumber do not commute.
Complementary to this are claims that homogenization theory will actually operate correctly, see
the comments and responses by Halevi et al. [26] and Nicorovici et al. [27]. Here, we advance
the theory of homogenization to higher frequencies and, as a corollary, are able to demonstrate
conclusively, using our approach, that one can indeed homogenize perfectly conducting cylinders
in the TE polarization for the quasi-static low-frequency limit.

Parallel to the electromagnetic setting is a mathematically identical interest in, mainly
cylindrical, periodic inclusions in acoustics, water waves and anti-plane elasticity. Homogeni-
zation in those settings for long waves relative to the cell spacing leads to effective
equations [28,29] that do not appear to have any issues, and if, furthermore, the inclusions are
taken to be small, then singular perturbation theory can be employed [30], or asymptotic coupled
mode theory [31], to good effect.

We generate an HFH theory for repeating cells containing Neumann inclusions; this limiting
case is not covered within Craster et al. [15] and is of independent interest, even at low frequencies.
The general high-frequency model is developed in §2, with the low-frequency limit covered in
a §2b. Armed with the general theory, we verify its efficacy upon the well-studied cylindrical
inclusion case (§3a), which allows us to demonstrate that homogenization does indeed work
despite arguments to the contrary, and for all frequencies, not just in the low-frequency limit.
The cylindrical inclusions contrast with the SRRs, where additional branches split from those in
the cylindrical case, and for which interesting asymptotic results emerge in §3b. Section 4 gives an
overview of complementary geometrical asymptotic limits. The HFH asymptotics give additional
physical insight that then motivates us to explore further features of the SRRs and cylinders in §5.
Finally, concluding comments and remarks are presented in §6.

2. General theory
For infinite perfectly periodic media, consisting of elementary cells that repeat, one focuses
attention on a single elementary cell; quasi-periodic Floquet–Bloch boundary conditions describe
the phase shift as a wave moves through the material, and dispersion relations then relate the
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Bloch wavenumber, the phase shift, to frequency. The Bloch wavenumber is a vector, and figure 1b
shows the irreducible Brillouin zone [32] Γ XM associated with a single repeating elementary
square cell containing, say, a circular hole, also shown is the smaller triangle for a group of four
repeating cells. The dispersion diagrams we show are frequency versus wavenumber around
the edges of the Brillouin zone, as is traditional in solid-state physics. There are occasions when
doing this misses interesting details [33], and we illustrate this later by noting that a perfectly flat
path occurs for a square array of strings along MX′ (a path that is missed by going around the
path Γ XM) and that an almost flat band occurs for an array of cylinders; this flat band leads to
directional standing wave patterns. We also note that the symmetry of the hole is important, and
for the two thin ligament SRR of figure 1a, one should use the square Γ MXN.

The eigensolutions that emerge are the Bloch modes at the edges of the Brillouin zone,
and when these eigensolutions are perfectly in phase or out of phase across the cell, then
standing waves exist, and there are standing wave frequencies (whose frequencies can be high).
Asymptotic techniques based around high-frequency long-wave asymptotics have recently been
developed [15], and Schrödinger ordinary differential equations in one-dimensional periodic
media (or partial differential equations in two dimensions) emerge; this approach also works
for microstructured discrete [34] or frame-like media [35]. These recent theories avoid the issue of
perfectly conducting holes and have material properties varying periodically on the scale of the
elementary cell and only treat model problems, mainly in one dimension, for which completely
analytic progress can be made. The key idea for periodic media is to replace the complicated
microstructured medium with an equivalent, effective, continuum on a macroscale, that is, one
wishes to homogenize the medium, even when the wavelength and microstructure may be of
similar scales.

The theory is ultimately not limited to just reproducing dispersion curves asymptotically, and
it can be adjusted to treat localized defect modes and other features due to local non-periodic
material changes or boundaries, with these effects coming through in extra forcing terms within
the continuum partial differential equations.

We begin with a two-dimensional structure composed of a square lattice geometry of identical
cells with identical holes inside each of them. The side length of the direct lattice base vectors, i.e.
the side of each square cell, is taken as 2l. Note that for simplicity, equal length lattice vectors
and a square lattice are assumed, and both assumptions could be relaxed. These elementary
cells define a length scale that is the microscale of the structure. As noted above, real structures
could be created from many hundreds or thousands of such elementary cells, and we introduce a
macroscale length denoted by L that could be viewed as a characteristic overall dimension of the
structure. The ratio of these scales, ε ≡ l/L, is assumed small.

Each cell is identical in geometry and the material within each cell is characterized by
two periodic functions, in ξ ≡ (x1/l, x2/l), namely â(ξ) and ρ̂(ξ). Depending on the application,
these could be stiffnesses and density for shear horizontal polarized elastic waves or inverse
permittivity and permeability in electromagnetism. The geometry is specific in the sense that it
contains an arbitrary hole, or set of holes, and boundary conditions have to be prescribed on the
hole. In this study, Neumann conditions will be used that are the natural boundary conditions for
perfectly conducting holes in the transverse TE polarization of electromagnetism or for stress-free
holes in anti-plane shear elasticity.

A time-harmonic dependence of propagation exp(−iωt), with frequency ω, is assumed
throughout, and henceforth suppressed, and a non-dimensionalization by setting â ≡ â0a(ξ) and
ρ̂ ≡ ρ̂0ρ(ξ), where ĉ0 =

√
â0/ρ̂0 is the characteristic wave speed, leads to the resulting equation of

study,

l2∇x · [a(ξ)∇xu(x)] + Ω2ρ(ξ)u(x) = 0, with Ω = ωl
ĉ0

, (2.1)

on −∞ < x1, x2 < ∞; Ω is the non-dimensional frequency and u is the out-of-plane displacement
in elasticity or the H3 component of the magnetic field in TE polarization.
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The two-scale nature of the problem is incorporated using the small and large length scales
to define two new independent coordinates, namely X = x/L, and ξ = x/l. Equation (2.1) then
becomes

∇ξ · [a(ξ)∇ξ u(X, ξ)] + Ω2ρ(ξ)u(X, ξ) + ε[2a(ξ)∇ξ + ∇ξ a(ξ)] · ∇Xu(X, ξ) + ε2a(ξ)∇2
Xu(X, ξ) = 0.

(2.2)
Standing waves occur when there are periodic (or anti-periodic) boundary conditions across the
elementary cell (in the ξ coordinates), and these standing waves encode the local information
about the multiple scattering that occurs by the neighbouring cells. The asymptotic technique is
then a perturbation about these standing wave solutions, as these are associated with periodic
and anti-periodic boundary conditions, which are, respectively, in-phase and out-of-phase waves
across the cell; the conditions in ξ on the edges of the cell, ∂S1, are known,

u|ξi=1 = ±u|ξi=−1 and u,ξi |ξi=1 = ±u,ξi |ξi=−1, (2.3)

with the + or − for periodic or anti-periodic cases, respectively. We now pose an ansatz for the
field and the frequency,

u(X, ξ) = u0(X, ξ) + εu1(X, ξ) + ε2u2(X, ξ) + · · ·
and Ω2 = Ω2

0 + εΩ2
1 + ε2Ω2

2 + · · · .

⎫⎬
⎭ (2.4)

The ui(X, ξ)’s adopt the boundary conditions (2.3) on the edge of the cell. An ordered set of
equations emerge indexed with their respective power of ε, and are treated in turn,

(au0,ξi),ξi + Ω2
0 ρu0 = 0, (2.5)

(au1,ξi),ξi + Ω2
0 ρu1 = −(2au0,ξi + a,ξi u0),Xi − Ω2

1 ρu0 (2.6)

and (au2,ξi),ξi + Ω2
0 ρu2 = −au0,XiXi − (2au1,ξi + a,ξi u1),Xi − Ω2

1 ρu1 − Ω2
2 ρu0. (2.7)

The leading order equation (2.5) is independent of the long scale X and is a standing wave on
the elementary cell excited at a specific eigenfrequency Ω0 and associated eigenmode U0(ξ ; Ω0),
modulated by a long-scale function f0(X) and so

u0(X, ξ) = f0(X)U0(ξ ; Ω0). (2.8)

At this point, we will assume isolated eigenfrequencies, but repeated eigenvalues arise and are
discussed later. The entire aim is to arrive at a partial differential equation for f0 posed entirely
upon the long scale, but with the microscale incorporated through coefficients that are integrated,
not necessarily averaged, quantities.

Before we continue to the next order, equation (2.6), we define the Neumann boundary
conditions on the holes, ∂S2,

∂u
∂n

= u,xi ni|∂S2 = 0, (2.9)

where n is the unit outward normal to ∂S2, and which in terms of the two scales and ui(X, ξ)

become

U0,ξi ni = 0, (U0f0,Xi + u1,ξi)ni = 0 and (u1,Xi + u2,ξi)ni = 0. (2.10)

The leading order eigenfunction U0(ξ ; Ω0) must satisfy the first of these conditions. Moving to
the first-order equation (2.6), we invoke a solvability condition by integrating over the cell the
product of equation (2.6) and U0 minus the product of equation (2.5) and u1/f0(X). The eigenvalue
Ω1 is zero, and we can solve for u1 = f0,Xi U1i(ξ), so U1 is a vector field. By re-invoking a similar
solvability condition for equation (2.7), we obtain the desired partial differential equation for f0

Tijf0,XiXj + Ω2
2 f0 = 0, where

Tij = tij∫∫
S ρU2

0 dS
for i, j = 1, 2

⎫⎪⎪⎬
⎪⎪⎭ (2.11)
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posed entirely on the long scale X. The tensor tij consists of integrals over the microcell in ξ and
is ultimately independent of ξ . The formulations for tij read

tii =
∫∫

S
aU2

0 dS +
∫∫

S
a(U1i,ξi U0 − U1i U0,ξi) dS for i = 1, 2 (2.12)

and

tij =
∫∫

S
a(U1j,ξi U0 − U1j U0,ξi) dS for i �= j. (2.13)

There is no summation over repeated suffices for the tii. Notably, although the general approach
follows Craster et al. [15], there are subtle differences induced by the Neumann conditions; the
solution there for the first-order equation is of the form U1(ξ ; Ω0) = V1(ξ ; Ω0) − ξU0(ξ ; Ω0). We
no longer use the auxiliary function V1(ξ ; Ω0), which turns out to be numerically awkward.
Instead, solving directly for U1i is much simpler. U1i is a solution of the non-homogeneous
partial differential equation, (aU1j,ξi),ξi + Ω2

0 ρU1j = −(2aU0,ξi + a,ξi U0), with the same boundary
conditions as the leading order equation on ∂S1 and with the second boundary conditions of (2.10)
on ∂S2. The numerical solutions of U0, and subsequently U1j , are computed using a standard
finite-element package [36], thereby allowing us to treat general geometries.

(a) Repeated eigenvalues
A potential limit case not treated above is that, for some standing wave frequencies, there is
more than one propagating mode, i.e. there are repeated eigenfrequencies with multiplicity p.
The general solution to the leading order problem then becomes

u0 = f (l)
0 (X)U(l)

0 (ξ ; Ω0), (2.14)

with summation assumed over repeated superscripts l, and(
∂

∂Xj
Ajml + Ω2

1 Bml

)
f̂ (l)

0 = 0 for m = 1, 2, . . . , p, (2.15)

with Ω1 not necessarily zero, and

Ajml =
∫∫

S
a(U(m)

0 U(l)
0,ξj

− U(m)
0,ξj

U(l)
0 ) dS and Bml =

∫∫
ρU(l)

0 U(m)
0 dS. (2.16)

The coupled system of partial differential equations (2.15) for the f (l)
0 (X) are solved, but become

degenerate if Ω1=0. For most of the examples treated in this article, Ω1 is found to be zero. We
then have to proceed in a similar way used to obtain equation (2.11). We get another degenerate
case where the coupled partial differential equations become(

∂2

∂Xi∂Xi
Aml + ∂2

∂Xk∂Xj
Dkjml + Ω2

2 Bml

)
f̂ (l)

0 = 0 for m = 1, 2, . . . , p, (2.17)

with the following coefficients:

Aml =
∫∫

aU(l)
0 U(m)

0 dS, Bml =
∫∫

ρU(l)
0 U(m)

0 dS (2.18)

and

Dkjml =
∫∫

S
a(U(m)

0 U(l)
1k ,ξj

− U(m)
0,ξj

U(l)
1k

) dS, (2.19)

and the range of variation of l is equal to the multiplicity of the eigenvalue.

(b) The classical long-wave zero-frequency limit
The current theory simplifies if one enters the classical long-wave, low-frequency limit where
Ω2 ∼ O(ε2) as U0 becomes uniform, and without loss of generality is set to be unity, over the
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elementary cell. The final equation is again (2.11) where the tensor tij simplifies to

tii =
∫∫

S
a dS +

∫∫
S

aU1i,ξi dS and tij =
∫∫

S
aU1j,ξi dS for i �= j (2.20)

(with no summation over repeated suffices) and Tij = tij/
∫∫

S ρ dS. In the above equations, U1i is a
solution of

(aU1j,ξi),ξi = −a,ξj , (2.21)

with boundary conditions (f0,Xi + u1,ξi)ni = 0 on the hole boundary. In the illustrative examples of
circles or SRRs in an otherwise homogeneous medium, a is constant so equation (2.21) is the same
as that for U0, but with different boundary conditions. The specific boundary conditions for U1j

are
U1j,ξi ni = −nj for j = 1, 2, (2.22)

where ni represents the normal vector components. The role of U1 is to ensure Neumann
boundary conditions hold and the tensor contains simple averages of the stiffness and density
(equivalently inverse permittivity and permeability for TE modes) supplemented by the
correction term that takes into account the boundary conditions at ∂S2. Equation (2.20) is the
classical expression for the homogenized coefficient in a scalar wave equation with periodic
coefficient a; (2.21) is the well-known annex problem of electrostatic type set on a periodic cell [8,9]
and also holds for the homogenized vector Maxwell system, where U1 now has three components
and i, j = 1, 2, 3 [37].

3. Illustrative examples
We now illustrate the theory using arrays of circular holes and SRRs and for perfect structures for
which full dispersion diagrams can be found numerically. To compare with the general theory,
we now specialize in Bloch waves where u(x + 2lB) = u(x) exp(2liκ · B), which translates in two-
scale coordinates as u(X + 2εB, ξ) = u(X, ξ) exp(2iκ · B), where B is either b1, b2 or b1 + b2 with
bi as the orthonormal unit vectors. Floquet–Bloch boundary conditions on the cell imply f0(X) =
exp(iκjXj/ε). In this notation, κj = Kj − dj and dj = 0, π/2, −π/2 depending on the location in the
Brillouin zone. Equation (2.11) and the frequency expansion of equation (2.4) lead to

Ω ∼ Ω0 + Tij

2Ω0
κiκj, (3.1)

with similar results for (2.17); thus, one can compare directly with the full numerics. It is worth
while noting the use of Tij coefficients, as their sign and absolute value give information about
the group velocity for the specified frequencies and locations of the Brillouin zone.

(a) Lattice of square cells with circular inclusions
The dispersion curves for arrays of cylindrical holes have been treated by many authors [38]
among others, and we proceed by computing them numerically using COMSOL MULTIPHYSICS

and by using the asymptotics developed in §2. We choose to illustrate them for two hole radii,
with the geometry as a square of side length 2 and the inclusion’s radius is either 0.4 or 0.8, in
figures 2 and 3, respectively around the edges of the irreducible Brillouin zone of figure 1b. These
dispersion diagrams illustrate interesting features such as a Bragg stop band (due to multiple
scattering of light between the circular inclusions) that is absent for the small holes (figure 2), but
which develops for larger holes (figure 3) as the multiple scattering becomes more pronounced.
In both figures 2 and 3, it is clear that the asymptotics capture the fine details of the dispersion
curves near each standing wave frequency. The classical long-wave limit near the origin has
a linear asymptotic dispersion curve, from §2b, and these capture the gradient of numerically
calculated paths near the origin perfectly in both figures, showing that homogenization can
indeed be used in TE polarization. Figure 2b, c shows expanded regions near repeated roots
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Figure 2. The dispersion diagram for an array of square cells (side 2) with circular inclusions of radius 0.4. (a) Dispersion
curves from numerics (solid lines), the asymptotic solutions from HFH theory (dashed lines) and the linear long-wave classical
homogenization asymptotics are the dotted lines emerging from the origin. (b,c) Enlargements near repeated eigenvalues
where the asymptotics from (2.17) are used.

using the asymptotics of §2a with the theory capturing fine details such as changes in curvature;
notably, all of this behaviour is encapsulated in the tensor Tij that is independent of the
microscale coordinates.

As the hole radius increases, a stop band opens up with the acoustic branch isolated from the
others (figure 3a), and the changes in the field u are concentrated along the relatively thin pieces
of remaining material; a typical eigensolution is shown in figure 3c. This motivates one to replace
the circular array by an array of simple strings or thin ligaments in the form of a square frame, for
which the dispersion relation

2 cos (2Ω) = cos (2κ1) + cos (2κ2) (3.2)

is easily found [35,39]. This dispersion relation, for the acoustic branch, is shown in figure 3b and
is a good approximation to that of large holes capturing the main features. If one considers the
path MX′ in the Brillouin zone, one notices that (3.2) gives a completely flat band; this is related
to the striking occurrence of directional standing waves [33,40–42] that are of current interest in
discrete or frame-like structures. Notably, the continuum system of cylinders shares this feature,
although the path is no longer perfectly flat, suggesting that directional standing waves forming
cross-like vibrations will exist here also; this is explored in §5.

(b) Split-ring resonator
We now modify the simple circular hole by inserting a smaller circular inclusion within it attached
to the hole’s walls by ligaments. The ratio of width to length of the ligaments used, as well as their
number, play a major role in the underlying physics. Again, there have been many numerical
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Figure 3. The dispersion diagram is shown for square cells (of side 2) with circular inclusions of radius 0.8. (a) Follows figure 2a,
but for this larger radius. (b) The acoustic branch (solid lines) with the dispersion curves from a frame of thin strings also shown
(dashed lines). (c) The eigensolution at M on the acoustic branch that is in phase vertically and out of phase horizontally with
the variation concentrated along the horizontal pieces.

studies for dispersion diagrams, for instance in Guenneau et al. [43], and semi-analytical work for
narrow gaps as in Llewellyn-Smith & Davis et al. [44]. Figure 4a–c shows the dispersion curves
together with the asymptotics obtained from §4a for ‘long’ ligaments with a width to length
ratio η = h/l of 0.2. The new feature in comparison with figure 3 is the appearance of a low-
frequency stop band below the Bragg stop band, whose upper edge remains virtually unaffected
by the insertion of the resonator in each circular inclusion of the array. The low-frequency stop
band is associated with a localized mode upon resonance of the resonator, and is responsible for
artificial magnetism in metamaterials in TE polarization. Physically, an array of cylinders with
capacitive splits such as in figure 4a–c respond resonantly to radiation with the magnetic field
when it is oriented along the cylindrical axes [22]. The oscillating magnetic field induces currents
to run around the perfectly conducting rings. These currents feel a finite inductive impedance
due to the finite size of the conducting loops, while they feel a capacitive impedance due to the
capacitive gaps within the conducting loops. This gives rise to a resonant response of the system
where the resonance is driven by the magnetic field of the radiation with a consequent resonant
enhancement of the magnetic polarizability of each cylinder. If the array period is sufficiently
small compared to the wavelength of the applied magnetic field, then the metamaterial is
described by an effective magnetic permeability [7]. This effective magnetic permeability displays
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Figure 4. The dispersion diagram shown for an array of square cells (side 2) containing circular holes of radius 0.8, and with
circular inclusions of radius 0.5, attached to the rest of the cell by two, four and eight thin ligaments in (a–c), respectively.
The dispersion curves from numerics are shown as solid lines, the asymptotic HFH results are shown as dashed lines, with the
low-frequency linear classical homogenization shown dotted emerging from the origin. The thin ligament approach of §4a
gives estimates for the first non-zero eigenvalue atΓ , which are the crosses on the frequency axis. Numerical values for these
estimates are 0.7082, 0.9941, 1.3851 versus finite-element simulations of 0.7058, 1.0281, 1.4845 for two, four and eight ligaments,
respectively. The sixth mode of figure 4b is flat at frequency 3.741 and corresponds to the dipole mode described in §4 with
approximate frequency 3.6824.

a strong dispersion near the resonance frequency of the SRR, and it can become negative in
the frequency band just above the resonance frequency, i.e. in the low-frequency stop band.
Sadly, the low-frequency stop band appears at frequencies already beyond the scope of classical
homogenization, but fortunately HFH captures its finer details, as in figure 4a–c, and thus unveils
the fascinating physics of artificial magnetism. For instance, the inverted curvature of the second
dispersion curve around the Γ point in figure 4a, which is a hallmark of a Mie resonance driving
the artificial magnetism [22] is captured by the HFH, as is the flat band along the XM path, which
is associated with a localized mode in the SRR (which is therefore insensitive to any variation of
the Floquet–Bloch phase shift across the unit cell along this path). The highly dispersive physics
of the low-frequency stop band will reveal the ultra-refraction and AANR effects shown in §5.

(c) A thin annulus with holes
For contrast, we investigate the effect of shortening the ligaments so h/l is of order 1; adding
more cuts in the thin annulus preserves the lowest resonant frequency, but it becomes less sharp,
which makes the low-frequency band gap wider. A physical side effect is that artificial magnetism
weakens when the resonance is less sharp, i.e. effective permeability is less dispersive and might
not reach large enough negative values for potential metamaterial applications, such as lensing
via negative refraction. On the other hand, the metamaterial might work over a broader range
of frequencies if the stop band widens, and this could be a design requirement. This leads to a
subtle balance between having a sharp resonance and a wide low-frequency stop band; HFH can
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Figure 5. The dispersion diagrams, same as figure 4, showing two, four and eight ligaments in (a–c), respectively, but with the
inclusion radius now 0.7. The resonant fourth mode is almost flat in (a) with the dipole estimate giving a frequency of 2.6303.
The crosses on the frequency axis in (a–c) show the estimates (0.88176, 1.24539 and 1.75670, respectively) from (4.3) for the
resonant frequency atΓ and the finite-element simulations give 0.7726, 1.1636 and 1.7378.

provide useful guidance towards achieving such a goal. Figure 5a–c shows the dispersion curves
and asymptotics for, respectively, two, four and eight short ligaments. The inverted curvature
of the second dispersion curve around Γ point flattens for four holes (hence, the Mie resonance
responsible for artificial magnetism fades away), and the curvature actually changes sign when
comparing two and eight ligaments. This illustrates the fact that it is not enough to use simple
models (such as electrical circuits) to fully grasp the physics of SRRs. Indeed, models such as
those of §4 merely provide frequency estimates for the resonance occurrences, but cannot actually
reproduce asymptotically the dispersion curves as HFH does.

A note of warning is worth sounding regarding the irreducible Brillouin zone: it is all too easy
to overlook the fact that the two-ligament SRR does not have the appropriate symmetries such
that one can use just the triangle Γ XM as the irreducible Brillouin zone. Instead, one should
use Γ NXM, and to highlight this, we show in figure 6 the dispersion curves using different
triangular paths, namely Γ XM and Γ XN. At first sight, the differences are not substantial, but
closer inspection at higher frequencies shows that one could incorrectly find complete band gaps
where there are partial gaps (figure 6a).

4. Geometric asymptotics
It is clear that there are geometrical approximations that can be used, mainly for the acoustic
or other low-frequency branches, where the inner cylinder for the SRR acts as a resonator or
an effective mass, or where the cylinders are large and the walls separating them are thin. We
briefly treat these theories here as they are complementary to the technique we have developed
and allow for additional insight. Resonances do not only occur at low frequencies, in figure 4a–c,
higher resonances are also clearly visible with the flat sixth mode being particularly noticeable;
this is the dipole mode of figure 7c.
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Figure 6. The dispersion diagrams for the (a) short and (b) thin two-ligament SRR illustrating the changes induced by using
triangleΓ XM (solid lines) andΓ XN (dotted lines). Notably for two ligaments, the symmetries are that the irreducible Brillouin
zone is actually the squareΓ NXM of figure 1b.
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Figure 7. The thin ligament geometry for four ligaments, in (a), with h/l 	 1 and the ligaments numbered as in the text.
(b) The eigenfunction atΓ for the first non-zero eigenvalue (1.0281) of figure 4b showing the central region moving as a rigid
body and the variation localized along the thin ligaments. (c) The dipole mode at a frequency of 3.741442 for the sixth mode of
figure 4b. A simple approximation of a cavity dipole u∼ J1(Ω r) sin θ gives the estimate 3.6824.

(a) Thin ligaments for split-ring resonators
As noted by Movchan & Guenneau [45], one can take advantage of the thin ligaments when
h/l 	 1 to obtain asymptotic estimates for the lowest eigenvalues of multi-structures as in Kozlov
et al. [46]. The current example is of interest as the inner cylindrical mass oscillates as a rigid
body being connected to the outer medium via the thin ligaments, which act as simple strings. An
illustration of this using four ligaments is shown in figure 4b alongside a sketch of the system. The
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outer medium is either stationary or oscillates as a rigid body, as this is the case of the first mode
at point M or the second mode at point Γ of the irreducible Brillouin zone in figure 1b. Assuming
an even number of ligaments, n, each placed opposite another, one can arrive at an asymptotic
model similar to that of Movchan & Guenneau [45]. Taking the inner and outer radii as ri and
r0, respectively, with each ligament of width hj, we define xj (for j = 1 . . . n) as a local coordinate
along each ligament with xj = 0 at the inner radius and xj = r0 − ri = l at the outer radius, and
for clarity, we number the ligaments anti-clockwise as in figure 7. In this low-frequency limit,
the inner cylinder moves as a rigid body with displacement u0, and one simply solves n coupled
string equations

u′′
j + Ω2uj = 0 for 0 < xj < l (4.1)

for the displacement uj(xj) and j = 1 . . . n. The boundary conditions are that uj(l) = 0 and uj(0) =
u0, and the rigid body motion of the mass M induces a jump condition∑

j

h[u′
j] + MΩ2u0 = 0 (4.2)

at the origin, where the sum is over the first n/2 strings and [·] denotes the jump in the derivative
between each string and the string that is placed opposite to it. The upshot is that a simple
dispersion relation emerges as ∑

j

hj

πr2
i

cot Ωl = Ω . (4.3)

The frequencies predicted from (4.3) are shown as crosses in figures 4a–c and 5a–c, with the
numerical and asymptotic values given in each figure caption.

5. Applications
We now illustrate the theory alongside applications to lensing, cloaking and endoscope effects in
PCs and metamaterials. Electric line sources will be used to observe the anisotropic effects. These
sources are in the direction perpendicular to the paper plane as if the geometries in question
were infinite in depth (fibres). Indeed, infinite long cylinders or SRRs that are perfect magnetic
conductors are subject to Neumann-type boundary conditions when solving for TE-polarized
waves.

(a) All-angle negative refraction in perfect conducting photonic crystals
One of the most topical subjects in photonics is the so-called AANR, which was first described in
Zengerle [13]. AANR allows one to focus light emitted by a point onto an image, even through
a flat lens, provided that certain conditions for AANR are met, such as convex isofrequency
contours shrinking with frequency about a point in the Brillouin zone [12]. In figure 8, we show
such an effect for a perfectly conducting PC in figure 8b, and we supplement it, in figure 8a,
with an endoscope effect using the zero group velocity (or ultra-refraction) effect near X along
the Brillouin zone, as shown in figure 8c. In order to achieve AANR, we choose a frequency on
the first dispersion curve (acoustic band) in figure 3, and we take its intersection with the light
line Ω = |κ | along the XΓ path. This means that we achieve negative group velocity for waves
propagating along the XΓ direction of the array, hence the rotation by an angle π/4 of every cell
within the PC in figure 8b. This is a standard trick in optics that has the effect of moving the
origin of the light line dispersion to X as, relative to the PC, the Bloch wavenumber is along XΓ .
This then creates optical effects due to the interaction of the light line with the acoustic branch,
and this would be absent if Γ were the light-line origin. The frequency at which AANR occurs
(Ω = 1.125) is well predicted by the light-line intercept with the classical model, which is
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Figure 8. Endoscope and flat lens with perfect conducting PCs: (a) a line source at frequency Ω = 1.564 located above
a rectangular PC consisting of 112 perfect conducting circular inclusions as in figure 3 leads to a ‘photonic jet’ effect below
(endoscope effect); (b) a line source at frequency Ω = 1.125 located above a rectangular PC consisting of 112 perfect
conducting circular inclusions as in figure 3 leads to an elongated image underneath (Veselago lens); (c) zoom on dispersion
diagram of figure 3. Note that each cell in the arrays in (a) and (b) has been rotated through an angleπ/4.

the dotted line in figure 8c. The effective medium behaves in a hyperbolic fashion since
equation (2.11)’s coefficients near that frequency are opposite in sign, T11 = −1.3589 and T22 =
0.8725 (with T12 = T21 = 0, which is the case throughout the examples). This effective anisotropy
is expected and necessary as discussed in Luo et al. [12]. Ultra-refraction, figures 8a and 9b, occurs
when one chooses a frequency near a maximum or minimum in the dispersion curve, thereby
creating a very slow effective medium within the PC relative to the outer medium, the upshot
being that one can create plane-wave emission from a PC slab excited with a line source within the
PC. Using equation (3.1) by differentiating with respect to κ1 and κ2 and the source’s frequency,
we can compute the group velocity at both directions as Ω ,κ1 = Ω ,κ2 = −0.2254.

(b) Line defect, concentration and endoscope effects in metamaterials
For SRRs with two holes (figure 9), a line defect effect is achieved for a time-harmonic source at
a frequency corresponding to the first flat dispersion curve along the XM segment of figure 5a.
Equation (2.11) represents the effective medium, and we can predict this line defect effect since
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Figure9. Linedefect, concentrationandendoscopeeffects in square arrays of SRRswith twoholes: (a) a line source at frequency
Ω = 0.6 located in the centre of a rectangular metamaterial consisting of 30 SRRs as in figure 5a produces a wave pattern of
the line defect type; (b) a line source at frequencyΩ = 0.78 located in the centre of a rectangular metamaterial consisting
of 33 SRRs shaped as in figure 5a produces a plane wave outside the array (omni-directive antenna via ultra-refraction); (c) a
line source at frequencyΩ = 1.2 located above a rectangular metamaterial consisting of 33 SRRs shaped as in figure 5a leads
to a concentration effect underneath; (d) zoom on dispersion diagram of figure 5a. Note that each cell in the arrays of SRRs in
(b) and (c) is tilted by an angleπ/4, unlike for (a).

at point M of the Brillouin zone, the coefficients T11 = −0.2319 and T22 = 0 result in a strongly
anisotropic effective medium allowing waves to propagate only in the x-direction, which is the
vertical direction in figure 5a.

An ultra-refraction effect is achieved in figure 9b for a frequency corresponding to the first zero
group velocity at Γ point in figure 5a. Near the standing wave frequency for the second mode
at point Γ , the effective medium governed by equation (2.11) with coefficients T11 = 0.2505 and
T22 = 0.1265 is again anisotropic, and this is due to the asymmetry of the cell in one direction.
Using equation (3.1), we differentiate Ω with respect to κ1 and κ2 for values of κi = 0.2131
that yield a frequency of Ω = 0.78, and we obtain a group velocity in each of the directions of
Ω ,κ1 = 0.0648 and Ω ,κ2 = 0.0327, which is extremely small compared to the outside medium’s
group velocity of Vg = 1.

A partial lensing effect, light concentration resembling a photonic jet [47], is obtained in
figure 9c when the frequency of the source is tuned to the value of 1.2 where the region of
the second dispersion curve displays a negative group velocity along the Γ X direction (hence,
the rotation of the array through an angle π/4). At point M, equation (2.11) has opposite
sign coefficients, namely T11 = −1.567 and T22 = 0.7707, which give the f0 equation hyperbolic
behaviour and lead to effective anisotropy with light directed along the characteristics. Owing
to the asymmetry of the cell, the characteristics are not perpendicular, and yield an image that is
slightly shifted with respect to the source.
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Figure 10. Cloaking in square arrays of SRRs with four holes: a source at frequencyΩ = 2.8, located in the centre of a square
metamaterial consisting of 64 SRRs shaped as in figure 5b produces a wave pattern reminiscent of (a) concentric spherical field,
(b) cloaking of a rectangular inclusion inside a slab of a metamaterial consisting of 38 SRRs and (c) scattering of a plane wave
from the same rectangular hole as the previous panel. (d) Zoom in dispersion diagram of figure 5b. (e–g) Present isofrequency
plots of the lower, middle and upper modes of the Dirac point, respectively.

(c) Cloaking in metamaterials
We now move to SRRs with four holes (figure 10). Clearly, the Mie resonance has faded away
in figure 5b compared with figure 5a, so one should seek other effects than negative refraction.
However, the flat band along the MΓ path and multiple crossing (Dirac point) shown in figure 10
are interesting. In figure 10a, we set a harmonic line source at the corresponding frequency Ω = 2.8
in an 8 × 8 array of SRRs and observe a wave pattern of concentric cylindrical modes that are due
to the near isotropy of the effective medium at that frequency (cf. the nearly circular isofrequency
contours of figure 10e). In figure 10b,c, we show the cloaking of a rectangular defect placed within
an array of SRRs. The HFH approach here then acts to shed light upon recent computations by
Chan et al. [48] that show cloaking in a related context. As can be seen in figure 10b, a plane wave
propagating at frequency Ω = 2.8 demonstrates perfect transmission through a slab composed of
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Figure 11. Lensing via AANR and St Andrew’s cross in square arrays of SRRswith eight holes: (a) a line source at frequencyΩ =
1.1375 located above a rectangular metamaterial consisting of 90 SRRs as in figure 5c displays an image underneath (lensing);
(b) a line source at frequencyΩ = 1.25 located inside a square metamaterial consisting of 49 SRRs as in figure 5c displays the
dynamically induced anisotropy of the effective medium; (c) zoom in dispersion diagram of figure 5c. Note that each cell in the
arrays in (a) and (b) has been rotated through an angleπ/4.

38 SRRs; this is because the linear dispersion curves just below the Dirac point are identical to
the folded light line of the exterior medium at this frequency. This panel also shows cloaking of
a rectangular inclusion where remarkably no scattering is seen before or after the metamaterial
slab: figure 10c shows the scattering in the absence of the cloak. Figure 10d shows the location in
the band structure that is responsible for this effect. Note that the frequency of excitation is near,
but just below, the Dirac cone point located at Ω = 2.835 where the group velocity is negative,
but also constant near that location of the Brillouin zone, as illustrated through an isofrequency
plot of the lower mode of the Dirac point in figure 10e. Indeed, the locally isotropic features
of figure 10e contrast with those of figure 10 f ,g, wherein ultra-flattened isofrequency contours
display the hallmarks of ultra-refraction, a regime more prone to omni-directivity than cloaking.
The asymptotic system of equations (2.15) describing the effective medium at the Dirac point can

be uncoupled to yield the same governing equation for all three f (j)
0 ’s, such that

f (j)
0,XiXi

+ 0.7191Ω4
1 f (j)

0 = 0. (5.1)

(d) Lensing via all-angle negative refraction and St Andrew’s cross in metamaterials
Finally, we demonstrate AANR effects in metamaterials with SRRs with eight holes. The
dispersion curves in figure 5c are interesting, as the second curve displays the hallmark of AANR
of an optical band for a PC (it has a negative group velocity around the Γ point). However, this
band is the upper edge of a low-frequency stop band induced by the resonance of an SRR, whereas
the optical band of a PC results from multiple scattering, which thus arises at higher frequencies.
We therefore have a periodic structure behaving somewhat as a composite intermediate between
a metamaterial and a PC. We achieve AANR in a way similar to the circular inclusions in
figure 8. However, we note that the focusing effect is more pronounced here; the image is much
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less elongated in figure 11 than in figure 8 and hence has better resolution. Again, the strong
anisotropy of the effective material is obvious from coefficients T11 = −5.53 and T22 = 0.2946. The
same frequency of the first band is obtained at the point N of the Brillouin zone, by symmetry of
the crystal, we would have T11 = 0.2946 and T22 = −5.53. The resultant propagating waves come
from the superposition of the two effective media described above. Figure 11b further illustrates
this anisotropy as the source wave propagates along the predicted directions.

6. Concluding remarks
We show conclusively that homogenization theory, and more precisely HFH, captures the
essential details of complex geometries within a continuum setting for TE polarization, and
the asymptotics that emerge are more accurate and versatile than those of network models.
Additionally, the quasi-static low-frequency version of HFH reproduces the classical formulae,
and numerically we verify that homogenization theory works in this limit, contrary to
statements otherwise.

The examples of cylinders and SRRs are used not merely to verify the theory, but also illustrate
how the HFH asymptotics and dispersion curves show unexpected results: the cross-like standing
wave patterns of figure 11 are particularly striking. These arise due to strong anisotropy as found
from the asymptotics of the dispersion diagram. It is also interesting to note how the resonances in
the SRRs change with the inclusion radius, and more importantly, with the number of ligaments
whose increase removes the essential resonance that is required for artificial magnetism. Other
effects, such as lensing, AANR, ultra-refraction and Dirac cone cloaking, all emerge by choosing
critical frequencies that are guided by the asymptotics for the dispersion curves that are accurately
found asymptotically using HFH. In the other light polarization case (TM), the structure of the
band diagrams changes dramatically, as setting Dirichlet boundary conditions on SRRs (clamped
holes in the elasticity) leads to a zero-frequency stop band, whereby classical homogenization
breaks down, but not HFH. However, this is beyond the scope of the present paper.
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