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Abstract 
Mycorrhizae are one of the most fundamental symbioses between plants and fungi, with ectomycorrhizae being the most widespread in boreal 
forest ecosystems. Ectomycorrhizal fungi are hypothesized to have evolved convergently from saprotrophic ancestors in several fungal clades, 
especially members of the subdivision Agaricomycotina. Studies on fungal genomes have identified several typical characteristics of mycorrhizal 
fungi, such as genome size expansion and decreases in plant cell-wall degrading enzymes (PCWDEs). However, genomic changes concerning 
the evolutionary transition to the ectomycorrhizal lifestyle are largely unknown. In this study, we sequenced the genome of Lyophyllum shimeji, 
an ectomycorrhizal fungus that is phylogenetically related to saprotrophic species and retains some saprotroph-like traits. We found that the 
genome of Ly. shimeji strain AT787 lacks both incremental increases in genome size and reduced numbers of PCWDEs. Our findings suggest 
that the previously reported common genomic traits of mycorrhizal fungi are not essential for the ectomycorrhizal lifestyle, but are a result of 
abolishing saprotrophic activity. Since Ly. shimeji is commercially consumed as an edible mushroom, the newly available genomic information 
may also impact research designed to enhance the cultivation of this mushroom.
Key words: mycorrhizal fungi, comparative genomics, ectomycorrhizae, edible mushroom

1. Introduction
Mycorrhizal symbiosis is one of the most abundant types of 
symbioses between fungi and plants, involving more than one 
hundred fungal genera and 80% of land plant species.1,2 This 
type of symbiosis is basically mutualistic in that fungi help 
plants take up soil-derived nutrients, such as phosphate and 
nitrate, in exchange for photoassimilates.3 Mycorrhizae are 
classified into several types by their morphology and func-
tion. Of them, ectomycorrhizae have the most impact on 
boreal forest biomass because dominant trees in the boreal 
forest harbour these types of mycorrhizal fungi.4,5

Ectomycorrhizal plants appear in several taxa, including 
the representative families Fagaceae and Pinaceae.2 These 
mycorrhizae are proposed to have changed their mycor-
rhizal style from ancestral arbuscular mycorrhizae and have 
succeeded in becoming adapted to boreal regions. In con-
trast, ectomycorrhizal fungi are thought to have evolved 
from saprotrophic ancestors.6 Accounting for their taxo-
nomic appearance, the transition from the saprotrophic to 

the ectomycorrhizal lifestyle is proposed to have independ-
ently evolved dozens of times throughout the history of 
Basidiomycota and Ascomycota.1,6

Besides their ecological importance as forest components, 
many ectomycorrhizal fungi also impact our lives as foods. 
Many favoured mushrooms, such as truffles, boletes, and 
matsutake, are mycorrhizal.7 However, unlike saprotrophic 
species, most mycorrhizal mushrooms have difficulty artifi-
cially producing basidiocarps, probably because of their host-
dependent lifestyle.7

Lyophyllum shimeji, an agaricoid fungus known as hon-
shimeji or just shimeji in the older literature, has been one 
of the most favoured mushrooms in Japan for a long time.8,9 
Ly. shimeji is known to be an ectomycorrhizal fungus asso-
ciated with plants in the Fagaceae and Pinaceae families.10,11 
However, unlike many other mycorrhizal fungi, Ly. shimeji 
can metabolize botanical polysaccharides, such as starch.12 
Moreover, the fruiting body of Ly. shimeji can be induced 
on a medium containing barley and sawdust without a host 
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plant,13 and it is now commercially produced axenically. Thus, 
Ly. shimeji has physiological similarities to saprotrophic fungi 
though it has a mycorrhizal lifestyle. Also, Ly. shimeji has a 
systematically close saprotrophic relative, Ly. decastes.14,15 
Morphological traits of Ly. shimeji, Ly. decastes and several 
other species highly resemble each other. Descriptions of the 
mycorrhizal ability of these relatives are also confusing. For 
example, Ly. decastes is often described as a mycorrhizal 
fungus,16,17 whereas other studies have reported its inability 
to form mycorrhizae,11,18 possibly because of improper spe-
cies identification.19 Therefore, Ly. shimeji and related species 
include mycorrhizal and non-mycorrhizal fungi within a very 
close genetic distance. Since ancestral species of Lyophyllaceae 
are proposed to be saprotrophic,17 Ly. shimeji may be one 
of the last groups of ectomycorrhizal fungi that has evolved 
from a saprotrophic ancestor.

Since the genome of Laccaria bicolor was sequenced as 
the first mycorrhizal genome in 2008,20 many other genomes 
of mycorrhizal fungi have been sequenced.21–26 Comparative 
studies between mycorrhizal and saprotrophic fungi have 
revealed that mycorrhizal fungi have several characteristic 
genomic features, such as genome size increments accom-
panied by the proliferation of transposable elements (TEs) 
and reductions in genes encoding plant cell-wall degrading 
enzymes (PCWDEs).23–26 These convergent genomic traits 
suggest that such features are adaptive to the mycorrhizal 
lifestyle. However, to what degree these features are essen-
tial for the mycorrhizal lifestyle is largely unknown. In this 
study, we sequenced the genome of Ly. shimeji as a repre-
sentative of a putative primitive stage of mycorrhizal fungi 
in order to survey the initial genomic status in the ecological 
transition. The genome information of Ly. shimeji is also 
expected to be useful for research and cultivation of this 
praised mushroom.

2. Materials and methods
2.1. Fungal material
The strain of Ly. shimeji AT787 was initially isolated from 
Nagano and maintained at Shinshu University.27 This strain 
was confirmed to be mycorrhizal and has been used for re-
search on mycorrhizal formation. Hyphae were cultured on 
a cellophane membrane placed on MMN (Modified Melin-
Norkrans) medium28 and MMN medium without malt and 
sugar (hereafter referred to as MMN salt-only medium). After 
an 1-week incubation at 28°C, hyphae were peeled from the 
cellophane membrane and used for nucleic acid extraction.

2.2. Extraction of genomic DNA and RNA
Genomic DNA was isolated from hyphae cultured on 
MMN medium using the CTAB (cetyl trimethylammonium 
bromide) method29 with some modifications as described 
below. Collected hyphae were frozen with liquid nitrogen, 
ground with a pestle, and dispersed in extraction buffer 
(100 mM Tris–HCl pH 8.0, 20 mM EDTA, 0.75% sarkosyl, 
0.1% PVP, 0.75% CTAB, 0.13 M sorbitol, 0.75 M NaCl, 
and 0.1 mg ml−1 proteinase K). After incubation at 37°C for 
30 min, the aqueous phase was centrifuged at 12,000 rpm 
(rotations per minute) for 10  min at 4°C, and the pellet 
was discarded. An equal volume of phenol/chloroform 
(1:1, Vol:Vol) was added and centrifuged (12,000  rpm, 
5  min at 4°C). The aqueous phase was collected, and an 
equal volume of chloroform was added to the sample and 

centrifuged (12,000 rpm, 5 min at 4°C). The aqueous phase 
was collected again, and 1:10 Vol of sodium acetate and 
0.7 Vol of isopropanol were added, mixed, and centri-
fuged (12,000 rpm, 20 min at 4°C). The resulting pellet was 
washed twice with 70% EtOH and resuspended in TE buffer. 
Extracted DNA was purified with Genomic-tips (Qiagen, 
Netherlands). RNAs were extracted from hyphal samples 
cultured on MMN medium and MMN salt-only medium 
using an RNeasy Plant Mini Kit (Qiagen, Netherlands) with 
buffer RLC included in the kit.

2.3. Library construction and sequencing
PacBio libraries were constructed following the manufacturer’s 
protocol (Pacific Bioscience, USA) and sequenced with a 
PacBio RS II sequencer. Paired-end Illumina genomic libraries 
with insert sizes of 250 bp and 700 bp were constructed with 
a TruSeq DNA Sample Preparation v2 Kit (Illumina, USA) 
and were sequenced with a HiSeq 2500 System (Illumina, 
USA) for 151  bp from both ends. RNA-seq libraries were 
constructed with a TruSeq Stranded mRNA Library Prep Kit 
(Illumina, USA) and sequenced with a HiSeq 1500 System 
(Illumina, USA) for 126 bp from both ends.

2.4. Genome assembly
The genome size of Ly. shimeji was estimated with 
GenomeScope 2.030 using the Illumina reads. PacBio reads 
were primarily assembled with Falcon v2017.11.02-16.04-
py2.7-ucs and Falcon-Unzip v0.4.0.31 Two allelic draft gen-
omes were integrated into a single haploid-type genome 
with HaploMerger2.32 Repetitive elements were predicted 
using RepeatMasker v4.0.633 after modelling the repetitive 
sequences with RepeatModeler v1.0.833 with default settings. 
The completeness of the draft genome was assessed with 
BUSCO ver.4.1.4, using the database fungi_odb10.34

2.5. Gene prediction and annotation
Genes were predicted with mapped transcripts. Adapters and 
low-quality sequences were removed from Illumina RNA-
seq reads with Cutadapt 2.5.35 Transcripts were assembled 
with Trinity v2.11.0.36 Genes were predicted with BRAKER 
v2.1.037 with the combination of GeneMark-ES v4.5738 and 
Augustus v3.3.1.39 The completeness of the gene set was as-
sessed with BUSCO v4.1.4,34 using the database fungi_odb10 
(n = 758). Genes were functionally annotated with eggNOG-
mapper v2.40

2.6. Reference genome datasets
Reference genomes were downloaded from JGI Mycocosm.41,42 
Assembly genomes of Agaricus bisporus var bisporus (H97) 
v2.0,43 Amanita muscaria Koide v1.0,23 Amanita thiersii 
Skay4041 v1.0,44 Aspergillus oryzae RIB40,45 Auricularia 
subgrabra v2.0,46 Boletus edulis Prilba v1.0,25 Cenococcum 
geophilum 1.58 v2.0,47 Coprinopsis cinerea,48 Galerina 
marginata v1.0,49 Hebeloma cylindrosporum h7 v2.0,23 
Laccaria bicolor v2.0,20 Lentinula edodes W1-26 v1.0,50 
Neurospora crassa OR74A v2.0,51 Pisolithus tinctorius 
v1.0,23 Pleurotus ostraeus PC15 v2.0,49 Rhizophagus clarus 
HR1,52 Rhizopus delemer 99-880,53 Saccharomyces cerevisiae 
S288C,54 Schizosaccharomyces pombe,55 Tricholoma 
matsutake 945 v3.0,25 and Tuber melanosporum Mel28 
v1.221 were used as references. Assembly genome and raw 
reads of Ly. shimeji JCM30591 were downloaded from the 
NCBI database.56
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2.7. Comparative analyses
PCWDEs were searched with dbCAN2 web server.57,58 
Only genes that were predicted as CAZymes by two or 
three of three methods in dbCAN2 were regarded as 
PCWDEs. Secretory proteins were predicted with SignalP 
v4.1.59 Small proteins were selected with Seqkit v0.5.2.60 
Ortholog analyses were conducted with OrthoFinder 
v2.3.1161 with default parameters. Three-hundred fifty-one 
single-copy orthologs were aligned with MAFFT v7.49062 
with default parameters to generate a phylogenetic tree 
constructed with IQ-tree v2.1.363 with 1,000 bootstrapping 
replicates and 1,000 SH-aLRT (Shimodaira-Hasegawa ap-
proximate likelihood ratio test) replicates. ‘Q.yeast+F+R6’ 
model was chosen by the ModelFinder in IQ-tree. PCA 
and correlation efficiency were computed, Welch’s t-test 
was executed, and figure drawings were created using R 
4.0.3.64

3. Results and discussion
3.1. Genome sequencing and assembly
We sequenced the entire genome of Ly. shimeji AT787 
with a short-read sequencer, Illumina HiSeq2500, and a 
long-read sequencer, PacBio RSII. A total of 13.6 Gbp 
of Illumina reads and 5.81 Gbp of PacBio reads were 
obtained. From the k-mer analysis of the Illumina short 
reads, the genome size was estimated to be approximately 
30.5 Mbp with 2.3% heterozygosity (Fig. S1). We assem-
bled a draft genome with Falcon-Unzip, which generates 
a ‘primary contig’ as a basal allele and a ‘haplotig’ as the 
opposite allele. A total of 36.3 Mbp of primary contigs 
and 23.7 Mbp of haplotigs were obtained. Since the pri-
mary contigs may contain both alleles partially, we merged 
primary contigs and haplotigs into single alleles, and 31.8 
Mbp of the draft genome with an N50 of 1.61 Mbp was 
generated (Table 1). BUSCO assessment found 96.9% of 
the conserved single-copy genes were complete genes in 
the draft genome. From this draft genome, 12,904 genes 
were predicted (Table 1). The completeness of the BUSCO 
predicted proteome was estimated to be 97.8%, including 
97.0% being single-copy sequences (Table 1). The con-
tiguity of our assembly and BUSCO completeness of the 
genome are above or comparable to average for represen-
tative reference genomes (Table S1).

3.2. Comparison of genome size and content with 
other fungal genomes
Since mycorrhizal fungi tend to have large genomes with 
manyTEs, we compared the genome size, gene number, and 
repeat content, including TEs, of Ly. shimeji AT787 with the 
data registered in JGI Mycocosm (accessed Oct. 2020)41,42 
and the data of another strain of Ly. shimeji, JCM30591 
(NCBI GenBank GCA_001950515). The plot of genome size 
and gene number showed that genomes of mycorrhizal fungi 
are generally larger than those of other fungi while gene num-
bers are not; however, the genome size of Ly. shimeji AT787 
is very small among mycorrhizal fungi yet the gene number 
is relatively similar to other mycorrhizal fungi, while that of 
Ly. shimeji JCM30591 is not (Fig. 1a). The low BUSCO du-
plication ratio (Table S1) suggest neither are mixture of mul-
tiple genomes or polyploid and genome size estimates from 
raw short reads (57.7 Mb for JCM30591, DRR037069) sug-
gests the genome size of strain JCM30591 and AT787 differ 
by 1.9-fold. The difference in the genome size implies that 
JCM30591 and AT787 are different species in the so-called 
Lyophyllum decastes species complex; however, we cannot 
state which strain is strict ‘Ly. shimeji’ because the holotype 
sequence is unavailable. Since many strains including AT787 
have been treated as Ly. shimeji in previous studies,27 we re-
garded both strains as Ly. shimeji in this paper. The repeat 
content of Ly. shimeji AT787 is 6.84% including 6.14% TEs 
(Fig. 1b). Most of the TEs in the Ly. shimeji AT787 genome 
were Gypsy-type LTR elements (Fig. 1b). No SINEs and LINEs 
were detected while certain amount of LINEs was found in 
the Ly. shimeji JCM30591 genome (Fig. 1b and c). When 
compared to representative fungal genomes, the repeat con-
tent in Ly. shimeji AT787 was smaller than that in most, if not 
all, ectomycorrhizal genomes (Fig. 1c). These results indicated 
that neither genome size enlargement nor TE proliferation 
occurred in the genome of Ly. shimeji AT787, unlike typical 
ectomycorrhizal fungi. Therefore, a large genome size is not 
an essential trait for the mycorrhizal lifestyle but, rather, a re-
sult of mycorrhizal history. Generally, TEs are not adaptive to 
organisms but provide disadvantages for cell proliferation.65 
Mycorrhizal fungi tend to have a slower cell cycle than sapro-
trophic species; thus, mycorrhizal fungi may have experienced 
a weaker selection pressure to eliminate such junk sequences. 
We hypothesize that such a relaxed selection pressure might 
be the driving force for large genomes in mycorrhizal species.

Table 1. Basic information about the Ly. shimeji AT787 assembled genome and predicted genes

Genome assembly (purged) Predicted genes

Total bases 31,834,823 bp Number of genes 12,904 

No. of scaffolds 60 Average of CDS length 1375.9 bp

N50 1,610,882 bp Average of protein length 457.6 aa

L50 7

GC% 53.92%

BUSCO benchmarks of genome assembly BUSCO benchmarks of predicted genes

Complete 96.9 % Complete 97.8%

  Complete single copy 96.2 % Complete single copy 97.0%

  Complete duplicated 0.7 % Complete duplicated 0.8%

Fragmented 0.3 % Fragmented 1.2%

Missing 2.8 % Missing 1.0%

http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
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3.3. PCWDE gene content
We next compared the repertoire of PCWDE genes in the 
Ly. shimeji AT787 genome compared with other fungal gen-
omes because the number of PCWDEs is known to be lower 
in mycorrhizal genomes. We found 384 Carbohydrate-Active 
enZymes (CAZymes), including 178 secretory CAZymes, in 
Ly. shimeji AT787 (Fig. 2a). Genomes of reference species 
showed that saprotrophic fungi, except yeasts, harbour more 
CAZymes, especially secretory enzymes, than mycorrhizal 
fungi (Fig. 2a and b), as reported in previous studies.23,25 
However, the number of CAZymes in Ly. shimeji AT787 
was much higher than in reference mycorrhizal fungi and 
even some saprotrophic fungi (Fig. 2) despite its mycorrhizal 
ecology. Interestingly, the genome of Ly. shimeji JCM30591 
also harbours high amount of CAZymes while genome size 
increment was observed like other mycorrhizal species (Fig. 
2). Thus, depletion of PCWDEs is not an essential trait of 
ectomycorrhizal fungi. Therefore, unlike other mycorrhizal 

fungi, Ly. shimeji may have the capacity to decay plant-
derived materials like saprotrophic species, a finding con-
sistent with its ability to live on plant-derived substances. 
Mycorrhizal fungi have been hypothesized to avoid hurting 
plant cell walls to prevent the activation of plant defence sys-
tems.47 However, it is more likely that mycorrhizal fungi just 
abandoned the use of PCWDEs after their ecological change 
because mycorrhizal fungi can directly derive monosacchar-
ides from their host plants, as also hypothesized by Miyauchi 
et al.25

3.4. Small-secreted proteins
Mycorrhizal fungi harbour many small-secreted proteins 
(SSPs).23,66 Since SSPs include mycorrhiza-induced genes, and 
some of them are essential for the establishment of sym-
biosis, SSPs are thought to communicate with or modify 
mycorrhizal host plants.20,23,67,68 We identified the SSPs from 
the gene repertoire of Ly. Shimeji AT787 and compared 

Figure 1. Comparison of genome size and gene number among sequenced fungi Genome size and components of Ly. shimeji AT787 compared with 
other fungi. (A) Genome size and gene numbers of fungi. Red, yellow, and blue markers correspond to Ly. shimeji AT787, other mycorrhizal fungi, 
and non-mycorrhizal fungi, respectively. Circles, squares, and triangles correspond to Basidiomycota, Ascomycota, and other taxa, respectively. (B) 
Repetitive sequences, including TEs in Ly. shimeji AT787. C: Genome size and repeat content of fungi. The size of circles corresponds to the absolute 
number of repeated sequences. The fungal genomes registered in JGI Mycocosm and the genome of Ly. shimeji JCM30591 registered in NCBI were 
used as references.
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them with those from reference genomes. However, when 
we selected proteins with predicted secretory signal peptides 
and sizes of ≦300 aa, there was no apparent difference in 
gene number between mycorrhizal and saprotrophic fungi 
even in reference species (Fig. S2). We next checked the func-
tional annotation of predicted SSPs in Ly. Shimeji AT787 
(Table S2). Some of the predicted SSPs were annotated as 
hydrophobins, which include proteins having a function 
in mycorrhizal symbiosis.69,70 Some annotated SSPs are se-
cretory CAZymes (Table S2). The lack of apparent differ-
ence in the total number of SSPs between mycorrhizal and 
saprotrophic species may be because SSPs include effectors 
that are considered to be abundant in mycorrhizal fungi 
and CAZymes that tend to be reduced in mycorrhizal fungi. 
Approximately 60% of the predicted SSPs were functionally 
unannotated (Table S2). Since some mycorrhiza-related SSPs 
are lineage-specific,23 some of these unannotated SSPs could 
function in mycorrhizal symbiosis.

3.5. Ortholog analysis
We compared the gene repertoire of Ly. Shimeji AT787 with 
several other fungal genomes. When compared with two 
mycorrhizal fungi (La. bicolor and H. cylindrosporum) and 
two saprotrophic fungi (Co. cinerea and G. marginata) in the 
Agaricales, Ly. shimeji AT787 and the two saprotrophic spe-
cies share 126 orthologs that are not shared with the two 
mycorrhizal species (Fig. 3a, bordered in red). In contrast, Ly. 
shimeji AT787 and the other two mycorrhizal species share 
only 32 orthologs that are not shared with saprotrophic spe-
cies (Fig. 3a, bordered in white). Thus, Ly. shimeji AT787 
shares more orthologs with saprotrophic species than with 

other mycorrhizal species. Genes shared by Ly. shimeji AT787 
and two saprotrophic species include 20 glycoside hydrolases 
as the most enriched common orthologs (Table S3). This re-
sult confirmed the absence of a mycorrhiza-specific reduction 
in Ly. shimeji AT787 CAZYmes, found by CAZYme-targeted 
analysis as described above, by non-targeted orthologous 
analysis. In contrast, most orthologs shared by only Ly. 
Shimeji AT787 and two mycorrhizal fungi were functionally 
unannotated and did not show enrichment in specific func-
tions (Table S4).

We next searched for other genes that differ between 
mycorrhizal and saprotrophic fungi. We conducted PCA ana-
lysis of 19 dikaryon fungi, including 9 saprotrophic species, 
9 mycorrhizal reference species/strains and Ly. shimeji AT787 
(Fig. S3). However, there was no evidence of an axis reflecting 
ecology, whereas PC1 clearly reflected taxonomic differences 
(Fig. S3).

We also searched ortholog groups (orthogroups) whose 
member numbers are correlated with ecological types and 
phylogeny (Fig. S4). Although a higher concordance with 
phylogeny was observed, the correlation to ecology was 
limited and only eight orthogroups showed a high correl-
ation (correlation coefficient > 0.6 or < −0.6) with eco-
logical type (Fig. S4). In comparison, 2,778 orthogroups 
showed a high correlation with phylum (Fig. S4). Among 
orthogroups showing a high correlation with ecological type, 
an orthogroup encoding PCWDE, GH11, was absent in all 
mycorrhizal species, including two Ly. shimeji strains (Table 
S5). No other orthogroup was annotated as having any ap-
parent function related to the mycorrhizal lifestyle. Three 
genes encoding COX2, COX3, and NADH5 are usually 

Figure 2. Comparison of PCWDEs with other representative fungi numbers of PCWDEs in the genome of Ly. shimeji AT787 in comparison with other 
representative fungi that have been reported. (A) Numbers of CAZymes found in each genome. The phylogenetic tree was constructed with jointed 
sequences of 351 single-copy orthologs. GH, GT, PL, CE, AA, and CBM correspond to glycoside hydrolases, glycosyltransferases, polysaccharide lyases, 
carbohydrate esterases, auxiliary activities, and cellulose-binding motifs, respectively. Strains of Ly. shimeji are bordered in red. Asterisks after the 
species name indicate yeasts with a small number of total genes. Open and closed circles after the species name indicate mycorrhizal and saprotrophic 
references, respectively. (B) Comparison of numbers between Ly. shimeji strains, other mycorrhizal species, and saprotrophic species. Plots of Ly. 
shimeji AT787 are shown in red. Asterisks indicate significant differences (an asterisk for Welch’s T-test P < 0.05 and two asterisks for Welch’s T-test P 
< 0.01).

http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
http://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsac053#supplementary-data
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placed in the mitochondrial genome and could result from 
having mitochondrial data included in the genome dataset.

3.6. Metabolic processes for compounds related to 
taste
In addition to its primitive mycorrhizal trait, Ly. shimeji is 
also famous as an edible mushroom. We next surveyed genes 
involved with taste by comparing Ly. shimeji AT787 genes 
with genes from two of the most consumed mushroom spe-
cies (Ag. bisporus and Le. edodes) and two species that are 
non-toxic but are not generally eaten (Co. cinerea and La. 
bicolor). Previous studies showed that major compounds pro-
viding the umami taste of mushrooms are glutamate and nu-
cleotide monophosphates, such as inosinic acid and guanylic 
acid.71 We surveyed genes in the biosynthetic pathways for 
these umami molecules, but none of these genes showed a 
difference in gene numbers between consumed and non-
consumed species (Table S6). Therefore, the accumulation of 
umami molecules might be regulated by other processes such 
as gene expression or degradation. Alternatively, the prefer-
ence for edible fungi can be caused by other compounds, such 
as odorant compounds that are well-known for truffles and 
matsutake mushrooms. We also conducted an orthologous 
analysis of these fungi and found that 113 genes are shared 
between Ly. shimeji AT787 and widely consumed mushroom 
species but are not present in the primarily non-consumed spe-
cies (Fig. 3b, bordered in red). We found that 14 of these genes 
were annotated as major facilitator superfamily (or abbrevi-
ated as ‘MFS’) transporters (Table S7). This family may be a 
candidate gene family that has expanded in consumed mush-
room species. MFS transporters include sugar transporters.72 

Some MFS sugar transporters have been mentioned as being 
involved with strawberry taste via sugar accumulation.73 
Therefore, MFS transporters might affect mushroom taste.

3.7. Concluding remarks
In recent years, accumulating information on the fungal 
genome has revealed common traits of mycorrhizal genomes 
such as genome size expansion accompanied by TE prolifer-
ation and degradation of the PCWDE repertoire.23–26 The Ly. 
shimeji AT787 genome, however, did not show either of these 
genomic traits even though the organism is unquestionably 
mycorrhizal. Our results suggest that increments of genome 
size and the depletion of PCWDEs may not have been the 
initial genomic alterations during mycorrhizal evolution but, 
rather, a consequence of the mycorrhizal lifestyle.

Ly. shimeji is also a good edible mushroom, especially in 
Japan.8,9 Exceptional among mycorrhizal fungi, Ly. shimeji can 
develop basidiocarps in axenic culture and, therefore, can be 
cultivated commercially.13,27 Furthermore, research methods, 
including transformation, have also been developed.74,75 The 
genomic information is helpful for agriculture such as the es-
tablishment of adequate culture conditions based on meta-
bolic gene repertoire, exploration of genetic markers to select 
strains with beneficial traits, and application of genetic engin-
eering.76,77 The genome data reported here will aid future re-
search efforts to improve the commercial uses of Ly. shimeji.
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