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Tuberculosis (TB) treatment monitoring is paramount to clinical decision-making and the
host biomarkers appears to play a significant role. The currently available diagnostic
technology for TB detection is inadequate. Although GeneXpert detects total DNA
present in the sample regardless live or dead bacilli present in clinical samples, all
the commercial tests available thus far have low sensitivity. Humoral responses against
Mycobacterium tuberculosis (Mtb) antigens are generally low, which precludes the use
of serological tests for TB diagnosis, prognosis, and treatment monitoring. Mtb-specific
CD4+ T cells correlate with Mtb antigen/bacilli burden and hence might serve as good
biomarkers for monitoring treatment progress. Omics-based techniques are capable
of providing a more holistic picture for disease mechanisms and are more accurate
in predicting TB disease outcomes. The current review aims to discuss some of the
recent advances on TB biomarkers, particularly host biomarkers that have the potential
to diagnose and differentiate active TB and LTBI as well as their use in disease prognosis
and treatment monitoring.
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INTRODUCTION

Tuberculosis (TB) represents a major public health problem worldwide, and is transmitted
via inhalation of aerosolized droplets carrying Mycobacterium tuberculosis (Mtb). It is
estimated that approximately one-third (∼2 billion) of the global population is living
with latent TB (LTBI) (World Health Organization [WHO], 2002), of which ∼10% likely
progress to develop active TB within 2 years after initial exposure to the tubercle bacilli
(Corbett et al., 2003). The risk of reactivation of latent TB is remarkably high among
individuals infected with the human immunodeficiency virus (HIV) as well as in individuals
on long-term immunosuppressive treatment with TNF-α inhibitors (Selwyn et al., 1989;
Getahun et al., 2010; Day et al., 2018; Amelio et al., 2019). According to the latest

Frontiers in Microbiology | www.frontiersin.org 1 December 2019 | Volume 10 | Article 2789

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.02789
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2019.02789
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.02789&domain=pdf&date_stamp=2019-12-18
https://www.frontiersin.org/articles/10.3389/fmicb.2019.02789/full
http://loop.frontiersin.org/people/519938/overview
http://loop.frontiersin.org/people/98571/overview
http://loop.frontiersin.org/people/275696/overview
http://loop.frontiersin.org/people/399431/overview
http://loop.frontiersin.org/people/83660/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02789 December 18, 2019 Time: 12:54 # 2

Yong et al. Biomarkers for TB Diagnosis

WHO Global TB Report, Mtb has led to 10 million cases of
TB in 2017, and is also one of the top 10 causes of mortality
with ∼1.6 million (1.3 and 0.3 million in HIV-negative and
HIV-positive individuals, respectively) deaths in 2017, which
translates to ∼4000 deaths each day (Tiberi et al., 2018; World
Health Organization [WHO], 2018). Although universal Bacillus
Calmette-Guérin (BCG) is administered in many countries, the
vaccine is only effective against disseminated TB in children, and
it’s efficacy in adults largely remains controversial (Colditz et al.,
1994; Zwerling et al., 2011; Amelio et al., 2017).

Tuberculosis treatment monitoring is paramount to clinical
decision-making and the host biomarkers appears to play a
significant role. Patients diagnosed with TB are generally put
under a four drugs regimen (isoniazid, rifampicin, pyrazinamide,
and ethambutol) for 2 months, known as the intensive phase;
followed by 4 months maintenance phase with isoniazid and
rifampicin. In spite of 6-long-months of anti-TB therapy, some
patients however, will experience recurrence of infection and
have an increased risk of M/XDR-TB. This 6-month duration
may lead to prohibitive delay for clinical management. Exposure
of Mtb to suboptimal drug concentrations risks robust bacterial
replication and dissemination, increased rates of transmission
and development of drug resistance. WHO reported an estimated
558,000 cases of rifampicin-resistant TB in 2017, of which 82%
are infected with MDR-TB (World Health Organization [WHO],
2018). This has caused significant complications to the patients
as they are to be treated with second-line drugs for an even
longer duration (18–24 months) (World Health Organization
[WHO], 2016), despite that their survival rate was merely <50%
(World Health Organization [WHO], 2017). Hence, biomarkers
that indicate an efficacious treatment at the early therapeutic
phase as well as at the end of treatment, which predicts relapse
could enormously improve clinical prognosis.

In order to achieve global control of TB disease, development
of an effective novel vaccine (Zwerling et al., 2011) and novel
drugs with shortened treatment duration (Abu-Raddad et al.,
2009; Argun et al., 2016; Tiberi et al., 2018), as well as simpler and
more accurate diagnostic tests (Walzl et al., 2011, 2018; Goletti
et al., 2016, 2018) are of upmost importance. Hence, there is
a pressing need to develop a low cost, minimal-invasive, non-
sputum-based, highly sensitive and specific TB diagnostic test
that uses easily accessible biological specimens such as blood
and urine (Strimbu and Tavel, 2010; Nalejska et al., 2014; World
Health Organization [WHO], 2014; Ballman, 2015; Buschmann
et al., 2016; Goletti et al., 2016, 2018). Biomarkers can generally be
divided into: (i) Mtb components, (ii) antibody responses to Mtb
antigens, (iii) cellular immune responses to Mtb antigens, and (iv)
unbiased “omics” approach (i.e., transcriptomics, proteomics and
metabolomics). Here, we discussed some of the recent advances
on TB biomarkers, particularly host biomarkers that have the
potential to diagnose and differentiate active TB and LTBI as
well as their use in disease prognosis and treatment monitoring.
References for this review were identified through searches of
PubMed for articles published from January 2005 to December
2018, by use of the terms “Mtb,” “LTBI,” “diagnosis,” “biomarkers,”
“prognosis,” “monitoring,” “transcriptomics,” and “proteomics.”
Articles resulting from these searches and relevant references

cited in those articles were reviewed. Articles published in English
alone were included.

PROSPECTS OF DETECTION OF
BIOMARKERS ASSOCIATED WITH Mtb

Recent Advances in the Detection of Mtb
by Conventional Methods
It is widely accepted that the currently available diagnostic
technology for TB detection is simply inadequate (Wallis et al.,
2010). The most widely used diagnostic test to date is the
microscopic detection of acid-fast bacilli (AFB) in sputum,
which suffers from poor sensitivity ranging from 34–80% (Davies
and Pai, 2008). This is because the AFB test requires at least
10,000 bacilli/ml of sputum to produce a positive result. If the
concentration of bacilli falls below the cut-off, the chance to
produce an AFB positive result is merely <10% (World Health
Organization [WHO], 2004; Moro et al., 2010; Desikan, 2013).
Sputum culture is relatively more sensitive than sputum AFB
test but has a turnaround time of a few weeks. Furthermore,
culture of Mtb requires Biosafety Level 3 facilities (World Health
Organization [WHO], 2007), which are seldom available across
TB endemic areas.

The recently developed PCR-based technique to amplify
Mtb gene namely GeneXpert MTB/RIF represents a major
breakthrough in TB diagnostics. The test is not only easy to
operate, requiring less training for laboratory personnel, but is
also capable of “killing two birds with one stone” by detecting
Mtb and rifampicin-resistance simultaneously within 2 h (Zeka
et al., 2011; Kwak et al., 2013), thereby significantly improving the
rates of detection of Mtb. However, its use is only limited to active
pulmonary TB (PTB), and not LTBI. Besides, all the sputum-
based diagnostic methods have their own intrinsic limitations in
that they are seldom useful in the detection of extra-pulmonary
TB (EPTB) disease. Hence, the diagnosis of EPTB is reliant
on sampling of site-specific tissues as well as other biological
fluids such as pleural fluid and cerebral spinal fluid (CSF) which
often involve invasive procedures (Goletti et al., 2016). This
could be a real problem as the incidence of EPTB in some
developing countries ranges from 13% to as high as 37% (Arora
and Chopra, 2007; Gomes et al., 2014; Gaifer, 2017), and sampling
often involves invasive procedures. Therefore, the use of host
biomarkers that reflect the pathological process or host immune
responses to active TB, EPTB, and LTBI could be a better choice.

Developments in the Detection of Mtb
DNA
From the pathogen perspective, detection of Mtb product such as
Mtb DNA has been widely used as a diagnostic tool. GeneXpert
has been shown to detect Mtb in a wide variety of clinical
specimens including blood, urine, and CSF with better sensitivity
and specificity as compared to Mtb culture (Cannas et al., 2008;
da Cruz et al., 2011; Maynard-Smith et al., 2014; Theron et al.,
2014). Sputum culture conversion either using solid and liquid
media at the 2nd month post-initiation of TB therapy has long

Frontiers in Microbiology | www.frontiersin.org 2 December 2019 | Volume 10 | Article 2789

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02789 December 18, 2019 Time: 12:54 # 3

Yong et al. Biomarkers for TB Diagnosis

been used to monitor the efficacy of TB treatment, although this
method usually take weeks (World Health Organization [WHO],
2013). GeneXpert MTB/RIF offers rapid detection in this regard
and has shown good sensitivity (97%) and correlation time to
culture positivity, but suffers from poor specificity ranging from
49 to 72% (Marlowe et al., 2011; Friedrich et al., 2013). This
is in part due to GeneXpert, which is a PCR-based technique
that detects total DNA present in the sample regardless live or
dead bacilli present in clinical samples. Nonetheless, others have
shown that patients who are positive for Mtb in blood are at an
increased risk for death (Feasey et al., 2013). By using digital PCR
(dPCR), a theoretically ten-fold more sensitive technique than
real-time quantitative PCR, Li et al. developed a MTB detection
test based on the MTB insertional sequence IS6110. This novel
assay has been shown to have ∼twofold higher sensitivity than
GeneXpert MTB/RIF assay in detecting MTB among probable
and possible TB meningitis patients (Li et al., 2019).

Prospects of Detecting Miscellaneous
Components of Mtb
Other Mtb components such as the 17.5 kDa Mtb cell wall
lipoarabinomannan (LAM) has also been used to detect the
presence of Mtb in urine. However, all the commercial tests
available thus far have low sensitivity. In a meta-analysis, Minion
et al. (2011) showed that the sensitivity of urine LAM test in
seven studies is highly variable ranging from 13 to 93%. Hamasur
et al. (2015) had further improved the assay by concentrating
the LAM antigen present in urine up to 5–100 times using
immunoprecipitation method. This action has enhanced the
sensitivity of the urine LAM assay, but only restricted to HIV-TB
co-infected patients. The sensitivity of the assay among HIV-
negative TB patients remains very low (Hamasur et al., 2015).
Several possible reasons might explain the higher sensitivity
of LAM assay in HIV patients; (i) there might be a higher
Mtb load among HIV patients since they are immunodeficient
(Boehme et al., 2005; Shah et al., 2010); or (ii) there might
have been HIV-associated nephropathy among these patients
that increases the glomerular permeability resulting in higher
levels of LAM in urine (Doublier et al., 2007; Peter et al.,
2010). Nonetheless, the assay has been used to monitor anti-TB
therapy responses (Drain et al., 2015) and has also been shown
to predict the onset of TB-associated immune reconstitution
inflammatory syndrome (TB-IRIS) (Conesa-Botella et al., 2011)
and death (Gupta-Wright et al., 2016) among TB-HIV co-
infected patients.

Another Mtb secretory protein, the 30–35 kDa antigen 85
complex (Ag85A, Ag85B, and Ag85c) (Kashyap et al., 2005,
2007), early secretory antigen target-6 (ESAT-6), culture filtrate
protein-10 (CFP-10) (Kalra et al., 2010; Feng et al., 2011; Shen
et al., 2011; Zhang et al., 2015) and MPT64 (Kumar et al., 2011;
Martin et al., 2011; Arora et al., 2015) have also been evaluated
for their suitability as diagnostic reagents. The Ag85 complex
is present in the sputum of patients with PTB (Kashyap et al.,
2007) as well as in the CSF of patients with TB meningitis
(Kashyap et al., 2005); but the sensitivity is inconsistent in
various studies (Bentley-Hibbert et al., 1999; Kashyap et al., 2007).

Other secretory proteins such as ESAT-6, CFP-10, and MPT64
are facing a similar problem. In one study, Turbawaty et al.
attempted to detect the presence of all the three antigens in
urine using a cocktail of polyclonal antibodies against all the
three antigens. The authors showed that this strategy increased
the sensitivity to 90%, although the specificity remained poor at
<30% (Turbawaty et al., 2017).

PROSPECTS WITH DETECTION OF
HOST IMMUNE BIOMARKERS IN Mtb
INFECTION

Host Antibody Responses to Mtb
Antigens
Infection and immunity are the two sides of the same coin.
When an individual is infected with Mtb, the pathogen will
inevitably activate the immune response of the host leading to
changes in host biomarkers. Pathogen-specific antibodies are the
commonly used host biomarkers for pathogen diagnostics as they
are simple to perform, inexpensive and are feasible for point-of-
care. Many of the available serological tests employ either the
lateral-flow or the ELISA format. A number of Mtb antigen-
specific antibodies against PPD, antigen 60, ESAT-6, CFP-10,
lipid-derived antigens and heat shock protein have been studied
extensively (Verma and Jain, 2007). Of note, several Mtb antigens
such as ESAT-6 and CFP-10 are not present in the genome of
BCG strain, and hence detection of an immune response specific
to these antigens can distinguish between and Mtb infection
from vaccination responses (Andersen et al., 2000; Arend et al.,
2000). Unfortunately, these assays so far have displayed poor
sensitivity (ranges from 14% – 85%) and specificity (53–98.7%)
(Steingart et al., 2007, 2009, 2011; Achkar and Ziegenbalg, 2012;
Lagrange et al., 2014).

More recently, several highly antigenic MTB antigens have
been developed for diagnostics with improved sensitivity
and specificity than the classical ESAT-6- and CFP-10-based
assays such as RV0310c-E and RV1255c-E. Receiver operating
characteristic (ROC) analyses have shown that serum IgG against
both RV0310c-E and RV1255c-E antigens has better sensitivity
and specificity (AUC = 0.8 and 0.808, respectively) in diagnosing
MTB compared to ESAT-6 and CFP-10 (AUC = 0.665 and 0.623,
respectively) (Luo et al., 2017). Lopez-Ramos et al. (2018) showed
that the antibodies against MTB antigen P12037 has a sensitivity
and specificity of 92% and 91%, respectively in diagnosing active
TB when used in concert with sCD14. Other researchers have
found that antibody to MTB antigens such as proline-proline-
glutamic acid protein 17 (PPE17) (Abraham et al., 2018) and
mycobacterial DNA binding protein (MDP-1) (Maekura et al.,
2019) can differentiate between patients with LTBI and active TB.
Maekura et al. (2019) further showed that MDBP-1 may also be a
good monitoring tool as persistently elevated IgG against MDBP-
1 post anti-TB therapy could be associated with relapse after
completion of treatment. Nonetheless, studies have also found
that antibody responses against Mtb antigens are generally low
among children (Achkar and Ziegenbalg, 2012) therefore, the use
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of serological tests for TB diagnosis, prognosis, and treatment
monitoring can only be effectively used among adult patients.

One interesting study by Lu et al. on “resister,” a group of
individuals highly exposed to MTB but who tested negative
by T-cell based interferon gamma releasing assay (IGRA) and
tuberculin skin test (TST), as well as did not develop LTBI has
shed some light on TB pathogenesis. The authors found that
the “resister” possessing MTB-specific IgM and class switched
IgG; however, displayed reduced CD4-mediated IFN-γ responses
toward ESAT-6, CFP-10, Ag85A, and Ag85B. Lu et al. (2019)
also showed that the IgG of “resister” has higher avidity to MTB
antigens compared to LTBI and healthy controls and further
analysis also showed that the “resister” had significantly higher
levels of IgG1 compared to other IgG subclasses. This suggests
that the level of IgG1 could potentially be a prognosis biomarker,
and holds the key to development of novel MTB therapeutics.

Host Cytokine Responses to Mtb
Antigens – Beyond Interferon-γ
Unlike antibody responses, the cellular immune responses
against Mtb-specific antigens have shown better consistency.
In the past, the TST has been widely used to diagnose
active TB and LTBI. However, due to cross-reactivity,
the test cannot differentiate between Mtb and other non-
tuberculous mycobacterial infections as well as BCG vaccination.
Besides, the TST also suffers from poor sensitivity among
immunocompromised patients (Nahid et al., 2006; Frahm et al.,
2011). Since the last decade, the T-cell based IGRA has emerged
as the most popular tool in TB diagnostics (Ferrara et al., 2009).
IGRA measure IFN-γ production after ex vivo stimulation of
whole blood with Mtb-specific antigens such as ESAT-6 and
CFP-10 (Lalvani et al., 2001b; Mori et al., 2004). There are two
formats of IGRA assay, the ELISA-based QuantiFERON TB Gold
assay (Mori et al., 2004) and the ELISPOT-based T-SPOT assay
(Lalvani et al., 2001a). The T-SPOT assay has a higher sensitivity
compared to QuantiFERON TB Gold assay in detecting active
TB (91 and 80.2%, respectively) (Bae et al., 2016). In general,
IGRA is sensitive and more specific than TST (Pai et al., 2008).
Although IGRA is less affected by the HIV-status as compared to
TST (Mendelson, 2007; Rangaka et al., 2007), the assay appears
to perform poorly in children with advanced HIV infection
(Hormi et al., 2018); however, IGRA performed using peripheral
blood mononucleocytes (PBMC) isolated from specific sites of
TB disease such as pleural fluid, bronchioalveolar lavage (BAL)
and CSF has been found to be highly sensitive and specific (Losi
et al., 2007; Thomas et al., 2008).

Some studies suggested that IGRA response is stronger in
active TB than LTBI, and hence, allows the differentiation of the
two forms of TB disease (Janssens, 2007). However, other studies
suggested that IGRA may not be suitable for the diagnosis of
active TB and LTBI in high TB-burden regions (Sharma et al.,
2017). This may be attributed to the nature of the antigen used in
the IGRA, i.e., ESAT-6 and CFP-10 as they are secretory proteins
of MTB especially during active infection. One study by Arroyo
et al. (2018) showed that the use of latency-related antigens, i.e.,
dormancy survival regulon (DosR) and resuscitation promoting

factor (Rpf) in IGRA could be better. The DosR peptide RV2029c
and the Rpf peptide RV2389c have shown to differentiate LTBI
from active PTB with a sensitivity of 90 and 85%, respectively
(Arroyo et al., 2018).

Given the sensitivity and specificity of IGRA, the assay
has also been suggested for use as a treatment monitoring
tool (Ribeiro et al., 2009; Bocchino et al., 2010; Chee et al.,
2010). Several studies have shown that patients who are IGRA
negative on completion of anti-TB therapy experienced complete
clinical and microbiological recovery (Goletti et al., 2008; Kabeer
et al., 2011; Helmy et al., 2012). Another cohort by Kaneko
et al. (2015) showed that patients who were IGRA positive at
the end of treatment developed TB reactivation; whilst those
who were IGRA negative did not develop TB reactivation for
2 years of follow-up.

One advantage of IGRA as an ex vivo stimulation assay is that
the same assay tubes can be re-used to study other biomarkers
either by multiplex cytokine bead array or by flow cytometry
to obtain “biosignature” that may differentiate between different
stage of TB disease (Chegou et al., 2009). One biomarker at the
downstream of IFN-γ, i.e., IP-10 has shown to be of good use as a
biomarker. Elevation of plasma level of IP-10 in un-stimulated
tubes has been associated with active TB (Azzurri et al., 2005;
Whittaker et al., 2008; Lighter et al., 2009; Novel et al., 2013;
Petrone et al., 2015). IP-10 not only is as sensitive as IFN-γ
(Kabeer et al., 2011) in blood but also offer several additional
advantages. For instance, detection of IP-10 in the urine of
children (Petrone et al., 2015) and adults (Darrah et al., 2007)
with active TB makes sample collection easier. Further, unlike
IFN-γ, IP-10 is less affected by HIV status; making it a robust
biomarker to be used in ex vivo stimulation assays (Ruhwald et al.,
2008; Goletti et al., 2010a,b; Kabeer et al., 2011).

Several studies have been conducted using multiplex cytokine
bead array on plasma with or without ex vivo stimulation
to differentiate active TB and LTBI. These studies employ
a combination of 5–15 biomarkers in their analysis whose
sensitivity ranges from 82.3 to 96.7% (Mihret et al., 2013; Won
et al., 2017; La Manna et al., 2018). Despite the combination
of biomarkers used by different studies, IFN-γ and IP-10
are the most common biomarkers used in these studies.
Besides, other studies have shown that the ratio of IFN-γ
and IL-10 (Sai Priya et al., 2010), ratio of IL-2 and IFN-
γ (Wu et al., 2017), IL-8, IP-10, MIP-1α, sIL-2Rα, vascular
endothelial growth factor (VEGF), MCP-3 (Yao et al., 2017;
Hoel et al., 2019) as well as soluble markers to TLR-4 pathway
such i.e., sCD14, MD-2, and LPS (Feruglio et al., 2013)
can distinguish between active TB and LTBI and can also
correlate with treatment success. By screening 38 cytokines,
Luo et al. (2019) found that by using a combination of
three cytokines, i.e., eotaxin, CCL22 and MCP-1, they were
able to discriminate LTBI from active TB with a sensitivity
and specificity of 87.8 and 91.8%, respectively (AUC = 0.94).
Other plasma markers that associated with treatment success
(measured as time to sputum conversion) include IL-6, MCP-
1 (Djoba Siawaya et al., 2009), VEGF (Riou et al., 2012),
hemeoxygenase-1 (HO-1), matrix metalloproteinases (MMP)
(Andrade et al., 2013), serum amyloid, proteasome activation
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complex subunit-1, IL-11 receptor antagonist, and 2-antiplasmin
(Nahid et al., 2014). However, further studies are required to
evaluate and validate these markers.

Host Cellular Immune Responses to Mtb
Antigens
Flow cytometry is a powerful technique used to analyze
the characteristics of individual cells within heterogeneous
populations. In principle, following Mtb antigen exposure, CD4+
and CD8+ T cells undergo several stages of differentiation
from naïve T-cells (TN) progressing to central memory (TCM),
effector memory (TEM) and finally to terminally differentiated
T cells (TEMRA) (Harari et al., 2011; Rovina et al., 2013);
and the more antigenic exposure (in quantity, antigenicity,
and duration) of T cells the more advance the cellular
differentiation. Based on this principle, several efforts have
been made to characterize the functional signature of T cells
(i.e., the combination of subsets and their cytokine production)
that associated with stages of TB disease. CD69 is a co-
stimulatory receptor and an early activation marker (Borrego
et al., 1999; Yong et al., 2017) and increased levels of
CD4+CD69+IFN-γ+ T cells is associated with early active TB
or recent TB infection (Nikolova et al., 2013). Similarly, the
frequency of CD137, a co-stimulatory molecule responsible
to sustain effective activation, proliferation and survival of
T-cells has also been shown to be associated with active TB
(Yan et al., 2017).

A study done by Millington et al. (2007) reported that
the polyfunctional CD4+ IFN-γ+IL-2+TNF-α+ T cells are
predominantly seen in patients with active TB as compared
to CD4+IL-2+IFN-γ+ T cells and CD4+IFN-γ+ only in LTBI.
More detail studies found that the non-active form of TB
response including LTBI or BCG vaccination and treated
TB are associated with predominant CD4+IFN-γ+IL-2+ TEM
and CD4+IL-2+ TCM; whilst active TB is associated with
predominantly CD4+IFN-γ+ TEMRA cells (Sutherland et al.,
2009; Caccamo et al., 2010; Casey et al., 2010; Sester et al., 2011).
By using CD38, an immune activation marker and CD27, a
maturation marker, Ahmed et al. (2018) showed that active TB
was associated with increased frequency of CD38 + CD27low;
whilst LTBI was associated with CD38-CD27high. Another study
showed that LTBI is associated mostly with polyfunctional
CD4+ T cells expressing IFN-γ, IL-2, and TNF-α and in
combination; whilst active TB is predominated with CD4+ T
cells expressing only TNF-α, and not IFN-γ as measured by
IGRA (Harari et al., 2011). CD27, a member of TNF-α receptor
superfamily was found to be useful in differentiating active TB
and LTBI. Streitz et al. (2007) showed that active TB patients
had significantly higher CD4+CD27+ T cells as compared to
BCG vaccinees and patients with LTBI had an intermediate
level of CD4+CD27+ T-cells. Other studies found that CD27
(Adekambi et al., 2012; Nikitina et al., 2012; Petruccioli et al.,
2013, 2015; Portevin et al., 2014) and Mtb-specific CD4+ T cells
(Adekambi et al., 2012; Nikolova et al., 2013) correlate with Mtb
antigen/bacilli burden and hence might serve as good biomarkers
for monitoring treatment progress. Other subpopulations of T

cells such as IL-10 + Th17 T cells were found to be significantly
higher among LTBI; whilst IFN-γ + Th17 was significantly
higher in active TB when stimulated with DosR (Rakshit et al.,
2017). Besides T-cells, dendritic cells, especially the percentage
of BDCA3 + mDC and CD123 + pDCs were significantly
reduced in patients with active TB; while the same subtypes were
found to be significantly activated among patients with LTBI
(Parlato et al., 2018).

Several other surface markers including the immune
activation marker CD38 and HLA-DR, the proliferation marker
Ki-67 (Adekambi et al., 2012) as well as the percentage of
myeloid-derived suppressor cells (MDSCs) (El Daker et al.,
2015) have also been suggested as biomarkers to monitor
treatment efficacy. The expression of immune activation
markers such as CD38 and HLA-DR on T cells was significantly
reduced by week 9 after initiation of the anti-TB therapy.
The slope of decline in the expression of these markers
was correlated with the time of stable culture conversion
(Ahmed et al., 2018). Study also showed that individuals had
a substantial amount of TEM at the sixth month of anti-TB
therapy suggesting that persistence of live Mtb may lead to
relapse; while individuals who retained only TCM may hint
complete clearance of Mtb (Goletti et al., 2006; Butera et al.,
2009; Millington et al., 2010; Wang et al., 2010; Pollock et al.,
2013; Chiacchio et al., 2014; Petruccioli et al., 2015). Similarly,
follow up on the anti-TB treatment showed that patients
who had significant reduction in TB load showed a shift
from CD4+IFN-γ+ TEMRA cells to CD4+IFN-γ+IL-2+ TEM
(Caccamo et al., 2010). In a longitudinal prospective study
on active TB on anti-TB therapy, Ferrian et al. studied the
association between Tregs and treatment efficacy. By using
cut-off point at day 71 after initiation of anti-TB therapy, the
authors classified the patients into two groups: (i) those who
achieved stable sputum culture conversion faster than day 71
as rapid responders, and (ii) those achieved stable sputum
culture conversion later than day 71 as slow responders. The
authors found that the frequencies of Treg was significantly
higher in slow responders and could predict time to stable
culture conversion with the sensitivity of 81% and specificity of
85% (AUC = 0.87).

PROSPECTS OF BIOMARKERS BY
UNBIASED “OMICS” APPROACH

Omics approach, i.e., genomic, transcriptomic, proteomic and
metabolomics is a high throughput method that allows thousands
of biomarkers of multi-dimension, to be unbiasedly acquired in
one step (Kell and Oliver, 2004). While genomics provide an
overview of genetic instruction provide by DNA, transcriptomics
would investigate the gene expression patterns, proteomics the
dynamic of protein products, and metabolomics the interactions
and understanding of the entire metabolism of an individual in
a disease setting. These “omics” approaches have been used not
only in TB diagnosis, monitoring treatment efficacy, predicting
treatment outcomes, but also used to improve understanding the
pathogenesis of TB disease.
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One genomic study has investigated SP110, a gene encoded
for IFN-induced nuclear protein in a large cohort of patients
including 301 active TB, 68 LTBI and 278 healthy controls. From
the 5 index SNPs, i.e., rs7580900, r7580912, rd9061, rs11556887,
and rs2241525, the study identified that rs9061 was significantly
associated with increased susceptibility to LTBI (Chang et al.,
2018). Further investigations indicated that individuals bearing
this SNP had decreased levels of plasma TNF-α (Leu et al., 2018).

One transcriptomic study identified a profile of 393-
transcripts signatures in whole-blood characterizing active TB;
and 86-transcript signature that distinguishes TB from other
infections. Through modular and pathway enrichment analysis
the study revealed that active TB was predominated with
neutrophil-driven interferon-inducible genes, consisting of both
IFN-γ and type I IFN-αβ signaling (Berry et al., 2010). These
findings have been further validated by several independent
cohorts (Lesho et al., 2011; Maertzdorf et al., 2011a,b; Ottenhoff
et al., 2012; Bloom et al., 2013; Kaforou et al., 2013; Walter et al.,
2015) and the profile of transcript signatures decreased after
the initiation of treatment (Ottenhoff, 2009; Bloom et al., 2013;
Cliff et al., 2016). Moreover, Anderson et al. (2014) also showed
that the transcription profile was able to distinguish between
active TB and LTBI.

The cytotoxic cell gene transcripts may also be used for
end treatment assessment to predict TB relapse (Joosten et al.,
2012; Cliff et al., 2016). Maertzdorf et al. (2011b) found
that the high-affinity IgG Fc receptor IB (FcγRIB) along
with other four different transcripts are differentially expressed
among between active TB and LTBI. Other transcripts such
as lactotransferrin, CD64 (also known as FcγR1A) also can
discriminate active TB from LTBI (Sutherland et al., 2014).
Another study by Lee et al. (2016) found that genes related to
innate immune responses are highly expressed among patients
with active TB; whilst genes related to apoptosis and natural killer
(NK) cell activation are predominantly expressed in patients
with LTBI. RAS and RAB interactor 3 (RIN3) also could
discriminate between active TB, LTBI, and recurrent infection
(Mistry et al., 2007).

In the pass, the transcriptomic studies have mainly studied
the profiling of mRNA expression, but more recently, there
has been a growing interest on the non-coding region of
mRNA. Although these non-coding RNA does not encode
for any protein, they do possess certain regulatory functions
and hence may be altered by different stages of TB disease.
By comparing the micro RNA (miRNA) profile of children
infected with TB, adult patients with active PTB, active
EPTB, TB/HIV co-infection as well as LTBI, Miotto et al.
(2013) managed to identify a set of 15 miRNA signature
that was common for TB infection with a sensitivity and
specificity of 82 and 77%, respectively. Another study by Fu
et al. has looked into the circular RNA (circRNA) and their
association with TB disease. circRNA is a recently discovered,
endogenous, covalently closed without free 3′- and 5′-end
non-coding RNA. Being a covalently closed circular RNA,
it is highly resistant to RNase degradation and hence are
abundant and long-lasting in cells. The authors found that
there were 171 deregulated circRNA in TB infection where

circRNA_103017, circRNA_059914, circRNA_101128 were most
profoundly elevated whilst circRNA_062400 was decreased. This
circRNA signature could potentially be a useful marker for TB
(Fu et al., 2019). Chakrabarty et al. (2019) also identified several
miRNA including 2 from human, i.e., hsa-miR-146a-5p and
hsa-miR-125b-5p and one miRNA from MTB, i.e., MTB-miR5
that increased among patients with active TB. miRNA has also
been used to differentiate LTBI from active TB. By studying 250
miRNAs, Lyu et al. (2019) also identified the patterns where
the hsa-let-7e-5p, hsa-let-7d-5p, hsa-miR-450a-5p, and has-miR-
140-5p were differentially expressed among patients with LTBI;
whilst hsa-miR-1246, hsa-miR-2110, hsa-miR-370-3p, hsa-miR-
28-3p, hsa-miR-193b-5p were associated differentially expressed
among patients with active TB.

Besides, by using proteomic microarray method, Hai
et al. screened 4262 MTB antigens and found that IgG
toward 152 Mtb antigens were differentially elevated among
patients with active TB when compared to patients with
LTBI. Further analysis showed that RV2031c, RV1408
and RV2421c were able to discriminate between active
TB and LTBI (Cao et al., 2018). By studying 1011 host
serum biomarkers, Liu et al. found that 153 protein were
significantly elevated among patients with severe TB. These
included α-1-acid glycoprotein 2 (ORM2), IL-36α, s100
calcium-binding protein (S100-A9), and superoxide dismutase
(SOD) (Liu et al., 2018). Aiming to improve understanding
on TB progression, Duffy et al. investigated a cohort of
household contacts of TB index cases HHCs and non-
human primate challenge model. By combining both blood
transcriptomic, serum metabolomics and pathway analysis,
the authors identified a novel immunemetabolic signature
involving cortisol, tryptophan, glutathione and tRNA acylation
that associated with the progression of latent to active TB
(Duffy et al., 2019).

Summary of each biomarkers and their applications are given
in Table 1.

FUTURE DEVELOPMENTS AND
CONCLUSION

As omics approach is capable to provide a more holistic
picture for the disease mechanisms and hence more accurate
in predicting disease outcomes (Clarke et al., 2008; Heidecker
et al., 2008; Gesthalter et al., 2015; Jong et al., 2016;
Kohonen et al., 2017; Lowe et al., 2017). Based on the
omics profile, new hypotheses will be generated for further
examination. There have already been a few successful cases
in the search for TB biomarkers (Weiner et al., 2012;
Kaforou et al., 2013; Goletti et al., 2016; Maertzdorf et al.,
2014, 2016; Weiner and Kaufmann, 2017) and the number
of study is still increasing. It is also worthwhile to point
out that Mtb-specific immune responses are probably not
homogenous in human populations and might be influenced
by HIV-1 co-infection, heredity and several other exogenous
environmental factors [183–185]. State-of-the-art data mining
tools including supervised and unsupervised learning as
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TABLE 1 | Biomarkers for diagnosis, prognosis, and monitoring of MTB infection.

Biomarker Specimen Application Remark

Sputum Body
fluids

CSF Blood/
serum/
plasma

PBMC Mtb
diagnosis

Distinguish
active TB
vs. LTBI

Monitoring Predict
relapse
/worsen/
progress

Predict
treatment
success

Microbiology
technique

AFB staining • • • • • • – Rapid, convenient and inexpensive
test

– Non-specific, must accompanied
with confirmation tests

– Limited sensitivity; required at least
5000 AFB/mL to be detected

– High false negative rate

Mtb culture • • • • • • – Long turnaround time (3–8 weeks)

– Required biosafety level three
facilities to handle Mtb culture

Detection of
Mtb
components

Mtb DNA
detection
(GeneEpert)

• • • • • • – Rapid, diagnosis, and detection of
drug resistant Mtb

– Low sensitivity (49–72%)

– Patient positive with Mtb in blood
assoc. with increased risk of death

Mtb antigens
• LAM

• • • – Low sensitivity (13–93%)

– Use to monitor anti-TB response in
TB-HIV

– co-infected patients

– Predict TB-IRIS and death among
TB-HIV co-infected patients

Mtb antigens
• Ag 85 complex,
ESAT-6, CFP-10,
MPT64

• • • • – Sensitivity is in consistent Poor
specificity

Digital PCR
(dPCR)

• • – Supreme sensitivity then
conventional qPCR

– Twofold higher sensitivity than
GeneXpert in detecting MTB
among probable/possible TB
meningitis

– The study uses CSF, but can be
apply for sputum, serum/plasma
and other body fluid

(Continued)
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TABLE 1 | Continued

Biomarker Specimen Application Remark

Sputum Body
fluids

CSF Blood/
serum/
plasma

PBMC Mtb
diagnosis

Distinguish
active TB
vs. LTBI

Monitoring Predict
relapse
/worsen/
progress

Predict
treatment
success

Host antibodies
responses
against ex-vivo
stimulation of
Mtb Ags

PPD, Ag60,
ESAT-6, CFP-10

• • – Poor sensitivity (14–85%); poor
specificity (53–98%)

– Antibody response usually very low
among children

RV0310c-E • • – Better sensitivity than ESAT-6
and CFP-10RV1255c-E

P12037 • • – Sensitivity = 92%, specificity = 91%

PPE17 • • • • – More antigenic antigen than ESAt-6
and CFP-10MDP-1

RV2031c,
RV1408,
RV2421c

• • • – IgG against these three Ags were
initial identified by screening done
by proteomics

Host cytokines
responses
against ex-vivo
stimulation of
MTB Ags

Tuberculin skin
test (TST)

– – – – – • • • – Poor sensitivity among
HIV/immunocompromised patients

Ag: ESAT-6,
CFP-10 IFN-γ
(IGRA)

• • • • • – T-SPOT sensitivity (91.2%);
QuantiFERON sensitivity (80.2%)

– More specific than TST

– Less affected by HIV-status
compared to TST

– Predict TB-reactivation within
2 years

– Associated with complete clinical
and microbiological recovery

Ag: ESAT-6,
CFP-10 IP-10

• • • – High IP-10 in unstimulated tube
associated with active TB

– Less affected by HIV status

(Continued)
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TABLE 1 | Continued

Biomarker Specimen Application Remark

Sputum Body
fluids

CSF Blood/
serum/
plasma

PBMC Mtb
diagnosis

Distinguish
active TB
vs. LTBI

Monitoring Predict
relapse
/worsen/
progress

Predict
treatment
success

Ag: ESAT-6,
CFP-10 sCD14,
MD-2, LPS

• • • • – Distinguish between active-TB and
LTBI

– Levels correlated with treatment
success

Ag: ESAT-6,
CFP-10 IL-8,
MIP-1a, sIL-2Ra,
VEGF, MCP-3

• • •

Ag: ESAT-6,
CFP-10 IL-6,
MCP-1, VEGF,
HO-1, MMP,
IL-11R
antagonist,
2-antiplasmin

• •

Host cytokines
responses
against ex-vivo
stimulation of
MTB Ags

Ag: ESAT-6,
CFP-10 ratio of
IL-2/IFN-γ

• • •

Ag: ESAT-6,
CFP-10 eotaxin,
CCL22, MCP-1

• • • – When used in combination, the
sensitivity = 87.8% and
specificity = 91.8%

Ag: DosR,
RV2029c, Rpf,
RV2389c IFN-γ
(IGRA)

• • • • – Both DosR and Rpf are antigen
expressed during latent infection

– When used in combination, the
sensitivity = 90% and
specificity = 85%

Host cellular
immune
responses
against ex-vivo
stimulation
of Mtb antigens

CD4+CD69+ IFN-
γ+

• • • – Associate with early or recent
Tb-infection

CD4 + IFN-
γ + IL-2 + TEM

• • • – Associated with LTBI

(Continued)
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TABLE 1 | Continued

Biomarker Specimen Application Remark

Sputum Body
fluids

CSF Blood/
serum/
plasma

PBMC Mtb
diagnosis

Distinguish
active TB
vs. LTBI

Monitoring Predict
relapse
/worsen/
progress

Predict
treatment
success

CD4 + IL-
2 + TCM

• • • – Associated with LTBI

CD4 + IFN-
γ + TEMRA

• • • • – Associated with active TB-infection

– Shift of functional signature from
CD4 + IFN-γ + TEMRA

to CD4 + IFN-γ + IL-2 + TEM after
completion of ATT indicate
successful treatment

CD4 + IFN-
γ + IL-2 + TNF-
α+

• • • • – Associated with active TB-infection

CD4 + IFN-
γ + IL-2+

• • • • – Associated with active LTBI

CD4 + IFN-γ+ • • • • – Associated with active LTBI

– Shift of functional signature
from CD4 + IFN-γ + TNF-
α + to CD4 + IFN-γ + IL-2 + or
CD4 + IFN-γ + after completion of
ATT indicate successful treatment

TEM TCM • • • – High TEM at sixth months of ATT
assoc. with TB reactivation

– High TCM at sixth months of ATT
assoc. with complete clearance of
TB

CD4 + CD27+ • • • – Differentiate between active TB and
LTBI

– High CD4 + CD27 + associated
with active TB

– Intermediate CD4 + CD27+
associated with LTBI

CD137 + T-cells • • – Is a member of TNF receptor
superfamily

Associated with active TB

IL-10 + Th17 • • • – Associated with LTBI, when
stimulated with DosR

(Continued)
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TABLE 1 | Continued

Biomarker Specimen Application Remark

Sputum Body
fluids

CSF Blood/
serum/
plasma

PBMC Mtb
diagnosis

Distinguish
active TB
vs. LTBI

Monitoring Predict
relapse
/worsen/
progress

Predict
treatment
success

IFN-γ + Th17 • • • – Associated with active TB, when
stimulated with DosR

%BDCA3 + mDC • • • – Reduction in% indicated active TB
infection

%CD123 + pDC
MFI
BDCA3 + mDC

• • • – Increase activation markers in these
subsets indicated LTBI

MFI
CD123 + pDC

CD38, HLA-DR • • • – Used for monitoring of time to
culture conversion after initiation of
anti-TB therapy

– Slope of reduction in CD38 and
HLA-DR correlated with time to
culture conversion

Treg • • • – Low% of Treg found among rapid
responder

– Percentage of Treg inversely
correlated with time to culture
conversion

Genomics,
transcriptomic,
proteomics,
and
metabolomics

• Neutrophil
derived IFN-γ,
IFN-α and β

• • • – Further validations required

• FcγR1B • • • – Further validations required

• Lacto transferrin
CD64, RIN3

• • • – Further validations required

circRNA
_103017,
_059914,
_101128,
_062400

• • • – Covalently closed circular RNA,
highly resistant to RNase, hence
presence in abundance in
cytoplasm

– Increase in these three circRNAs is
associated with LTBI

– Decreased in this circRNA is
associated with active TB infection

host miRNA • • • – Increase in these miRNA is
associated with active TB infection_hsa-miR-146a-

5p

(Continued)
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TABLE 1 | Continued

Biomarker Specimen Application Remark

Sputum Body
fluids

CSF Blood/
serum/
plasma

PBMC Mtb
diagnosis

Distinguish
active TB
vs. LTBI

Monitoring Predict
relapse
/worsen/
progress

Predict
treatment
success

_hsa-miR-125b-
5p

MTB miRNA

_MTB-miR5 • • •

Host miRNA • • • – Elevation of these miRNA were
associated with LTBI_hsa-let-7e-5p

_hsa-let-7d-5p

_hsa-miR-450a-
5p

_hsa-miR-140-5p

Host miRNA • • • – Elevation of these miRNA were

_hsa-miR-1246

_ hsa-miR-2110 – associated with active TB infection_
hsa-miR-370-3p

_ hsa-miR-28-3p

_ hsa-miR-193b-
5p

Host
proteomics

• • • – Elevation of these plasma markers
were associated with severe TB
infectionORM2, IL-36α,

S1000-A9, SOD

Host
metabolomics
• Cortisol,

tryptophan,
glutathione, tRNA
acylation

• • – Predict progression from LTBI to
active TB (applicable to host hold
contact of TB infected individual)

Host genomics
• SNP of SP110

gene (rs9061)

• • – SP100 gene encoding for IFN
induced nuclear protein

– Individual bearing this SNP was
associated lower plasma level of
TNF and increase susceptibility to
LTBI
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well as new algorithms must be designed to handle such big data.
Further, since the number of variables in omics studies is usually
way larger than the sample size, the statistical power for detecting
a few suitable biomarkers will inevitably decrease profoundly.
Given that high investment is required for omics studies, which
obviously may be impractical for developing countries, the well-
validated omics markers should be applied for simple and rapid
point-of-care tests.
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