Fine-mapping and molecular characterisation of primary sclerosing cholangitis genetic risk loci

Short title: Genetic characterisation of PSC

Authors: Elizabeth C. Goode^{1,2,3}, Laura Fachal¹, Nikolaos Panousis¹, Loukas Moutsianas¹, Rebecca E. McIntyre¹, Benjamin Yu Hang Bai^{1,2}, Norihito Kawasaki⁴, Alexandra Wittmann⁴, Tim Raine², Simon M Rushbrook^{3,5}, Carl A. Anderson^{1*}.

Affiliations: ¹Wellcome Sanger Institute, Hinxton, Cambridge, UK, ²University of Cambridge, Cambridge, UK, ³Norfolk and Norwich University Hospital, Norwich, UK, ⁴Quadrum Institute, Norwich, UK, ⁵Norwich Medical School, University of East Anglia, Norwich, UK.

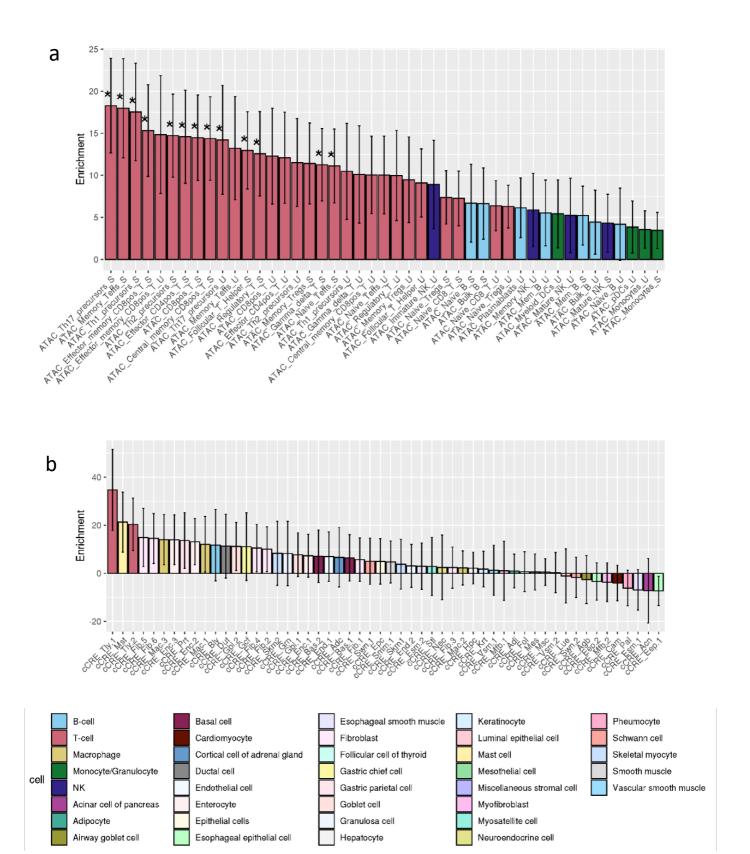
Supplementary Information

Supplementary Tables

Supplementary Table 1: Characteristics of the PSC-specific eQTL map study cohort according to disease group.

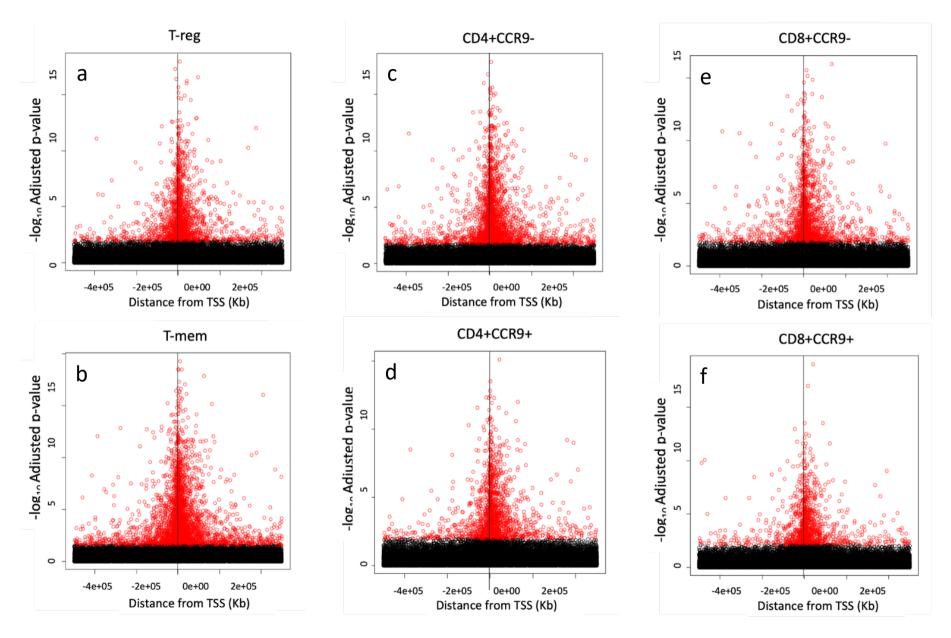
	PSC-UC (n=42)	UC (n=32)	
Gender (% Male)	81	69	
Mean Age (Range)	50 (17-86)	52 (38-75)	
UDCA use (%)	71	0	
5-ASA use (%)	66	90	
Azathioprine use (%)	10	21	

Supplementary Table 2: Results of colocalisation between T-cell eQTLs mapped in PSC-UC patients and GWAS risk loci for Ulcerative colitis (UC), Crohn's disease (CD), Rheumatoid arthritis (RhA) and Type 1 Diabetes (T1DM). Beta and two-sided test p-values were estimated through linear regression via QTLtools.

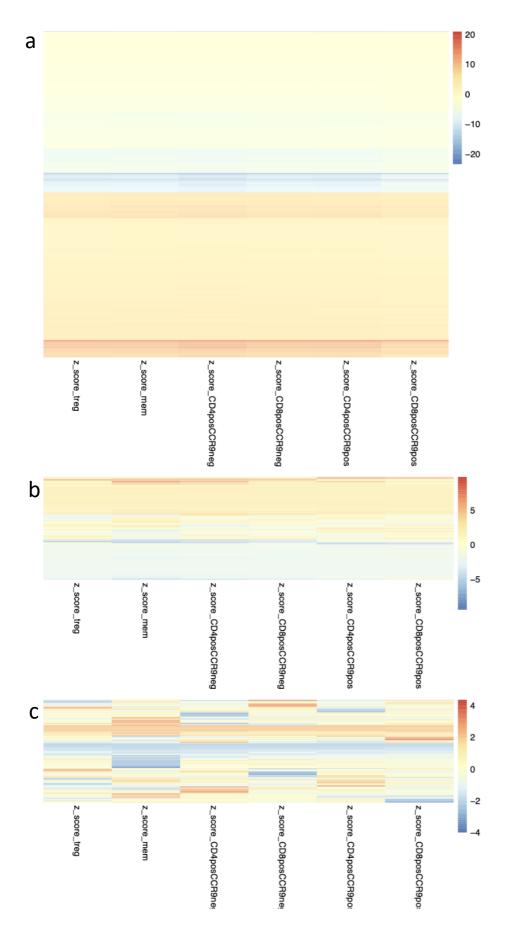

Chr	GWAS SNP	Disease	eGene	Cell type	PP4	eQTL Beta	eQTL p-val
1	rs3180018	UC	GBAP1	T-regulatory	0.91	-0.74	3.88E-04
				T-memory	0.98	-1.01	1.30E-10
				CD4+CCR9-	0.98	-0.92	2.01E-07
				CD4+CCR9+	0.98	-0.91	7.66E-07
		UC	THBS3	CD4+CCR9-	0.98	0.88	5.59E-07
1	rs2317230	RhA	FCRL3	CD8+CCR9-	0.93	0.82	3.29E-04
5	rs7731626	RhA	IL6ST	T-regulatory	0.97	-0.86	2.08E-04
				T-memory	0.90	-0.81	6.16E-04
		RhA	ANKRD55	T-memory	1.00	-1.00	5.94E-07
				CD4+CCR9-	1.00	-0.95	9.63E-06
				CD4+CCR9+	0.86	-0.86	1.20E-03
7	rs4728142	UC	IRF5	T-memory	0.86	0.77	4.71E-05
11	rs663743	PSC	AP003774.1	T-regulatory	0.99	0.98	7.27E-06
				T-memory	0.95	1.07	1.35E-07
				CD4+CCR9-	0.95	0.96	1.83E-05
11	rs968567	RhA	FADS1	T-regulatory	0.89	1.51	1.38E-07
		RhA	FADS2	T-regulatory	0.98	1.60	2.01E-09
				T-memory	1.00	1.58	2.23E-09
				CD4+CCR9-	0.99	1.58	5.40E-09
				CD4+CCR9+	0.98	1.47	2.82E-07
				CD8+CCR9-	0.96	1.56	9.58E-09
				CD8+CCR9+	0.95	1.46	4.22E-07
12	rs4760341	T1DM	SUOX	T-regulatory	0.80	-0.71	1.06E-03
14	rs941576	T1DM	WARS	T-regulatory	0.85	1.07	3.90E-05
				T-memory	0.93	1.19	1.46E-07
				CD4+CCR9-	0.80	1.35	2.41E-08
				CD8+CCR9-	0.97	-1.03	1.37E-05
19	rs4802307	CD	PPP5C	T-memory	0.85	-0.92	1.63E-06
				CD4+CCR9-	0.86	-0.99	2.38E-08
				CD8+CCR9-	0.83	-0.82	1.48E-04
21	rs1893592	PSC	UBASH3A	T-mempry	0.91	0.93	4.83E-04
22	rs909685	RhA	SYNGR1	CD8+CCR9+	0.98	1.14	7.15E-04

UC; Ulcerative colitis, RhA; rheumatoid arthritis, T1DM; Type 1 diabetes mellitus, CD; Crohn's disease, PSC; Primary sclerosing cholangitis.

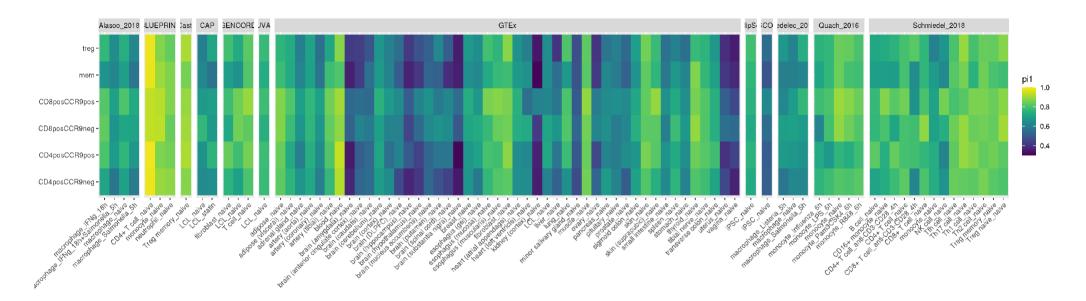
Supplementary Figures


Supplementary Figure 1: Enrichment analyses results.

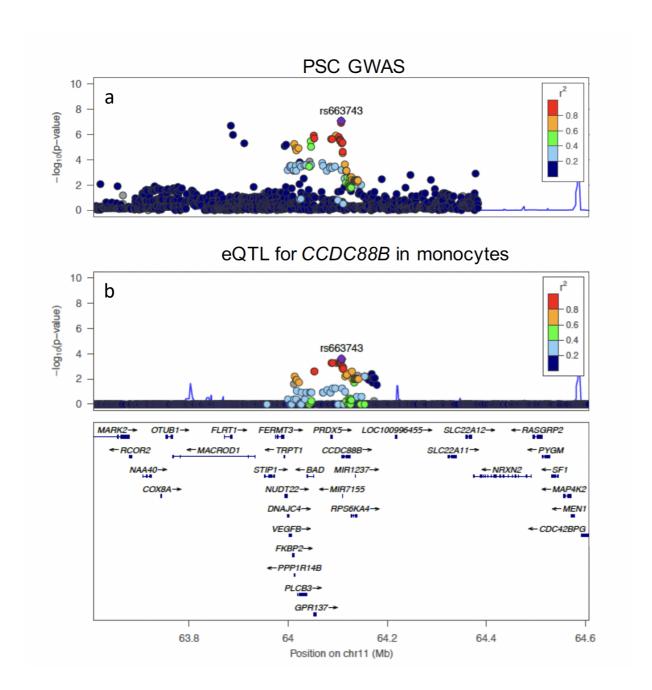
The y axis shows the enrichment (Prop.h2/Prop.SNPs) per cell type, whereas the y axis indicates the cell types. Results have been coloured by cell type, grouping different cell types in a broader category (ie, Th17 precursors, Memory Teff etc into T-cell). Panel a): open chromatin regions (ATAC-seq) from immune cell types under resting (_U) and stimulated (_S) conditions¹. Panel b): cis candidate regulatory elements (cCRE) inferred from single cell ATAC-seq from 30 adult tissues². qvalues were estimated from the LDSC two sided test p-values to nominate significant results (qvalue < 0.05), labelled with an asterisk in the plot. Bars represent the enrichment standard error.


Supplementary Figure 2: Distance to between eQTL and transcription start site

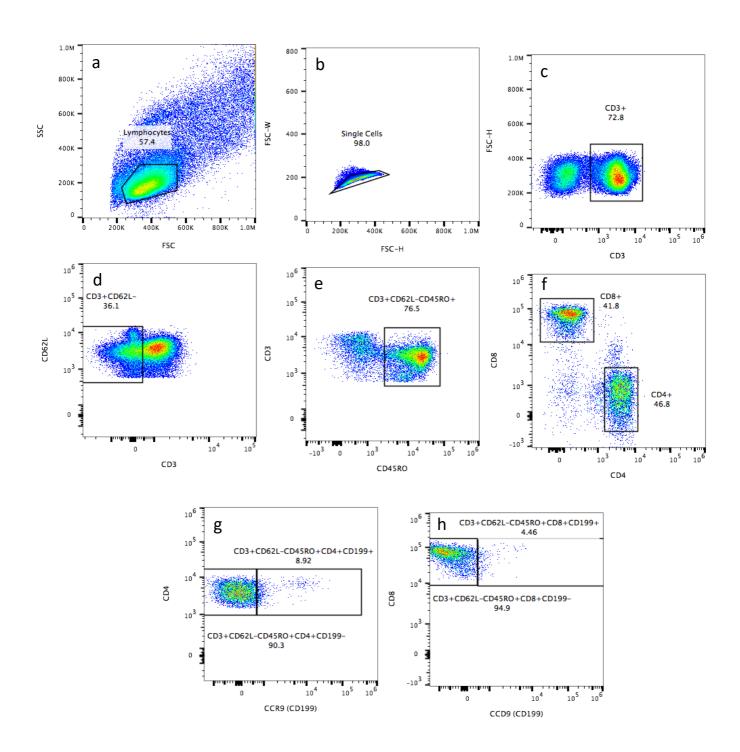
Distance from transcription start site (TSS) for each significant eQTL (coloured red for those less than 5% FDR) per cell type. Panel a); T-regulatory cells, b); T-memory cells, c); CD4+CCR9- T-cells, d); CD4+CCR9+ T-cells, e); CD8+CCR9- T-cells, f); CD8+CCR9+T-cells.


Supplementary Figure 3: Posterior z-scores of significant eGenes as identified by mashR

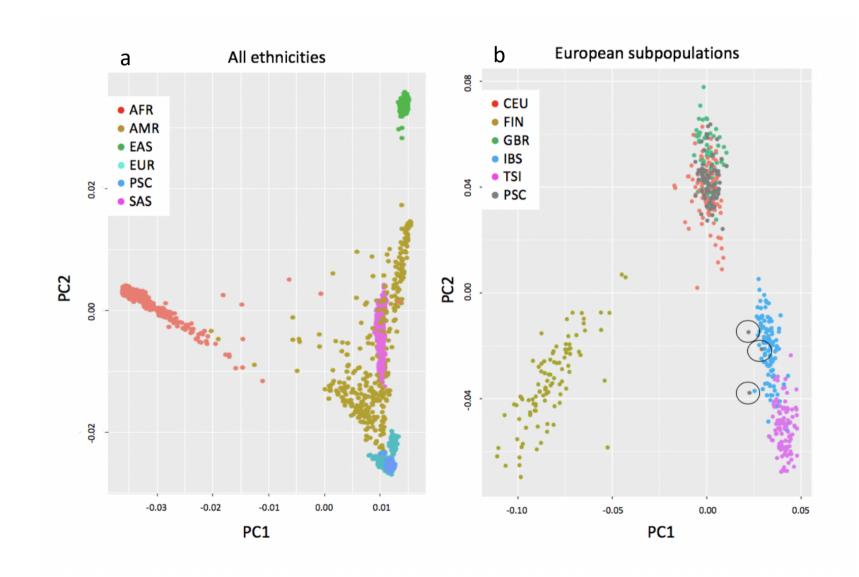
Posterior z-scores of significant eGenes as identified by mashR (lfdr <0.05 in at least one PSC T cell subtype; N = 10,459), grouped by (i) significant eGenes shared across all cell types (panel a), N = 9,176); (ii), significant eGenes in two or more cell types, but not in all cell types all (panel b), N = 794); and (iii) those condition specific eGenes, only significant in one cell type (panel c), N = 489).


Supplementary Figure 4: Replication of significant eGenes in each PSC T-cell subtype

Proportion of significant eGenes in each PSC T cell subtypes (eQTL qvalue < 0.05; estimated from the two-sided p-values derived by QTLtools) replicated in external datasets (pi1)


Supplementary Figure 5: Colocalisation results for CCDC88B Chr11 region

CCDC88B Chr11: regional association plot for a) PSC GWAS data (NCases= 4,796; NCtr= 19,955) and b) colocalising (PP4 \geq 0.8) eQTL data for CCDC88B in monocytes (N = 194). The most-likely causal variant (rs663743 PP=0.85) is shown in purple. LD information is calculated from PSC GWAS data³


Supplementary Figure 6: FACS gating strategy for PSC eQTL maps

FACS gating strategy used for PSC specific T-cell separation with sequential sorting from left to right. Panel a); Forward versus side scatter, b); forward scatter height versus width, c); CD3+ versus forward scatter height, d); CD3 versus CD62L, e); CD45RO versus CD3+, f); CD4 versus CD8, g); CCR9 versus CD4.

Supplementary Figure 7: Principal component analysis of study samples compared to 1000 Genomes.

Principal component analysis of study samples compared to 1000 Genomes samples of known ethnicity using a pruned set of 62,805 independent variants with an r2<0.2 and MAF>0.01. Panel a) shows PSC samples compared to all ethnicities, and panel b) shows European subpopulations. Three individuals were of Southern European/Iberian ethnicity, highlighted on the Figure. All samples from individuals of Northern and Southern European ethnicity were retained for further analysis.

Supplementary References

- 1. Calderon D, Nguyen MLT, Mezger A, et al. Landscape of stimulation-responsive chromatin across diverse human immune cells. Nat Genet 2019;51:1494-1505.
- 2. Zhang K, Hocker JD, Miller M, et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 2021;184:5985-6001 e19.
- 3. Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012;337:1190-5