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Abstract

In response to insulin, glucose transporter GLUT4 translocates from intracellular compartments towards the plasma
membrane where it enhances cellular glucose uptake. Here, we show that sera from various species contain a factor that
dose-dependently induces GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes, human adipocytes, myoblasts and
myotubes. Notably, the effect of this factor on GLUT4 is fully maintained in insulin-resistant cells. Our studies demonstrate
that the serum-induced increase in cell surface GLUT4 levels is not due to inhibition of its internalization and is not mediated
by insulin, PDGF, IGF-1, or HGF. Similarly to insulin, serum also augments cell surface levels of GLUT1 and TfR. Remarkably,
the acute effect of serum on GLUT4 is largely additive to that of insulin, while it also sensitizes the cells to insulin. In
accordance with these findings, serum does not appear to activate the same repertoire of downstream signaling molecules
that are implicated in insulin-induced GLUT4 translocation. We conclude that in addition to insulin, at least one other
biological proteinaceous factor exists that contributes to GLUT4 regulation and still functions in insulin resistance. The
challenge now is to identify this factor.
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Introduction

GLUT4 is the principle glucose transporter that is responsible

for the insulin-induced uptake of glucose by muscle and adipose

tissue after a meal. The main characteristic feature of GLUT4 is

the absence of cell surface recycling in non-stimulated cells [1].

This implicates the presence of a highly efficient cellular

mechanism that retains GLUT4 intracellularly. How this retention

is organized and which molecules are implicated is currently

unknown. It has been postulated that the non-endosomal GLUT4

pool plays a major role in intracellular retention [2]. Nevertheless,

albeit to a lesser extent, endosomal GLUT4 has been demon-

strated to be retained intracellularly and responsive to insulin

[3,4]. In accordance, GLUT1 and the transferrin receptor (TfR),

both localized exclusively in endosomes, also translocate to the

plasma membrane upon insulin stimulation [2,5]. GLUT4 is

regulated by insulin at various levels. Insulin signaling reduces

GLUT4 retention allowing GLUT4 to move towards the cell

periphery [6], increases its endosomal recycling [7], and enhances

its docking and fusion with the plasma membrane [8]. On the

other hand, GLUT4 internalization is hardly regulated by insulin,

at least in adipocytes [4,9]. Despite the fact that many players in

insulin signaling and GLUT4 traffic are known, it remains elusive

how these two pathways intercommunicate.

In insulin resistance, a condition related to type 2 diabetes,

insulin no longer leads to an efficient translocation of GLUT4

towards the cell surface. Insulin resistance has been associated

with a number of cellular phenomena which are likely to be

linked. First, the level of reactive oxygen species (ROS) is

increased under conditions of insulin resistance, while antioxi-

dants are able to ameliorate insulin sensitivity and glucose uptake

[10,11]. Second, insulin resistance has been associated with a

reduction in the phosphorylation (activity) of insulin signaling

molecules [12,13]. Third, increases in O-GlcNAc modification of

proteins is linked to insulin resistance [14]. Notably, PKB, IRS-1,

munc18c, as well as GLUT4 itself were found to be modified by

O-GlcNAcylation [15,16]. Fourth, in insulin resistance, expres-

sion levels of molecules implicated in insulin-induced GLUT4

translocation are decreased [17,18]. Finally, insulin resistance has

been associated with a change in the intracellular localization of

GLUT4 [19,20].

Taken together, multiple cellular mechanisms contribute to the

development of insulin resistance and the associated reduction in

GLUT4-mediated glucose uptake. It would be therapeutically

relevant to discover novel ways to increase cell surface GLUT4

levels. Here, we present evidence for the existence of a putative

factor in serum that displays an insulin-like effect regarding

GLUT4 translocation and cellular glucose uptake. Remarkably,
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the effect of this factor on GLUT4 is additive to the action of

insulin and is fully maintained in insulin resistance.

Materials and Methods

Materials
3T3-L1 preadipocytes were obtained from ATCC/LGC

Standards (Teddington, UK). Plat-E cells were generously

provided by Dr Toshio Kitamura (University of Tokyo, Japan).

Bovine and human sera were from PAA (Pasching, Austria).

Rabbit serum was withdrawn from New Zealand rabbits. Media

and HEPES were from Invitrogen (Carlsbad, CA), insulin from

Lilly (Suresnes, France), PDGF-BB, IGF-1, and HGF from

PeproTech (Rocky Hill, NJ), and 2-[3H]deoxyglucose from

PerkinElmer Life (Waltham, MA). Monoclonal anti-HA antibody

was from Covance (Emeryville, CA), mouse IgG antibody from

Sigma-Aldrich (St. Louis, MO), polyclonal GLUT4, GLUT1, and

insulin receptor (IRb) antibodies and HRP-conjugated secondary

antibodies from Santa Cruz (Santa Cruz, CA), antibodies against

PAS, ERK, phospho-ERK, Akt, phospho-Akt (T308 and S473),

AMPK, phospho-AMPK, and phosphotyrosine from Cell Signal-

ing Technology (Danvers, MA), anti-AS160 from AbCam (Cam-

bridge, MA), and anti-phospho-AS160, anti-TfR and fluorescent

antibodies from Invitrogen. IRS-1 antibody has been described

before [21]. Polyclonal antibody against syntaxin 13 was

generously provided by Dr Rytis Prekeris (University of Colorado,

Denver, CO). Insulin ELISA kit was purchased from Spi-Bio

(Montigny le Bretonneux, France) and inhibitors from Sigma (St.

Louis, MO; wortmannin, LY294002, genistein), Calbiochem/

Merck (Nottingham, UK; AG1024, Compound C, Akti 1/2, Ro

31-8220, U-73122, okadaic acid, U0126, rapamycin) and Alexis

Biochemicals/Enzo Life Sciences (Plymouth Meeting, PA; herbi-

mycin A, staurosporine). All chromatography materials were from

Sigma. pBABE vector was kindly provided by Dr Hartmut Land

(University of Rochester, Rochester, NY) and GLUT1 cDNA by

Dr Mike Mueckler (Washington University, St. Louis, MO).

Molecular Biology
The cDNAs encoding HA-GLUT4 (GLUT4 with an HA

epitope tag in its first luminal domain) and HA-TfR (TfR with an

HA tag at its C-terminus) inserted in pBABE-puro vector have

been described elsewhere [22,23]. A pBABE vector containing the

cDNA encoding human GLUT1 with an HA epitope tag in its first

luminal domain between residues 58 and 59 was constructed by

PCR using the oligos 59-GATCGACTAGGGTCCATAGATA-

CGGAGAATCAATATTACCAGAGATCGATTATCCGTAC-

GATGTTCCTGATTATGCTGAGACCACGCTCACCACGC-

TCTGG and 39-GATCGTCGACCTCGAGTCACACTTGG-

GAATCAGCCCC. The sequence of the PCR parts was verified

by sequence analysis (Cogenics/Beckman Coulter).

Cell Culture
Preadipocytes were cultured and differentiated as described

before [23]. Differentiated cultures contained at least 95%

adipocytes. To express HA-tagged molecules in adipocytes,

preadipocytes were infected with retrovirus as described before

[22], except that Plat-E cells were used for the production of virus

[24]. L6 myoblasts were infected with retrovirus for the expression

of HA-GLUT4 and cultured and differentiated as described

previously [22,25].

Pervanadate was freshly prepared by combining 639 ml PBS,

300 ml 100 mM sodium vanadate and 61 ml 3% H2O2. After

15 minutes, the pervanadate was used at a concentration of

100 mM [26].

For the induction of insulin resistance, a previously described

procedure was used [27], except that adipocytes were incubated

for 24 hr with 100 nM insulin.

Human adipocytes were cultured and differentiated as de-

scribed elsewhere [21].

Fluorescence-based techniques
The fluorescence-based assay for the detection of cell surface

GLUT4 levels and the method to measure GLUT4 internalization

have been described previously [22,28]. In morphological studies,

cells were analyzed using a Zeiss LSM 510 confocal laser scanning

microscope (Carl Zeiss, Göttingen, Germany) in the C3M Cell

Imaging Facility MICA.

Glucose uptake
Adipocytes, grown in gelatin-coated 12 well plates, were

incubated for 2 hours in DMEM with 0.2% BSA and for

5 minutes in KRP (12.5 mM HEPES pH 7.4, 120 mM NaCl,

6 mM KCl, 1.2 mM MgSO4, 1 mM CaCl2, 0.4 mM NaH2PO4,

0.6 mM Na2HPO4). Cells were treated or not with insulin or

serum for 20 minutes. To control cells, 50 mM cytochalasin B was

added (assay background). Cells were incubated for 3 minutes with

0.1 mM 2-[3H]deoxyglucose (0.28 mCi/well), extensively washed

with ice-cold phosphate-buffered saline (PBS), and lysed in 1%

Triton X-100. Radioactivity was measured by scintillation

counting. To be able to compare serum-induced with insulin-

induced 2-DOG uptake, either unlabeled glucose was added to the

insulin incubations (Figure 2) or sera were dialyzed (Figure 3) in

order to have similar glucose concentrations during the uptake.

Immunoblotting and immunopurification
3T3-L1 adipocytes were serum-starved for 2 h, incubated for

5 minutes with or without 100 nM insulin or 25% FBS and lysed

in ice-cold lysis buffer [29]. For immunopurification (IP), protein A

agarose beads (Roche Diagnostics, Meylan, France) were incu-

bated for 1 hr with 5 mg of IRS-1 or IR antibodies at room

temperature and for 16 hr with 1 mg of adipocyte lysate at 4uC,

subsequently. For control IPs, antibody-bound beads were

incubated in the absence of lysate. HRP-conjugated secondary

antibodies were visualized using chemiluminescence reagent

(Roche Diagnostics) and a CCD camera-based imager (LAS-

3000, Fujifilm; St. Quentin en Yvelines, France). Relative

intensities were quantitated using MultiGauge software (Fujifilm).

Column chromatography
Human serum (0.5 ml) was fractionated on a 24 ml Sephacryl

200-HR column using an elution buffer consisting of 150 mM

NaCl and 10 mM tris pH 7.4 and a flow rate of 5.0 ml/hr.

Calibration markers blue dextran (void volume; 2000 kDa),

amylase (200 kDa), alcohol dehydrogenase (150 kDa), bovine

serum albumin (67 kDa), ovalbumine (43 kDa), chymotrypsinogen

(26 kDa), RNase A (14 kDa) and 2-[3H]deoxyglucose (0.2 kDa)

were fractionated using identical volumes and flow rates. Serum

fractions (0.75 ml) were concentrated 5 times using 3K Amicon

Ultra concentrators before subjecting to the fluorescence-based

GLUT4 assay described above.

Statistics
All data are presented as average 6 SD. Experiments were

performed at least three times. Representative experiments are

shown. Comparisons between data sets were evaluated using two-

tailed Student’s t-tests and comparisons between dose-response

curves were evaluated using nonlinear four-parameter sigmoidal

Serum-Induced Translocation of GLUT4
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dose - response curve fittings and F-tests (Graphpad Prism

software). Differences between data sets were considered statisti-

cally different when P,0.05.

Results

Serum induces the translocation of GLUT4 towards the
cell surface

Insulin is the master regulator of glucose homeostasis via its

action on intracellular GLUT4 traffic. To test whether there exist

other factors in serum that regulate cell surface GLUT4 levels,

3T3-L1 adipocytes were incubated for 20 minutes with 100 nM

insulin, 50% fetal bovine serum (FBS), or left untreated. Cells were

subsequently immunolabeled with anti-GLUT4 antibody, and

analyzed by microscopy (Figure 1A). We observed that both

insulin and serum induced the translocation of endogenous

GLUT4 towards the cell surface. As this labeling does not

distinguish between GLUT4 molecules localized at the cell surface

or just beneath, we expressed ectopic GLUT4 in 3T3-L1

adipocytes bearing an HA-epitope tag within its first extracellular

domain. Permeabilized and intact cells were immunolabeled with

anti-HA antibody (Figure 1B). The permeabilized adipocytes (left

panels) showed that both insulin and FBS increased the

appearance of HA-GLUT4 near or at the plasma membrane,

while the non-permeabilized cells (right panels) clearly demon-

strated an increase in the amounts of GLUT4 at the cell surface

upon stimulation with insulin or FBS. The absence of signal in

control adipocytes (bottom panels), demonstrated that the

immunolabel in FBS-treated HA-GLUT4-expressing adipocytes

was specific.

Quantitative analysis of serum-induced GLUT4
translocation and glucose uptake

Next, we measured GLUT4 translocation quantitatively, using

an assay that is based on the culture and labeling of HA-

GLUT4-expressing adipocytes in 96 well plates [4]. Cells were

processed as described above but fluorescence was analyzed

using a fluorescence microplate reader. This revealed that the

effect of FBS on cell surface GLUT4 levels was concentration-

dependent (Figure 2A). To determine whether the FBS-induced

translocation of GLUT4 was accompanied by an increase in

glucose transport across the plasma membrane, cellular glucose

uptake was measured (Figure 2B). Similarly to its effect on

GLUT4 translocation, FBS induced glucose uptake in a

concentration-dependent manner. The arrows in the left panels

indicate the concentration of insulin in undiluted serum,

demonstrating that the observed effects of FBS were not

mediated by insulin (see also Table S1). Remarkably, compared

with insulin, the increase in cell surface GLUT4 levels in

response to FBS was accompanied by a relatively small increase

in glucose uptake. This could be due to a smaller effect of FBS

on the activity of GLUT4 [30,31]. Stimulating the cells for

various times periods demonstrated that the smaller effect of FBS

on glucose transport was independent of the length of

stimulation (Figure S1).

Figure 1. Effect of serum on the intracellular localization of
GLUT4. 3T3-L1 adipocytes (A) or HA-GLUT4-expressing adipocytes (B)
were incubated for 20 minutes with 100 nM insulin, 50% FBS, or left

untreated (control). Upon fixation, cells were immunolabeled with anti-
GLUT4 antibody to label endogenous GLUT4 (A) or with anti-HA in the
absence (right panels) or presence of saponin (left panels) to label HA-
GLUT4 at the cell surface or total cellular HA-GLUT4, respectively (B).
Control adipocytes that did not express HA-GLUT4 were used to analyse
the specificity of the anti-HA labeling (4 lower panels in B). Bar, 10 mm.
doi:10.1371/journal.pone.0015560.g001
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PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e15560



The effect of serum on GLUT4 is not due to inhibition of
its internalization and is not mediated by PDGF, IGF-1, or
HGF

To establish whether the effect of FBS on GLUT4 was due to

an increase in exocytosis or to a reduction in internalization,

GLUT4 internalization was measured (Figure S2). In brief, HA-

GLUT4-expressing adipocytes were incubated with insulin to

increase cell surface GLUT4 levels, cooled down on ice, acid

stripped to remove insulin, incubated with anti-HA antibody,

and washed to remove non-bound antibody. Upon transfer to

37uC, the cells were incubated with or without 25% FBS to

allow the antibody to internalize. Following anti-HA immuno-

labeling, the cells were scored for the presence of internalized

label. Unexpectedly, we observed that FBS increased the

GLUT4 internalization rate. Therefore, the positive effect of

FBS on cell surface GLUT4 levels must be due to an increased

exocytosis rate. Control adipocytes that were incubated with

0.45 M sucrose displayed a large reduction in internalization

rate [32].

To determine whether the GLUT4-translocating activity of

serum was due to the presence of factors that have previously been

shown to alter cell surface GLUT4 levels or glucose transport

under certain conditions, we tested platelet-derived growth factor

(PDGF; [33]), insulin-like growth factor-1 (IGF-1; [34]), and

hepatocyte growth factor (HGF; [35]) in our cell system (Figure

S3). None of these factors increased cell surface GLUT4 levels

(Figure S3A), though all factors activated signal transduction

pathways (Figure S3B).

The effect of serum on GLUT4 is independent of serum
origin and cell type

To determine whether the translocation-inducing serum factor

was exclusively present in FBS, we also studied newborn bovine,

adult bovine, rabbit and human serum (Figure 3A–D). We

observed that in 3T3-L1 adipocytes, all tested sera induced

GLUT4 translocation and glucose uptake that could not be

accounted for by serum insulin levels (Table S1).

To test whether the action of serum on GLUT4 was

dependent on cell type, human adipocytes, rat myoblasts, and

rat myotubes were investigated. In in vitro differentiated human

adipocytes, FBS and human serum induced an insulin-

independent increase in glucose uptake (Figure 3E). In L6

myoblasts and myotubes, both insulin and FBS acutely

increased the amount of HA-GLUT4 at the plasma membrane

(Figure 3F and G). For both muscle cell models, the ED50

values for insulin and FBS were around 5 nM and 1%,

respectively (data not shown). This indicated that, compared

with 3T3-L1 adipocytes, these cells were even more sensitive to

FBS and that also in these cells FBS induced GLUT4

translocation independent of insulin.

Serum augments also the cell surface levels of GLUT1
and the transferrin receptor (TfR), but only for GLUT4 the
increase is additive to the effect of insulin

As insulin also increases the amount of GLUT1 and TfR at the

plasma membrane, we investigated whether serum would have a

similar effect. Therefore, we analyzed the kinetics of the

appearance of GLUT4, GLUT1, and TfR at the cell surface in

response to insulin, FBS, or both (Figure 4). As for GLUT4,

GLUT1 and TfR proteins were studied that contained an HA

epitope tag within their extracellular domain. In particular for

GLUT4 and GLUT1, overexpression levels of these HA-tagged

molecules were moderate (Figure 4A). Colocalization studies with

syntaxin 13 showed that the intracellular localization of HA-

tagged GLUT1 did not differ from that of endogenous GLUT1

(Figure S4). While insulin-increased cell surface GLUT4 levels

were relatively stable, FBS led to a somewhat transient increase in

GLUT4 at the plasma membrane, reaching maximal levels after

7–10 minutes (Figure 4B). Remarkably, the effects of insulin and

FBS were largely additive and moreover, the additive effect of

FBS did not decline throughout the duration of the experiment.

The effect of FBS was not specific to GLUT4 as GLUT1 and

TfR levels were also increased at the plasma membrane upon

FBS stimulation (Figure 4C and D). An effect of serum on

GLUT1 has been demonstrated before [36]. While GLUT1 and

TfR were also sensitive to insulin stimulation, in accordance with

previous studies [5], the effects of FBS and insulin were not

additive. Treatment of HA-GLUT4-expressing adipocytes with

various concentrations of insulin in the absence and presence of

FBS demonstrated that along the entire insulin concentration

range, FBS increased cell surface GLUT4 levels (Figure 4E).

These data suggest that the insulin and FBS signaling pathways

leading to increases in cell surface GLUT4 levels are largely

distinct. Moreover, FBS sensitized the adipocytes to insulin, in

Figure 2. Concentration-dependent GLUT4 translocation and
glucose uptake in 3T3-L1 adipocytes in response to insulin and
FBS. (A) HA-GLUT4-expressing 3T3-L1 adipocytes cultured in 96 well
plates were incubated with the indicated concentrations of insulin (left
panel) or FBS (right panel), after which the cells were fixed, incubated
with or without saponin, and quantitatively immunolabeled for HA
signal as described in Experimental. The amounts of GLUT4 at the
plasma membrane (non-permeabilized cells) was expressed as percent-
age of total cellular GLUT4 levels (permeabilized cells). (B) 3T3-L1
adipocytes were incubated for 20 minutes with the indicated concen-
trations of insulin (left panel) or FBS (right panel), followed by a three
minute incubation with radiolabeled 2-DOG. Cellular 2-DOG uptake was
determined for each condition and expressed as percentage of glucose
uptake in the presence of saturating concentrations of insulin (100 nM).
Arrows in left panels indicate the concentration of insulin in undiluted
FBS, demonstrating that the effects of FBS are not mediated by insulin.
doi:10.1371/journal.pone.0015560.g002
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that the insulin dose-response curve shifted leftwards concomitant

with a significant reduction in EC50 of 0.57 nM to 0.19 nM

(Figure 4F).

Figure 3. The effect of serum on GLUT4 is independent of
serum origin and cell type. (A) 3T3-L1 adipocytes were incubated for
20 minutes with the indicated concentrations of fetal, newborn, and
adult bovine serum and cell surface GLUT4 levels were determined. (B)
3T3-L1 adipocytes were incubated for 20 minutes with 100 nM insulin,
50% serum or left untreated and cellular glucose uptake was measured
and expressed as percentage of insulin-stimulated glucose uptake. (C,
D) Rabbit and human sera were analyzed as under (A) and (B). (E)
Human adipocytes were incubated for 20 minutes with various
concentrations of insulin, FBS, or human serum (HS) and glucose

Figure 4. The effect of FBS is additive to that of insulin and is
not limited to GLUT4. (A) Lysates of 3T3-L1 adipocytes expressing
HA-GLUT4, HA-GLUT1, or HA-TfR, and control adipocytes were
subjected to SDS-PAGE and immunoblotted using the indicated
antibodies. 3T3-L1 adipocytes expressing HA-GLUT4 (B), HA-GLUT1
(C), or HA-TfR (D) were stimulated for various times with 100 nM insulin,
25% FBS or both and relative cell surface GLUT4 levels were
determined. (E) Adipocytes were incubated for 20 minutes with the
indicated concentrations of insulin in the absence or presence of 25%
FBS, and relative cell surface GLUT4 levels were determined. (F) Data
from (E) were transformed in dose-response curves in which the effects
of the various insulin concentrations were related to the maximal
insulin effects (difference between 0 and 100 nM insulin) in the absence
and presence of FBS. EC50 of insulin in absence and presence of FBS is
0.57 and 0.19 nM insulin, respectively. P,0.0001.
doi:10.1371/journal.pone.0015560.g004

uptake was measured and expressed as percentage of maximal glucose
uptake in response to insulin. (F, G) HA-GLUT4-expressing myoblasts (F)
and myotubes (G) were stimulated with either 100 nM insulin or 25%
FBS and cell surface GLUT4 levels were determined. Serum insulin
concentrations are depicted in Table S1.
doi:10.1371/journal.pone.0015560.g003

Serum-Induced Translocation of GLUT4
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Investigation of the additive effects of serum and insulin
demonstrates important differences in signaling

In order to obtain evidence for differences in insulin- and

serum-induced signaling leading to the translocation of GLUT4,

we analyzed their effect on cell surface GLUT4 levels in cells

exposed to hyperosmolarity, protein tyrosine phosphatase

inhibitor pervanadate, and AMPK activator AICAR (Figure 5).

These three conditions have been shown to increase cell surface

GLUT4 levels in 3T3-L1 adipocytes, L6 myoblasts, and/or L6

myotubes [26,37,38]. Hyperosmolarity (0.45 M sucrose; [32])

modestly but significantly increased cell surface GLUT4 levels in

the absence and presence of insulin and FBS (Figure 5A). While

the pervanadate-induced increase in cell surface GLUT4 levels

could not be further enhanced by insulin, the effects of

pervanadate and FBS were partially additive (Figure 5B).

AICAR did not increase the amount of GLUT4 at the cell

surface in unstimulated and insulin-stimulated cells (Figure 5C).

However, the effect of FBS on GLUT4, in the absence as well in

the presence of insulin, was significantly enhanced by AICAR.

This confirmed that the signaling pathways that are activated by

insulin and FBS and lead to GLUT4 translocation are likely to

be distinct.

The serum factor that induces GLUT4 translocation
activates signaling pathways that are distinct from those
activated by insulin

We next sought further proof that the two signaling pathways

are indeed distinct. To this aim, we applied two approaches. In

the first approach, we investigated insulin- and serum-induced

GLUT4 translocation in the presence of inhibitors of various

signaling molecules that are part of the insulin signal transduction

cascade (Figure 6A). These compounds inhibit insulin receptor

tyrosine kinase activity (AG1024; [39], PI 3-kinase (wortmannin

and LY294002; [40]), serine/threonine kinases (staurosporine;

[41]), tyrosine kinases (genistein and herbimycin A; [42]), Akt

(Akti-1/2; [43]), PKC (Ro 31-8220; [44]), AMPK (compound C;

[45]), MEK (U0126; [21]), mTOR (rapamycin; [46]), protein

phosphatases 1 and 2A (okadaic acid; [2]), and phospholipase C

(U-73122; [47]). This analysis demonstrated that while serum-

and insulin-induced GLUT4 translocation were similarly affected

by most of these inhibitors, there were three important

differences. Tyrphostin AG1024 reduced insulin-induced

GLUT4 translocation for more than 50% while it left serum

action unaffected. A prolonged exposure of the adipocytes to

herbimycin A, a condition that is associated with a reduction in

expression and signaling by the insulin receptor in MCF-7 cells

[48], decreased serum-induced GLUT4 translocation to a greater

extent than translocation induced by insulin. A larger effect on

serum action was also found for phospholipase C inhibitor U-

73122 [47].

In a second approach, we used Western blot analyses to study

the effect of FBS on several signaling molecules that are known to

be implicated in GLUT4 translocation (Figure 6B–E). In contrast

to insulin, FBS did not induce tyrosine phosphorylation of the

insulin receptor and IRS-1 (Figure 6B and C) nor threonine and

serine phosphorylation of Akt and its downstream effector AS160

(Figure 6D). We did observe that FBS largely increased

phosphorylation of MAP kinases ERK1 and ERK2. However,

these MAP kinases do not play a role in GLUT4 translocation

[49]. Finally, we analyzed the presence of phosphorylated Akt

substrates using an antibody directed against a Phosphorylated Akt

Substrate consensus sequence (PAS antibody; Figure 6E). Several

proteins displayed immunoreactivity in insulin-stimulated cells.

These proteins were not phosphorylated in FBS-treated cells. This

is in accordance with the absence of phosphorylation of Akt

substrate AS160. However, in these cells there was one particular

protein of approximately 60 kDa that was largely phosphorylated

in response to FBS. This protein did not appear to be

phosphorylated upon insulin stimulation, making it tempting to

speculate that this protein and its upstream kinase may be involved

in FBS-induced GLUT4 translocation. These data indicate that

while the serum-activated signaling pathways that lead to GLUT4

translocation remain to be revealed, it is clear that they are, at least

in part, distinct from those involved in insulin signaling.

Figure 5. The additive effects of FBS and insulin on various
stimuli are distinct. (A) Adipocytes were incubated for 1 hour in the
absence or presence of 0.45 M sucrose, following a 10 minute
incubation with 100 nM insulin, 25% FBS or control medium. Cell
surface GLUT4 levels were determined. (B) Cells were incubated with or
without 100 mM pervanadate for a total of 20 minutes. Insulin (100 nM)
and FBS (25%) were added for the final 10 minutes. Amounts of GLUT4
at the plasma membrane were determined (C) Cells were incubated for
40 minutes with or without 5 mM AICAR, 100 nM insulin, and 25% FBS,
upon which relative cell surface GLUT4 levels were established.
*P,0.001; **P,0.0001; ns, non-significant.
doi:10.1371/journal.pone.0015560.g005

Serum-Induced Translocation of GLUT4
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Serum-induced GLUT4 translocation is maintained in
insulin resistance

So far, our results suggested that the effect of the serum factor

on GLUT4 might be maintained in insulin resistance, as the action

of FBS on GLUT4 was largely additive to that of insulin (Figure 4)

while distinct signaling pathways appeared to be involved (Figure 5

and 6).

To investigate this, insulin resistant 3T3-L1 adipocytes were

incubated with different concentrations of insulin in the absence

and presence of 25% FBS and cell surface GLUT4 levels were

measured (Figure 7). As expected, insulin resistant cells displayed

reduced GLUT4 translocation in response to insulin (panel A).

Notably, the presence of FBS during the insulin incubation largely

increased cell surface GLUT4 levels in both insulin-sensitive and

insulin-resistant cells (panel B). Calculation of the additive effect of

FBS demonstrated that its action on GLUT4 persisted in insulin-

resistant cells (panel C). These data demonstrate that the effect of

the serum factor is not only independent of insulin but also that its

effect is fully preserved in insulin resistance.

The GLUT4-translocating activity of serum fractionates in
two peaks in size exclusion chromatography

To investigate the nature of the putative factor in serum, we

fractionated human serum on a Sephacryl 200HR column and

analyzed the effect of the fractions on cell surface GLUT4 levels

(Figure 8). This revealed two major peaks estimated at ,170 kDa

and ,33 kDa and a minor peak at around 7 kDa, suggesting that

either at least two independent factors contribute to the GLUT4-

translocating activity in serum or that part of the implicated factor

exists in a protein complex.

Discussion

Here, we present evidence for the existence of GLUT4-

translocating activity in serum and show that the responsible

factor is not insulin, IGF-1, PDGF, or HGF. Moreover, neither

the insulin receptor nor IRS-1 are tyrosine phosphorylated upon

serum stimulation. Also, insulin- but not serum-induced GLUT4

translocation is inhibited by tyrphostin AG1024, known to target

the IGF-1 receptor and, to a somewhat lesser extent, the insulin

receptor [39]. This further confirms that the serum effect is not

mediated by insulin or IGF-1. This is important as an insulin-like

activity of serum on adipocytes has previously been attributed to

NSILA [50], later identified as IGF [51]. We have found insulin-

independent GLUT4-translocating activity in all sera that we have

tested (i.e. fetal, newborn and adult bovine serum, human serum

and rabbit serum). Our studies have demonstrated that multiple

adipocyte and muscle cell models display serum-induced GLUT4

translocation. Taken together, this demonstrates that the factor is

generally present in serum and acts on all cell types that are

implicated in postprandial glucose uptake. Importantly, our data

imply a novel signal transduction pathway leading to GLUT4

translocation and glucose uptake, which is preserved in insulin

resistance.

Several of our observations demonstrate that the mode of action

of FBS is largely different from that of insulin. First, while insulin

action regarding GLUT4 was largely restricted in insulin-resistant

adipocytes, serum-induced GLUT4 translocation was fully

preserved. Second, the effect of FBS is largely additive to that of

insulin. Third, while the effect of pervanadate on GLUT4 is

partially additive to that of FBS, it is not additive to the effect of

insulin. Fourth, incubation of the adipocytes with the AMP kinase

activator AICAR increases cell surface GLUT4 levels when added

together with FBS but not with insulin. Fifth, our inhibitor studies

demonstrated that the FBS effect was much more sensitive to long-

term herbimycin A treatment and phospholipase C inhibitor U-

73122 than that of insulin. Finally, analyses of the insulin signaling

pathway demonstrated that the downstream signaling molecules

involved in insulin-induced GLUT4 translocation are not

activated by FBS.

Our data demonstrate that there exists an as yet unidentified

signaling pathway that leads to GLUT4 recruitment and glucose

uptake and that this pathway is activated by a serum factor. Here,

we have shown that this pathway does not imply AMP kinase, as

serum-induced GLUT4 translocation was not inhibited by AMPK

Figure 6. The intracellular signal transduction pathways
involved in FBS-induced GLUT4 translocation are partially
different from those of insulin. (A) Adipocytes were preincubated
for 30 minutes with 25 mM AG1024, 100 nM wortmannin, 50 mM
LY294002, 30 mM staurosporine, 300 mM genistein, 2 mM herbimycin A
(‘herbimycin/0.5’), 10 mM Akti-1/2, 10 mM Ro 31-8220, 40 mM compound
C, 10 mM U0126, 40 nM rapamycin, 1 mM okadaic acid, or 10 mM U-
73122, or for 24 hours with 1.75 mM herbimycin A (‘herbimycin/24’).
Insulin (100 nM) or FBS (50%) was added, cells were incubated for a
further 10 minutes, and cell surface GLUT4 levels were determined. To
demonstrate the effect of the inhibitors, the relative increase in cell
surface GLUT4 levels in the presence of inhibitors was expressed as
percentage of the increase in the absence of inhibitors. (B–E)
Adipocytes were stimulated for 5 minutes with 100 nM insulin, 25%
FBS or left untreated. Lysates were either directly subjected to SDS-
PAGE and immunoblotting using the indicated antibodies (B,D,E), or
first subjected to immunopurification (IP), in the case of the insulin
receptor (IR) and IRS-1 (C). *P,0.05; **P,0.01; ***P,0.005.
doi:10.1371/journal.pone.0015560.g006
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inhibitor compound C. Moreover, the translocation of GLUT4 in

response to FBS was enhanced by AMPK activator AICAR, while

FBS itself did not alter phosphorylation of AMPK or its

downstream effector acetyl CoA carboxylase (ACC; not shown).

The effect of FBS on GLUT4 was inhibited more than 50% by

inhibitors of PI 3-kinase as well as by staurosporine, 24 hour

herbimycin A treatment, Akti-1/2, and U73122, indicating the

involvement of PI 3-kinase, a serine/threonine protein kinase, and

phospholipase C. Although serum-induced GLUT4 translocation

was inhibited by Akti-1/2, serum did not induce phosphorylation

of Akt2 nor of its downstream effector AS160 [52], suggesting that

the inhibition by Akti-1/2 may be due to the involvement of a

structurally similar serine/threonine kinase whose activity is

reduced by Akti-1/2. In accordance with this possibility, serum

but not insulin induced the phosphorylation of a ,60 kDa protein

that was reactive with the PAS antibody, raised against a

phosphorylated Akt substrate consensus sequence. These results

suggest that another member of the AGC kinase family may be

involved in the serum action as many members of this family share

the same substrate phosphorylation sequence.

At present it is unclear what is the nature of the serum factor(s).

The factor is likely to be a protein as the GLUT4-translocating

activity is collected in the protein fraction upon ammonium sulfate

precipitation (data not shown). Moreover, on a size exclusion

column, it fractionates into two major peaks (estimated Mr 33 and

170 kDa), while it is not retained on a hydrophobic LH20 column

(not shown). This may imply that two proteins are involved.

Alternatively, the implicated factor may in part be associated with

other proteins. Interestingly, heating FBS for up to 10 minutes at

100uC precipitates 75% of the protein content, while leaving the

serum GLUT4-translocating activity intact (not shown), implying

thermostability and suggesting that it is not the mere presence of a

bulk of protein that induces GLUT4 translocation but that the

effect is more specific. This is also evident from our size exclusion

chromatography studies, in which GLUT4-translocating activity is

present in fractions that contain minimal amounts of protein.

This factor may be regulated in a way similar to insulin in that

its serum levels may oscillate depending on food intake. Moreover,

its serum levels may be altered in insulin resistance in vivo. To date,

we have not yet investigated these issues. The 96 well plate

technique that has been used throughout this study will largely aid

in addressing these questions and will likely lead to its purification

and identification, and to the definition of its (patho)physiological

relevance. Unfortunately, the activity-based purification of un-

identified proteins from serum has proven often to be a difficult

and laborious task.

Taken together, we have demonstrated the presence of a factor

(or several factors) in serum that induce GLUT4 translocation in a

manner that is largely independent of insulin and insulin signaling

and whose effects are fully maintained in insulin resistance. Hence,

this factor may prove to have beneficial effects in type 2 diabetes.

Now, the challenging task is to identify this factor and to examine

its effects on GLUT4 and glucose uptake under normal conditions

and conditions of insulin resistance in vitro and in vivo.

Supporting Information

Table S1 Insulin concentrations in the sera used in the
described studies.

(TIF)

Figure 7. The effect of FBS on GLUT4 persists in insulin-resistant adipocytes. 3T3-L1 adipocytes rendered insulin-resistant by a 24 hour
100 nM insulin treatment (black bars, ‘insR’) or control adipocytes (white bars, ‘ctrl’) were incubated for 20 minutes with the indicated concentrations
of insulin in the absence (A) or presence of 25% FBS (B) and increases in cell surface GLUT4 levels were determined. (C) Values of (A) were subtracted
from those of (B) to calculate the additive effect of FBS. In (A), control and insulin-resistant cells were significantly different for all three insulin
concentrations (P,0.005), while in (C) there were no significant differences between the cells.
doi:10.1371/journal.pone.0015560.g007

Figure 8. Size exclusion chromatography of serum reveals that
multiple proteins or protein complexes are involved in serum-
induced GLUT4 translocation. Human serum to which a trace
amount of 2-[3H]deoxyglucose was added was fractionated as
described in Experimental. Fractions were evaluated for their effect on
cell surface GLUT4 levels. The maximum increase was set to 100%.
Protein concentrations and 2-DOG were also expressed as percentage
of maximum. The void volume (Vo) and the elution profile of the
calibration standards (200-14 kDa) are indicated. The (0.2 kDa) 2-DOG
peak marks the end of the elution process.
doi:10.1371/journal.pone.0015560.g008
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Figure S1 The relative effect of serum on cellular
glucose uptake is lower than its effect on cell surface
GLUT4 levels. FBS was extensively dialyzed against KRP buffer

(cut-off 3 kDa). 3T3-L1 adipocytes expressing HA-GLUT4 (A) or

not expressing HA-GLUT4 (B) were serum starved for 2 h in

DMEM containing 0.2% BSA, washed with KRP, and incubated

for the indicated time periods in the absence (open triangles) or

presence of 100 nM insulin (open squares), 25% FBS (filled

triangles), 50% FBS (filled squares), or 100% FBS (filled diamonds)

in KRP. Subsequently, (A) non-permeabilized fixed cells were

immunolabeled with anti-HA and fluorescent secondary antibod-

ies followed by measurement of the fluorescence (arbitrary units)

or (B) the uptake of radiolabeled 2DOG during a 2 min

incubation was measured. The dashed line in the panels represents

basal cell surface GLUT4 levels/2DOG uptake.

(TIF)

Figure S2 Serum does not reduce GLUT4 internaliza-
tion. 3T3-L1 adipocytes expressing HA-GLUT4 were incubated

for 20 min with 100 nM insulin, followed by cooling down on ice,

removal of insulin, and cell surface labeling of the cells with anti-

HA antibody. Excess antibody was removed, cells were transferred

to 37uC, and fixed after various time periods. Permeabilized cells

were immunolabeled with fluorescent goat-anti-mouse antibody

and analyzed by fluorescence microscopy. Cells were scored for

the presence of internalized anti-HA label. Hyperosmolarity

(0.45 M sucrose) was included as positive control.

(TIF)

Figure S3 The effect of FBS on GLUT4 is not mediated
by PDGF, IGF-1, or HGF. (A) Adipocytes were incubated for

20 minutes with various concentrations of the indicated ligands

and relative cell surface GLUT4 levels were determined. (B) 3T3-

L1 adipocytes and preadipocytes were incubated for 5 minutes

with 100 nM insulin, 2 nM PDGF-BB, 25 nM IGF-1, or 2.6 nM

HGF, and lysate samples were subjected to SDS-PAGE and

immunoblotting using phospho-ERK and ERK antibodies.

(TIF)

Figure S4 HA-tagged GLUT1 is correctly localized. 3T3-

L1 adipocytes expressing GLUT1 with an HA-epitope tag in its

first extracellular domain were immunolabeled using anti-HA and

anti-syntaxin 13 antibodies. Control adipocytes were immunola-

beled using anti-GLUT1 and anti-syntaxin 13 antibodies. Note

that the localization of HA-GLUT1 is similar compared with

endogenous GLUT1. Bar, 5 mm.

(TIF)
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