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The oropharyngeal microbiome, the collective genomes of the community 

of microorganisms that colonizes the upper respiratory tract, is thought to 

influence the clinical course of infection by respiratory viruses, including Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent 

of Coronavirus Infectious Disease 2019 (COVID-19). In this study, we examined 

the oropharyngeal microbiome of suspected COVID-19 patients presenting to 

the Emergency Department and an inpatient COVID-19 unit with symptoms 

of acute COVID-19. Of 115 initially enrolled patients, 50 had positive molecular 

testing for COVID-19+ and had symptom duration of 14 days or less. These 

patients were analyzed further as progression of disease could most likely 

be attributed to acute COVID-19 and less likely a secondary process. Of these, 

38 (76%) went on to require some form of supplemental oxygen support. 

To identify functional patterns associated with respiratory illness requiring 

respiratory support, we applied an interpretable random forest classification 

machine learning pipeline to shotgun metagenomic sequencing data and 

select clinical covariates. When combined with clinical factors, both species 

and metabolic pathways abundance-based models were found to be highly 

predictive of the need for respiratory support (F1-score 0.857 for microbes 

and 0.821 for functional pathways). To determine biologically meaningful 

and highly predictive signals in the microbiome, we applied the Stable and 

Interpretable RUle Set to the output of the models. This analysis revealed that 

low abundance of two commensal organisms, Prevotella salivae or Veillonella 

infantium (< 4.2 and 1.7% respectively), and a low abundance of a pathway 

associated with LPS biosynthesis (< 0.1%) were highly predictive of developing 

the need for acute respiratory support (82 and 91.4% respectively). These 

findings suggest that the composition of the oropharyngeal microbiome in 
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COVID-19 patients may play a role in determining who will suffer from severe 

disease manifestations.

KEYWORDS

oropharyngeal microbiome, COVID-19, SARS-CoV-2, random forest classification, 
commensal organisms, Prevotella, LPS biosynthesis

Introduction

COVID-19, caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), has sickened an estimated 605 
million people and caused 6.5 million deaths, likely an undercount, 
since the start of the pandemic, of those nearly 95 million cases 
and in excess of one million deaths in have been in the 
United States alone (Dong et al., 2020). A distinct feature of this 
disease that has presented unique challenges for the healthcare 
community is the variability of disease symptoms and clinical 
course in patients. Some individuals develop severe disease and 
death rapidly while others present with only mild or no symptoms 
(Bai et al., 2020). Additionally, some patients go on to develop 
persistent symptoms that last beyond 12 weeks, known as post-
acute or long COVID (Nalbandian et al., 2021) with or without 
severe illness during initial infection (Crook et al., 2021). While 
certain clinical co-factors, such as age, Body Mass Index (BMI), 
and medical comorbidities, in combination with initial vital signs, 
and clinical laboratory testing, are currently being used to predict 
clinical decompensation and the need for ICU level of care 
(Haimovich et al., 2020; Gallo Marin et al., 2021), these clinical 
variables do not shed light on the exact pathophysiologic 
mechanisms leading to acute respiratory illness or severe disease 
outcomes. There are likely other individual factors that determine 
how a patient responds to SARS-CoV-2 and which may play a role 
in determining the various disease manifestations of COVID-19 
(Beck and Aksentijevich, 2020).

Evidence is emerging that the microbiome can influence 
clinical disease in COVID-19. Dysbiosis in both the gut and oral 
microbiomes have been associated with disease symptoms or 
severity (Bao et al., 2020; Ren et al., 2021; Yeoh et al., 2021; Zuo 
et al., 2021). The oropharyngeal microbiome has been suggested 
to impact symptoms in COVID-19 and influence inflammation 
within the oral cavity (Soffritti et al., 2021). Specific dysbiotic oral 
microbiota have been associated with biomarkers of inflammation 
in COVID-19 patients (Iebba et al., 2021, Cui et al., 2022). Adding 
to this evidence, our group recently discovered associations 
between the oral microbiome and long COVID. Specifically, 
higher abundances of certain pro-inflammatory and 
lipopolysaccharide producing microbiota and lower abundances 
of genes for anti-inflammatory metabolic pathways were linked to 
developing long COVID, likely through promotion of a systemic 
inflammatory state in certain patients (Haran et  al., 2021a). 
Complex interactions between microbiome-host axes (e.g., oral 

– lung – aspiration axis, oral/gut – systemic axis, gut – brain axis, 
etc.) may help explain some of the variability in host immune 
responses in COVID-19.

The oropharyngeal and nasopharyngeal microbiomes, the 
collective genomes of microorganisms that colonize the human 
upper airway, have been hypothesized to influence host immune 
responses to respiratory viral and bacterial infections (Man et al., 
2017). Viral co-infection in the upper airway and lungs may 
promote bacterial pathogens by mechanisms such as liberating 
nutrients, exposing adhesion molecules, induction or 
enhancement of bacterial virulence gene expression, and priming 
of host environment and immune responses to become more 
susceptible to infection (Avadhanula et al., 2006; Mccullers, 2014; 
Li et al., 2015; Bakaletz, 2017), leading to more severe disease and 
secondary or polymicrobial bacterial infection. Conversely, 
commensal bacterial species of the nasopharynx can modulate the 
immune response to influenza virus infection in a potentially 
protective way (Abt et al., 2012; Short et al., 2014). Upon initial 
infection, SARS-CoV-2, would most likely first encounter the 
nasopharyngeal and oropharyngeal microbiota, where similar 
microbiome-host immune system interactions may influence the 
course of disease. Just as specific signatures of the oral microbiome 
were predictive of a post-acute COVID disease manifestation in 
our recent work and other aspects of COVID-19 associated 
sequelae in work by others, we predict that specific patterns in the 
oropharyngeal microbiome may also be  associated with acute 
phase disease outcomes, specifically the development of severe 
acute respiratory illness.

Here, we hypothesize that the makeup of the oropharyngeal 
microbiome, including the presence and relative abundance of 
microbial species as well as metabolic gene content, collected at 
admission may be predictive of the clinical trajectory of acute 
respiratory illness in COVID-19, specifically in terms of the need 
for receiving respiratory support (ranging from supplemental 
oxygen by nasal cannula to intubation). To test this hypothesis, 
we  investigated the oropharyngeal microbiome of individuals 
presenting with symptoms suggestive of COVID-19 and positive 
molecular testing for SARS-CoV-2. We used machine learning-
based modeling to examine associations between the microbial 
residents of the oral cavity and a manifestation of severe COVID-
19, specifically, the need for respiratory support. To extract easily 
interpretable predictive rules from the machine learning model, 
we then implemented a rule-based classification algorithm. These 
rules utilize the measured abundance of specific bacterial species 
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and metabolic pathways identified by our machine learning 
models to give insight into how specific features of the 
oropharyngeal microbiome impact the clinical course of COVID-
19, specifically with respect to why some patients need respiratory 
support during initial SARS-CoV-2 infection. Our findings 
further strengthen the links between microbiomes of the upper 
airways and COVID-19 disease manifestations.

Materials and methods

Enrollment

Patients presenting with COVID-19 symptoms at the UMass 
Memorial Medical Center Emergency Department or while 
admitted to UMass Memorial COVID-19 treatment units were 
approached for enrollment in the study. Some individuals had 
known COVID-19 status when approached on inpatient 
COVID-19 wards, but the majority were approached in the 
Emergency Department prior to receiving results of molecular 
tests for SARS-CoV-2. Enrollment and sample collection took 
place April 2020 through March 2021, before vaccines were widely 
available, and no subjects had been vaccinated against COVID-19. 
Enrolled patients were followed prospectively through the 
Electronic Medical Record (EMR). We collected information on 
disease outcomes of COVID-19 for their initial visit including 
need for respiratory support, the results of all laboratory testing, 
and mortality via the EMR.

Classification of samples

Oropharyngeal samples were classified as being collected from 
a patient with acute COVID-19 (COVID+) if they had a 
documented positive rtPCR testing for SARS-CoV-2 and self-
reported symptoms for 14 days or less. The need for respiratory 
support was classified as positive if the patient required any 
intervention to support breathing. This included supplemental 
oxygen via nasal cannula or face mask, non-invasive positive 
pressure ventilation, or intubation. If a patient had a Do Not 
Intubate (DNI) order but died of COVID-19 symptoms, 
we considered that patient has having respiratory failure severe 
enough to require intubation and classified the sample as being 
from a patient who was intubated. Patients were considered as 
having in-hospital mortality from COVID-19 if this was listed as 
a cause of death on hospital death records.

Sample collection and processing

Oropharyngeal samples were collected using 
OMNIgene•ORAL collection kits (OMR-120, DNA Genotek). 
Briefly, the posterior oropharynx was swabbed for 30 s and 
collected as per manufacturer protocol. Samples were heated at 

65–70°C for 1 h (Rabenau et al., 2005) to ensure SARS-CoV-2 
inactivation and then stored frozen at −20°C. Upon thawing for 
nucleic acid extraction, samples were treated with 5ul Proteinase 
K (P8107S, New England Biolabs) for 2 h at 50°C, then extracted 
manually by laboratory staff using ZymoBIOMICS DNA/RNA 
Miniprep Kits (R2002, Zymo Research) as per manufacture 
protocol in a dedicated lab space within a biosafety cabinet 
separate from library preparation areas. DNA sequencing libraries 
were constructed using the Nextera XT DNA Library Prep Kit 
(FC-131-1,096, Illumina) and sequenced on a NextSeq  500 
Sequencing System as 2 × 150 nucleotide paired-end reads.

Sequence processing and analysis

Shotgun metagenomic reads were first trimmed and quality 
filtered to remove sequencing adapters and host contamination 
using Trimmomatic (Bolger et al., 2014) and Bowtie2 (Langmead 
and Salzberg, 2012), respectively, as part of the KneadData 
pipeline version 0.7.2.1 As in our previous work (Haran et al., 
2018, 2019b), reads were then profiled for microbial taxonomic 
abundances and metabolic pathways using Metaphlan3 and 
HUMAnN3, respectively (Truong et  al., 2015; Beghini et  al., 
2021). Samples with very low bacterial diversity (< 4 individual 
species detected) were discarded as these swabs contained very 
few bacterial reads.

Microbiome-clinical factors modeling

To determine the association between microbial species 
abundance and COVID-19 diagnosis, we  performed a 
non-parametric Wilcoxon Rank Sum test for species with at least 
5% prevalence and a minimal average relative abundance of 0.01% 
across all samples (n = 115; 74 COVID-19+ and 41 COVID-19–) 
with the Bonferroni correction for multiple comparisons.

To identify oropharyngeal microbes and clinical covariates 
that are predictive of needing respiratory support in acute 
COVID-19+ patients and compare their relative contributions, 
we developed and ran a random forest classification (RFC)-based 
pipeline in R. For each subset of data, the pipeline was run six 
times from six different random seeds, and statistics for the 
model’s classification performance and variables contribution to 
class discrimination were calculated for each seed. The first step 
of the pipeline is a leave-one-out cross-validation split of the data. 
Leave-one-out cross-validation is a model validation scheme in 
which a data set of n observations is split into a training and test 
set where all but one observation is part of the training set; thus 
one observation is left out. The training set, with n-1 observations, 
is used to build and train a model. The resulting model is then 

1 https://huttenhower.sph.harvard.edu/kneaddata/
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used to predict the left-out test observations and calculate 
performance statistics. This process is repeated n times.

In our pipeline, the training set resulting from each leave-
one-out cross-validation fold was used for the following steps of 
the pipeline. Feature selection using Boruta (Kursa and Rudnicki, 
2010) was run in a leave-one-out cross-validation scheme to select 
a subset of variables that are discriminatory. The Boruta-selected 
variables were then used to train a RFC model, using the ranger 
package (Wright and Ziegler, 2017). The resulting RFC model was 
then used to predict the left-out sample and calculate permutated 
variable importance. Thus, the performance of our model is 
calculated based on the aggregated predictions of left-out data. 
Using the features of the top performing data subsets and models, 
we applied Stable and Interpretable RUle Set (SIRUS; Bénard et al., 
2021) to extract a list of rules informative of and highly predictive 
of respiratory support. Rules are displayed on the top of violin 
plots depicting the feature described by each rule. Plots were 
generated in R using the ggplot2 package (Wickham, 2016) and 
color palettes from the calecopal package.2 Conceptual figures 
were generated with the aid of BioRender.com.

Results

Patients requiring respiratory support 
were similar to those who did not

We prospectively collected oral microbiome samples from 115 
patients, 50 of whom ultimately tested positive for COVID-19 and 
had been experiencing symptoms for up to 14 days prior to 
hospital presentation (Figure 1). Our overall COVID-19+ and 
COVID-19− cohorts were overall similar with the exception of 
the COVID-19+ cohort having a higher portion of former or 
active smokers (Supplementary Table S1) Examining our acute 
COVID-19+ cohort, 38 (76%) required some form of respiratory 
support. Except for Body Mass Index (BMI; p < 0.05), our cohort 
of COVID-19+ patients had similar characteristics between those 
requiring respiratory support and those who did not (Table 1). The 
overall mean age of the final cohort was 68 (SD 15.24); 50% were 
female and most patients identified as Hispanic or Latino (76%) 
and white (64%). Within the acute COVID+ cohort (Figure 1), 12 
(24%) patients never required any respiratory support, 18 (36%) 
were treated with supplemental oxygen via nasal cannula, 3 (6%) 
were treated with supplemental oxygen via facemask, 6 patients 
were treated with positive pressure ventilation (12%), and 11 
(22%) were intubated. There were 2 patients who died of 
COVID-19 but had Do Not Intubate (DNI) orders; accordingly, 
they were considered as having respiratory failure severe enough 
to require intubation. Broad measures of microbiome diversity in 
our samples (Shannon index, Simpson Index, inverse Shannon 
index) were similar between groups (Table 1).

2 https://github.com/an-bui/calecopal

No reliable differences were detected 
between COVID-19− and COVID-19+ 
patients

Shotgun metagenomic sequencing was performed on all 
collected oropharyngeal microbiome samples. Human DNA 
sequences were filtered out prior to downstream analysis (mean 
metagenomic reads/sample 4,395,936 ± 457606.9). Resulting 
sequences were profiled for microbial abundances and metabolic 
pathways. Samples with very low diversity (< 4 detected microbial 
species) were discarded as these contained mostly contaminating 
human DNA. Reads coming from host contamination versus 
microbial species was not significantly different between COVID-
19+ and COVID-19− cohorts (Mann–Whitney U-test p = 0.548, 
and Supplementary Figure S1). The portion of host contamination 
reads in samples from COVID-19+ participants requiring 
respiratory support versus those who did not was also not 
significantly different (Mann–Whitney U-test 0.2382, 
Supplementary Figure S1). We directly compared abundances of 
microbiome features between COVID-19+ and COVID-19− 
patients utilizing the Wilcoxon Rank Sum test. When using the 
Bonferroni correction for multiple comparisons, there was no 
differential abundance of microbial species or metabolic pathways 
that were significantly different between COVID-19+ and 
COVID-19− patients (Supplementary Tables S1, S2).

Machine learning-based modeling is 
effective at extracting microbiome 
features associated with a clinical 
outcome (need for respiratory support) 
from complex multimodal data

As traditional statistical methods often fail to provide 
meaningful insight into microbiome data due to the heterogeneity, 
sparsity and dimensionality issues common to microbiome data 
sets, we next used machine learning (ML) modeling for analysis. 
ML is apt for overcoming the mentioned challenges and enables 
the integration of complex, highly variable microbiome data and 
clinical variables (Cammarota et  al., 2020). RFC ML models, 
especially suit microbiome data because they enable the use of 
non-normally distributed data (such as species relative abundance) 
and diverse sets of variables (Shannon’s alpha diversity index, and 
numerical and categorical clinical covariates) as features in the 
same model, thus allowing for prediction of clinical responses 
from complex multimodal data (Haran et al., 2019a; Wipperman 
et al., 2021). We have previously demonstrated that RFC models 
can discover robust correlations between the microbiome and 
clinical outcomes in various diseases (Haran et al., 2019a, 2021a,b; 
Wipperman et al., 2021; Bradley et al., 2022). For this study, we are 
also extending our ML pipeline with the Stable and Interpretable 
RUle Set (SIRUS) algorithm (Bénard et al., 2021), which allows for 
simultaneous extraction of highly predictive, human interpretable, 
and clinically relevant rules on how microbiome features associate 
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with clinical outcomes. For example, the algorithm found as the 
most prevalent rule that “if Prevotella salivae abundance is < 4.3% 
the probability of needing respiratory support is 82.2%.”

Using RFC, we  sought to define the microbiome’s role in 
predicting the need for respiratory support in our COVID-19+ 
cohort. To demonstrate the utility of combining multimodal 
inputs, we trained our RFC model on (1) patient features alone, 
(2) microbiome data alone, and (3) microbiome plus clinical data 

and computed F1-scores from leave-one-out cross-validated data 
across multiple random seeds (see materials and methods). 
F1-score is the harmonic mean between precision and recall, 
which accounts for both prediction errors and the specific type of 
prediction error. We have chosen the F1-score as our main model 
evaluation metric because the F1-score accounts for imbalanced 
data and extremes in either recall or precision while maximizing 
both. Thus, this metric is best suited for cases where both false 

A

B

FIGURE 1

Study enrollment and data analysis flowcharts. (A) Patients at UMass Medical center were enrolled for our study according to the following flow 
chart. Fifty patients with acute COVID-19 were ultimately selected for our study cohort and followed for a clinical outcome of whether they 
needed respiratory support and what level of respiratory support was required, ranging from supplemental oxygen via simple nasal cannula 
escalating through intubation and mechanical ventilation. The number of patients requiring each level of respiratory support is shown in the final 
chart on the right. (B) Data from clinical covariates and microbiome sequencing results are combined in a random forest classifier to determine 
features predicting the need for respiratory support. We then applied the Stable and Interpretable RUle Set (SIRUS) to these results to generate 
easily interpretable rules predicting which clinical covariates and microbiome features are predictive of the need for respiratory support.
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positives and false negatives are undesirable. A model trained with 
host specific features, which we  define as both sample-level 
Shannon’s alpha diversity index and clinical covariates, including 
age, BMI, ethnicity, and selected medical comorbidities available 
at admission (Table 1), performed well with a mean F1-score of 
0.857 ± 0.000 (Figure  2A). Note that the combination of these 
clinical covariates has already been determined by other studies 
to be predictive of decompensation in COVID-19 (Gallo Marin 
et al., 2021) and thus help validate our modeling approach. A 
model trained only on measured microbial abundances performed 
comparably with a mean F1-score of 0.837 ± 0.005 (Figure 2A). A 
model including clinical covariates, select medical comorbidities, 
measured microbial abundances, and sample-level Shannon’s 
alpha diversity index led to a similar predictive performance as 
measured by a mean F1-score of 0.858 ± 0.009 (Figure 2A). These 
F1-scores indicate similar performance of clinical and microbial 
variables. Additional model statistics are included in 
Supplementary Table S3. Based on the performance of the model 
that combined microbiome features, all clinical covariates, and 
sample-level Shannon’s alpha diversity index, we continued our 
analysis on results from this trained model to examine how 

features selected by the model associated with the need for 
respiratory support in acute COVID-19 in our cohort.

Relative abundance of certain 
commensal species is associated with 
developing illness requiring respiratory 
support in COVID-19

We further analyzed the results of our RFC model combining 
microbial species abundance data with patient clinical covariates 
and sample-level Shannon’s alpha diversity index to determine 
which microbial populations contributed to predicting the need 
for respiratory support and how they compared to clinical 
variables. Based on the median calculated permutated variable 
importance, a ranking of which features contributed most to the 
prediction (Wright and Ziegler, 2017), the relative abundance of 
P. salivae is the most important predictor needed to accurately 
classify an individual for respiratory support outcomes 
(Figure 2B). Notably, this organism is ranked higher than both 
patient age and BMI (Figure 2B), which are two clinical factors 
known to associate with severe COVID-19 (Gallo Marin et al., 
2021), and the only two clinical factors determined by the model 
as predictive. To determine a set of logical rules that separate 
individuals according to their future need for respiratory support 
using the microbiome and clinical covariates, we  passed the 
inferred RFC model results to the SIRUS algorithm (Bénard et al., 
2021; Figure 1B). SIRUS identified 15 highly predictive logical 
rules of the form “If the abundance of feature X is greater than Y, 
then the probability of needing respiratory support is Z” 
(Figure 2C). SIRUS found that low abundances of P. salivae or 
Veillonella infantium (< 4.2 and 1.7% of the microbiota 
respectively), two microbes found at significant levels, is associated 
with an 82% probability of needing respiratory support. Both rules 
were found to be  the most selected across the different cross-
validation folds and were more generalizable across individuals 
compared to rules that account for clinical factors/demographics 
including BMI and age (Figure 2C). We also found that relative 
abundances of Actinomyces and Campylobacter concisus 
contributed moderately to the prediction.

Profiling of metabolic pathways refines 
the role of commensal microbiota in 
prediction of developing acute 
respiratory illness in COVID-19

While our above modeling provided robust predictions based 
on certain microbial species, analysis of species abundance alone 
provides a limited understanding of the exact functional roles of 
associated species in terms of biologic mechanism with respect to 
clinical outcomes. To profile the microbiomes functionally and 
discover possible relationships between microbial metabolic 
pathways and clinical outcomes, we repeated the RFC and SIRUS 

TABLE 1 Study population characteristics.

Respiratory support

Characteristic Overall, 
n = 501

no, 
n = 121

yes, 
n = 381

p-value2

BMI 29.12 (7.01) 23.83 (5.11) 30.79 (6.74) 0.003

Age 68.00 (15.24) 60.83 

(19.52)

70.26 

(13.12)

0.15

Male (%) 25/50 (50) 5/12 (42) 20/38 (53) 0.5

Ethnicity

Caucasian (%) 32/50 (64) 5/12 (42) 27/38 (71) 0.089

Black (%) 5/50 (10) 2/12 (17) 3/38 (7.9) 0.6

Asian (%) 2/50 (4.0) 2/12 (17) 0/38 (0) 0.054

Other (%) 11/50 (22) 3/12 (25) 8/38 (21) >0.9

Hispanic or Latino (%) 38/50 (76) 7/12 (58) 31/38 (82) 0.13

CCI 4.50 (2.58) 3.75 (3.05) 4.74 (2.41) 0.2

Hypertension (%) 33/50 (66) 7/12 (58) 26/38 (68) 0.7

Diabetes (%) 18/50 (36) 5/12 (42) 13/38 (34) 0.7

Asthma (%) 8/50 (16) 1/12 (8.3) 7/38 (18) 0.7

COPD (%) 10/50 (20) 2/12 (17) 8/38 (21) >0.9

OSA (%) 3/50 (6.0) 0/12 (0) 3/38 (7.9) >0.9

Smoker, current (%) 1/50 (2.0) 1/12 (8.3) 0/38 (0) 0.2

Smoker, former (%) 21/50 (42) 3/12 (25) 18/38 (47) 0.2

COVID fatality (%) 8/50 (16) 0/12 (0) 8/38 (21) 0.2

Diversity measures

Shannon 2.25 (0.62) 2.50 (0.35) 2.17 (0.66) 0.2

Simpson 0.80 (0.13) 0.86 (0.04) 0.78 (0.15) 0.3

Inverse Simpson 7.04 (3.69) 7.70 (2.39) 6.83 (4.02) 0.3

1Mean (SD); n/N (%).
2Wilcoxon Rank Sum test; Fisher’s exact test; Pearson’s Chi-squared test.
CCI, Charlson Comorbidity Index; COPD, chronic obstructive pulmonary disease; 
OSA, obstructive sleep apnea.
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modeling pipeline on clinical covariates and the abundance of 
metabolic pathways, as profiled using HUMAnN3 (Franzosa et al., 
2018). Pathway abundance is computed once at the community- 
and species-level using community- and species-level gene 
abundances along with established knowledge about the structure 
of the metabolic pathway. Specifically, each pathway’s abundance 

in a community is calculated as the sum of the abundances of that 
pathway’s component reactions. Importantly, pathway abundance 
is proportional to the number of complete copies of the pathway 
in the community.

The relative abundance of specific microbial metabolic 
pathways was also highly predicative of respiratory illness leading 

A

C

B

FIGURE 2

Results of random forest classification model. (A) F1-scores of RFC models including clinical covariates (CC), individual microbial abundances, and 
the combination of bacterial abundances, alpha diversity, and clinical covariates show that all models perform well with models including all 
multimodal data performing slightly better. (B) Median ranked importance of features from the final model (blue boxplot) trained on all data 
including microbiome features, alpha diversity, and clinical data (median importance ± median absolute deviation) are shown. The size of the circle 
represents how often each feature was selected. The relative abundance of Prevotella salivae is the top predictor with the relative abundance of 
Campylobacter concisus, V. infantium and Actinomycetes sp. S6-Spd3 and the Shannon diversity index also showing significant contributions. 
Significantly contributing clinical covariates were age and BMI. Features which do not contribute to the predictive model are not shown. (C) The 
relative abundance of the microbiome features or values of clinical variables determined to be important in predicting the need for respiratory 
support by our RFC model are displayed along with discriminative rules based on the probability of requiring respiratory support (pres).
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to the need for respiratory support (mean F1-score 0.804 ± 0.009). 
Adding clinical covariates available at admission to the model 
resulted in only a slightly higher F1-score of 0.821 ± 0.004 
(Figure  3A). Additional model statistics are included in 
Supplementary Table S4.

The metabolic pathways most important in predicting the 
need for respiratory support by our modeling were LPS 
biosynthesis (CMP-3-D-manno-octulosonate biosynthesis), 
mycolate biosynthesis, and L-threonine biosynthetic pathways 
(Figure  3B). After running SIRUS, we  found that a very low 
abundance of LPS biosynthesis (CMP-3-D-manno-octulosonate 
biosynthesis) was highly predictive of the probability of needing 
respiratory support (p = 91.4%). Similarly, a very low abundance 
of mycolate biosynthesis also predicted needing respiratory 
support with a probability of 87.5%. Higher abundances of 
pathways encoding L-Threonine biosynthesis was associated with 
the need for respiratory support, although to a lesser degree than 
low LPS or mycolic acid (p = 60%).

We examined the contribution of bacterial genera to the top 
three predictive pathways. We  observed that in patients who 
developed the need for respiratory support, more of the CMP-3-
deoxy-D-manno-octulosonate pathway originated from 
Pseudomonas rather than Prevotella (Figure 3C). All the reads 
assigned to the mycolate biosynthesis pathway (second most 
predictive) were derived from unclassified microbes. When 
examining the L-threonine biosynthetic pathway (third most 
predictive), we  observed that Veillonella contributed a large 
fraction and that this fraction was lower in individuals needing 
respiratory support. Additionally, a significant portion of this 
pathway was found to originate from Tropheryma and 
Pseudomonas which are not represented among patients not 
requiring supplemental oxygen support.

Discussion

Here we show that the severity of respiratory illness in acute 
COVID-19 is associated with certain features of the oropharyngeal 
microbiome. Specifically, the relative abundances of several Gram-
negative and Actinomyces species and metabolic pathways 
associated with LPS, mycolic acid, and amino acid biosynthesis are 
predictive of whether patients will go on to require respiratory 
support. Using an interpretable machine learning model to 
examine the importance of specific factors, we  found that 
decreased abundances of P. salivae, C. concisus, V. infantium and 
an Actinomyces species were highly associated with the need for 
respiratory support. More importantly, a lack of P. salivae and 
V. infantium was found as the most generalizable signal 
differentiating individuals needing respiratory support versus not. 
This signal was found to be more robust in outcome classification 
compared to any signal derived by the model when considering 
other clinical factors known to impact the need for respiratory 
support in acute COVID-19. This suggests that the presence of 
these organisms may be protective against respiratory failure in 

patients suffering from acute COVID-19. When examining the 
contributions of specific microbial metabolic pathways, a  
higher abundance of genes encoding metabolic pathways for  
LPS biosynthesis (CMP-3-deoxy-D-manno-octulosonate 
biosynthesis), mycolate biosynthesis, and a lower abundance of 
genes associated with L-threonine biosynthesis were found to 
be  protective against severe respiratory manifestations of 
COVID-19 requiring respiratory support. By combining analysis 
of microbial abundances with metabolic pathways, we can gain 
deeper insight into microbiome “profiles” which may be predictive 
of certain clinical outcomes.

L-threonine is an essential amino acid and an increased 
abundance in bacterial pathways associated with its synthesis was 
the third most important metabolic pathway predictor of needing 
respiratory support in our cohort. L-threonine’s association with 
inflammation has been studied in the context of animal models of 
colitis, where exogenous supplementation to inflamed tissues 
prolonged inflammation (Gaifem et al., 2018; Xie et al., 2021). 
When we examined the contribution of different genera to the 
L-threonine biosynthetic pathway abundance, we observed the 
genera Tropheryma, a potential respiratory pathogen (Bousbia 
et al., 2010) and Pseudomonas, a known opportunistic respiratory 
pathogen, represented among individuals who required 
respiratory support, but not those who did not require respiratory 
support. While our evidence here is only suggestive, it would 
be consistent with a hypothesis which favors potential pathogens 
showing greater contributions to disease through key metabolic 
pathways, even if their relative abundances are not significantly  
different.

A lower abundance of mycolic acid biosynthesis genes was the 
second most important predictor of needing respiratory support 
in acute COVID-19 by our modeling of metabolic pathways. 
Mycolic acid has been reported to have immune modulatory 
activity, including suppression of allergic inflammatory responses 
(Obihara et al., 2005; Korf et al., 2006; Kim et al., 2014). While our 
metabolic pathways analysis did not identify specific genera 
responsible for the mycolic acid production, our modeling results 
using microbial abundances did find that a lower abundance of 
several Actinomyces were predictive of the need for respiratory 
support. Actinomyces is the only genera found to effect 
COVID-19  in this study that is hypothesized to be capable of 
producing mycolic acid (Collins et  al., 1985). Actinomyces are 
slow-growing, facultatively anaerobic, Gram-positive organisms 
and likely a component of a healthy oropharyngeal microbiota 
(Bowden, 1996; Kononen and Wade, 2015). In a study of the 
oropharyngeal microbiome among healthy adults, higher 
Actinomyces abundance was associated with decreased systemic 
inflammation (Demmer et al., 2017). An anti-inflammatory effect 
provided by mycolic acid potentially produced by Actinomyces 
would support a hypothesis favoring commensal organisms 
offering protective benefits against pathogens and disease sequelae.

There is likely an interplay between the balance of 
pro-inflammatory, pro-disease effects versus protective effects by 
the resident microbiota. Our seemingly contradictory findings 
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with P. salivae and LPS may illustrate this point. Prevotella are 
Gram-negative anaerobic organisms and common oropharyngeal 
colonizers that have been implicated in periodontal disease as well 
as COVID-19 disease severity (Yang et al., 2012; Khan and Khan, 
2020). Decreased P. salivae abundance was the strongest and most 
general predictor of the need for respiratory support in our 
analysis using microbial abundances. While Prevotella has 
generally been implicated in chronic inflammation (Larsen, 2017), 
it is also part of normal, healthy oral and lung microbial 
communities (Bao et  al., 2020; Khatiwada and Subedi, 2020). 

P. salivae has been shown in animal models to stimulate less 
inflammatory cytokine production and lead to less neutrophil 
chemotaxis than the Gram-negative respiratory pathogens 
Moraxella catarrhalis and Haemophilus influenzae (Larsen et al., 
2015). It is hypothesized that a penta-acylated LPS produced by 
Prevotella stimulates less innate-immune receptor activation than 
hexa-acylated LPS produced by Gram-negative respiratory 
pathogens (H. influenzae, Pseudomonas aeruginosa; Brix et al., 
2015) and Escherichia coli (Larsen, 2017). Veillonella is another 
Gram-negative bacterial genera commonly found in the 

A

C D

B

FIGURE 3

Random Forest Classification Using Metabolic Pathways. (A) F1-scores of RFC models built on relative abundance of detected metabolic pathways 
alone or in combination with clinical covariates (CC) show that models combining both data modalities perform slightly better. (B) Median relative 
importance of variables in predicating the need for respiratory support from the model trained on relative pathway abundances and clinical 
covariates (median importance ± median absolute deviation) are shown. The size of the circle represents how often each feature was selected. 
Features which do not contribute to the predictive model are not shown. (C) The relative abundance of top metabolic pathways or values of 
clinical features determined to be important in predicting need for respiratory support by our RFC model are displayed along with discriminative 
rules based on the probability of requiring respiratory support (pres). (D) Contributions of detected bacterial genera to pathway abundance of CMP-
3-deoxy-D-manno-octusonate biosynthesis and L-threonine biosynthesis in patients who did or did not go on to require respiratory support are 
shown. The detection of Pseudomonas contributing to the abundance of the CMP-3-deoxy-D-manno-octusonate pathway and the detection of 
Tropheryma contributing to the abundance of the L-threonine biosynthetic pathway are notable and highlighted.
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oropharynx associated with periodontal disease (Delwiche et al., 
1985) that also is predicted to produce penta-acylated LPS (Brix 
et al., 2015). The production of hypo-acylated LPS that generates 
less inflammation may represent an adaptation that allows 
Prevotella and Veillonella species to colonize the upper airway 
without causing disease.

A recent study found the presence of P. salivae and 
V. infantium in the oral cavity to be predictive of COVID-19 
among a discriminating set of six species as assessed by 16S 
sequencing and network systems modeling (Iebba et al., 2021). 
Patients in this particular study were hospitalized and received 
supplemental oxygen therapy, but not intubation. Age matched 
asymptomatic controls with no exposure risk for SARS-CoV-2 
were defined by a discriminating set of six different bacterial 
species, thus suggesting a role for SARS-CoV-2 in altering the 
oropharyngeal microbiota or greater susceptibility to SARS-
CoV-2 infection based on microbiome composition. While 
we  found no differences in species abundance by traditional 
statistics between our COVID-19+ and COVID-19− patients, 
our SARS-CoV-2 negative patients were symptomatic and 
therefore could have been infected by other respiratory viruses, 
which may have altered their nasopharyngeal and oropharyngeal 
microbiomes. A study of the nasopharyngeal microbiomes of 
individuals with symptomatic upper respiratory tract infection 
either due to influenza or an or with unknown influenza status 
were similar, and show substantial changes compared to 
individuals who are asymptomatic (Kaul et al., 2020), this may 
have affected our ability to differentiate between COVID-19+ 
and COVID-19− individuals in this cohort. The identification of 
P. salivae and V. infantium by different sequencing methods and 
disparate geographic cohorts lends support to the importance of 
these two species in influencing COVID-19 symptoms. 
Interestingly, a pre-pandemic study on the effect of the 
oropharyngeal microbiome on susceptibility to symptomatic 
influenza infection found that an increased abundance of 
P. salivae was protective against symptomatic infection from a 
close household member (Tsang et al., 2020), again highlight a 
potential role for this organism in symptomatic respiratory virus 
infection. Our RFC modeling was able to provide a further layer 
of nuance in discriminating between symptomatic COVID-19+ 
patients who needed respiratory support and those who did not. 
If Prevotella and Veillonella are considered signatures of dysbiotic 
oral microbiota in SARS-CoV-2 respiratory illness, our analysis 
of encoded metabolic pathways provides additional insight into 
possible mechanisms by which these two species contribute to 
COVID-19 respiratory symptoms.

Our metabolic pathway analysis found that a decreased 
abundance of a LPS biosynthesis pathway, CMP-3-deoxy-D-
manno-octulosonate, was the top predictor of requiring 
respiratory support. Additionally, another component of LPS 
biosynthesis (lipid IV A) was ranked 7th among the top  15 
significant predictors of the need for respiratory support in 
acute COVID-19 (Figure  3D). CMP-3-deoxy-D-manno-
octulosonate is a critical metabolite in LPS biosynthesis 

(Goldman et al., 1988), and lipid IV A is a precursor in the 
production of the lipid A core of LPS (Brozek and Raetz, 1990). 
Although it initially seems counter-intuitive that the abundance 
of pathways associated with the synthesis of LPS, known to 
generate substantial inflammation via activation of the innate 
immune system (Beutler and Poltorak, 2001), would 
be  associated with less severe COVID-19 lung disease, 
we hypothesized that the detected LPS biosynthetic pathways 
were originating from species known to produce less 
inflammatory LPS. When we  examined the contribution of 
bacterial genera to the CMP-3-deoxy-D-manno-octulosonate 
biosynthesis pathway, we observed that in patients who required 
respiratory support, less of the pathway originated from 
Prevotella and a larger portion originated from Pseudomonas, a 
known respiratory pathogen capable of producing highly 
inflammatory LPS (Goldberg and Pler, 1996). A possible 
explanation for these findings may be  related to the natural 
history of COVID-19 lung disease. Sequencing-based analysis 
of broncho-alveolar lavage fluid from patients hospitalized with 
COVID-19 lung disease has shown the presence of 
oropharyngeal flora, which are hypothesized to enter the lungs 
by aspiration (Bao et  al., 2020). The presence of organisms 
producing more inflammatory LPS in the oropharynx 
translocating to the lungs may potentiate inflammation during 
COVID-19 lung disease and lead to the need for respiratory 
support. Although our results can align with a model of 
Prevotella and Veillonella as “dysbiotic” species, our findings 
also support the hypothesis that a higher abundance of 
Prevotella and other species producing weakly immunogenic 
LPS corresponds to decreased abundance of more inflammatory 
LPS producing species. If aspiration and translocation occur 
during COVID-19, the presence of organisms that produce less 
inflammatory LPS may limit inflammation in the lungs of 
COVID-19 patients.

Our conceptual interpretation of the interplay between the 
oropharygeal microbiome and SARS-nCoV2 based on our results 
are shown in Figure 4. The predominant pattern that we observed 
within the oropharyngeal microbiome more generally was that a 
decrease in the abundance of several commensal organisms and 
an increase in abundance of bacterial products synthesis pathways 
is the primary predictor of the need for respiratory support in 
acute COVID-19. The finding that certain bacteria of the 
oropharyngeal microbiota are potentially protective against severe 
COVID-19 fits with observational data related to the treatment of 
COVID-19 patients with antibiotics. These studies suggest that 
treatment of COVID-19 with antibiotics does not reduce mortality 
and that secondary bacterial infection is uncommon (Chedid 
et al., 2021; Langford et al., 2021). Our findings run counter to the 
hypothesis that the oropharynx is primarily a source of 
opportunistic pathogens that gain access to the lungs during the 
course of COVID-19 (Bao et al., 2020).

If the predominant effect was that the presence of harmful or 
pathogenic bacteria in the oropharynx contributing to severe 
COVID-19 respiratory symptoms, one might expect treatment 
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with antibiotics to be beneficial. Our findings are more consistent 
with the results of animal-model experiments with influenza, 
which suggest that treatment with antibiotics is potentially 
harmful due to their effect on beneficial commensal organisms. In 
mice challenged with influenza who had normal upper airway 
microbiota, macrophages activated genes associated with anti-
viral activity such as interferon-gamma, while mice treated with 
antibiotics failed to activate these pathways and had more severe 
lung disease (Abt et  al., 2012). In another study, antibiotic 
treatment prior to influenza challenge impaired dendritic cell 
priming and migration to draining lymph nodes that ultimately 
led to impaired development of T-cell mediated adaptive 
immunity (Ichinohe et al., 2011). In COVID-19, the oropharyngeal 
microbiome may play a similar role, aiding the development of an 

effective anti-viral response that limits severe disease 
manifestations. In this context, the microbiome was demonstrated 
to be critical to mounting an effective immune response to viral 
infection (Abt et al., 2012; Short et al., 2014). Thus, care should 
be exercised in analysis of “dysbiotic” profiles. On the one hand, 
there is evidence that host-microbiome interactions influence 
susceptibility to viral infection in the respiratory tract, while on 
the other hand, evidence also exists that suggests viral infections 
may cause dysbiosis. Development of disease may depend on a 
delicate interplay between these opposing forces. Future studies 
combining metagenomics, metabolomics, host biomarkers, host 
immune responses, and time series analysis would be of great 
value to understanding the complex interplay in the host-
pathogen-microbiome axis.

FIGURE 4

Conceptual Diagram of SARS-nCoV2 Interaction with the Oropharyngeal Microbiome. When an infection with SARS-nCoV2 begins within the 
oropharynx, it occurs within the environment of the microbiome. If the oropharyngeal microbiome has a high abundance of non-inflammatory or 
minimally inflammatory species that do not produce strongly inflammatory bacterial products, this will be protective against more severe lung disease 
and the need for respiratory support. If the oropharyngeal microbiome has a low abundance of non-inflammatory or minimally inflammatory species, 
then these produce more inflammatory bacterial products, leading to more severe lung disease and the need for respiratory support.
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Strengths and limitations

Our strengths include our enrollment of patients within the 
Emergency Department during acute presentation of the 
disease, prospective clinical data collection, use of metagenomic 
sequencing, and use of two independent analysis techniques to 
verify our results. The majority of enrollment and collection of 
samples within the Emergency Department allowed us to 
sample the microbiomes of patients early in disease course 
before medical intervention. We did include some samples from 
our hospital’s COVID-19 treatment ward later in the course of 
the study. As such there were some samples that were collected 
from participants after they had received treatments such as 
antibiotics. However, treatment with antibiotics did not appear 
to affect the amount of microbial DNA that was obtained via 
these swabs (Supplementary Figure S1). Controlled studies of 
the effect of antibiotics on the oral microbiome suggest that 
subtle changes are seen 1 week after treatment antibiotic, but 
that differences peak at 1 month after exposure (Zaura et al., 
2015). The longest possible period of time between antibiotic 
exposure and sample collection in this study was 4 days, and as 
such, we do not believe this represents a substantial confounder 
in this analysis.

We excluded any patients with self-reported symptoms 
longer than 14 days at time of collection to focus our analysis on 
the acute phase of the COVID-19. We chose 14 days as this is the 
point at which most COVID-19 patients will typically begin to 
recover from acute symptoms (Blair et al., 2021) and felt that 
beyond this time, respiratory decompensation could have been 
attributed to other causes. Our characterization of the 
oropharyngeal microbiome showed us features that can 
be  predictive of disease course and potentially a target for 
therapeutics. In addition, the use of metagenomic sequencing for 
microbiome characterization enabled us to determine what 
bacterial metabolic pathways could potentially affect disease 
course as opposed to just genus-level information provided by 
16S rRNA sequencing. Our interpretation of the results of the 
metabolic pathway abundances relies on the assumption that 
pathway abundance correlates with metabolite abundance, which 
has been previously shown to be  reasonable in  
other systems (Mchardy et al., 2013), although direct detection of 
metabolite abundances would have strengthened our findings.

Weaknesses of this study include a single time-point in 
microbiome sampling from a single center and enrollment of a 
limited number of patients presenting with acute COVID-19 early 
in the disease course. Single time-point sampling does not allow 
for observation of how an individual’s oropharyngeal microbiota 
may change over the course of the disease. Although we enrolled 
115 patients in the study, after focusing on the acute phase of 
COVID-19, only 50 COVID-19+ individuals with complete data 
were available for full analysis, which reduces statistical certainty. 
The reasons for incomplete data are multifactorial and include 
difficulties conducting clinical research during the early phases 
COVID-19 pandemic. We developed a method to limit research 

staff contact with patients to prevent the spread of COVID-19 by 
having nursing staff collect specimens during routine clinical care 
after verbal consent. Although we successfully protected our staff, 
this necessitated the need for follow up to collect information on 
symptoms and symptom duration, which is challenging among an 
Emergency Department population, and led to missing clinical 
data and later withdrawal of consent.

This study was conducted before widespread availability of 
vaccines against COVID-19, so although vaccination status is not 
a potential confounder in this study as no participants were 
vaccinated, how vaccination would change the interaction 
between the virus and the oropharyngeal microbiome is 
unknown. Vaccination likely affects the interaction of the host 
and virus in the oropharynx, and vaccination itself can affect the 
makeup of the oropharyngeal microbiota (Uehara et al., 2022). 
Studies of the oropharyngeal microbiome of COVID-19 among 
vaccinated patients will be required in the future to determine if 
the same interactions are seen.

Conclusion

We demonstrate a relationship between disease 
manifestations of COVID-19 and the oropharyngeal microbiome. 
Specifically, the decreased abundance of some organisms, 
primarily P. salivae, is predictive of patients requiring respiratory 
support. We show that the presence of metabolic pathways for 
bacterial products such as LPS and mycolic acid are also 
predictive of not requiring respiratory support, implying that the 
presence of bacteria producing these products has a positive 
impact on disease course. Together, these findings suggest that 
the presence of beneficial commensal bacteria in the upper 
airway has the potential to prevent or mitigate pulmonary 
manifestations of COVID-19. We show that combining analysis 
of microbial abundances with metabolic pathways can provide 
deeper insight into microbiome “profiles” which may 
be  predictive of certain clinical outcomes. Thus, our study 
underscores that the interaction between the oropharyngeal 
microbiome and respiratory viruses such as SARS-CoV-2 could 
potentially be harnessed for diagnostic and therapeutic purposes.
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Proportion of metagenomic reads to host contamination. Shown is 
the ratio of metagenomic reads to host contamination reads in 
samples from COVID-19+ versus COVID-19- participants (A) and 
COVID-19+ participants requiring respiratory support versus those 
who did not (B). Differences in the proportion of reads that were 
host contamination did not vary significantly between the groups 
(Mann-Whitney U-test p = 0.548 and p = 0.2383 respectively). We 
also stratified portion of metagenomic reads by participants who 
received antibiotics (C), there was no significant difference in 
portion of metagenomic reads stratified by antibiotics recieved or 
number of antibiotics received (Mann-Whitney U-test for 1 antibiotic 
p = 0.5216, 2 antibiotics p= 0.6826, 3 antibiotics p = 0.8172).

SUPPLEMENTARY TABLE S1

Study population characteristics of COVID-19+ and COVID-19- cohorts.

SUPPLEMENTARY TABLE S2

Full statistics of Wilcoxon Rank Sum test comparing microbial abundance 
features between COVID-19+ and COVID-19- patients. Full results 
comparing species abundances between COVID-19- and COVID-19+ 
patients using the Wilcoxon Rank Sum test and Bonferroni correction for 
multiple comparisons

.SUPPLEMENTARY TABLE S3

Full statistics of Wilcoxon Rank Sum test comparing metabolic pathway 
features between COVID-19+ and COVID-19- patients. Full results 
comparing abundances of encoded metabolic synthesis pathways 
between COVID-19- and COVID-19+ patients using the Wilcoxon Rank 
Sum test and Bonferroni correction for multiple comparisons.

SUPPLEMENTARY TABLE S4

Full statistics of random forest classifier model to predict need for 
respiratory support based on microbial abundances. Full results from the 
6 individual iterations of the RFC classifier model utilizing different 
datasets; bacterial abundances only, clinical covariates and Shannon 
diversity, clinical covariates and bacterial abundances, and combined 
bacterial abundance, clinical covariates and Shannon diversity. CC, 
Clinical Covariates; TP, True Positive; FP, False Positive; TN, True Negative; 
FN; False Negative.

SUPPLEMENTARY TABLE S5

Full statistics of random forest classifier model to predict need for 
respiratory support based on microbial abundances. Full results  
from the 6 individual iterations of the RFC classifier model utilizing 
metabolic pathway abundances; pathway abundance only and 
clinical covariates combined with pathway abundances. CC, Clinical 
Covariates; TP, True Positive; FP, False Positive; TN, True Negative; FN; 
False Negative.
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