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Abstract

Purpose

Seeking to improve the access to regenerative medicine, this study investigated the struc-

tural and transcriptional effects of storage temperature on human oral mucosal epithelial

cells (OMECs).

Methods

Cells were stored at four different temperatures (4˚C, 12˚C, 24˚C and 37˚C) for two weeks.

Then, the morphology, cell viability and differential gene expression were examined using

light and scanning electron microscopy, trypan blue exclusion test and TaqMan gene

expression array cards, respectively.

Results

Cells stored at 4˚C had the most similar morphology to non-stored controls with the highest

viability rate (58%), whereas the 37˚C group was most dissimilar with no living cells. The

genes involved in stress-induced growth arrest (GADD45B) and cell proliferation inhibition

(TGFB2) were upregulated at 12˚C and 24˚C. Upregulation was also observed in multifunc-

tional genes responsible for morphology, growth, adhesion and motility such as EFEMP1

(12˚C) and EPHA4 (4˚C–24˚C). Among genes used as differentiation markers, PPARA and

TP53 (along with its associated gene CDKN1A) were downregulated in all temperature con-

ditions, whereas KRT1 and KRT10 were either unchanged (4˚C) or downregulated (24˚C

and 12˚C; and 24˚C, respectively), except for upregulation at 12˚C for KRT1.
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Conclusions

Cells stored at 12˚C and 24˚C were stressed, although the expression levels of some adhe-

sion-, growth- and apoptosis-related genes were favourable. Collectively, this study sug-

gests that 4˚C is the optimal storage temperature for maintenance of structure, viability and

function of OMECs after two weeks.

1. Introduction

Limbal stem cell deficiency (LSCD) is a potentially painful and blinding condition caused by

damage or loss of the limbal stem cells [1, 2]. Cell therapy has gained increasing attention over

the last few years in the treatment of LSCD after the first successful transplantation of autolo-

gous limbal stem cells in 1997 by Italian scientists for patients with unilateral disease [3]. This

therapy is believed to replace or restore remaining functioning limbal stem cells to promote

regeneration of the corneal epithelium [4].

For treatment of unilateral LSCD, the use of cultured autologous limbal stem cells from the

healthy cornea is often the method of choice. In the event of bilateral LSCD, which is more

prevalent, the application of allogeneic limbal stem cells remains an option, but is considered

less favourable because it requires systemic immunosuppressive drugs with potential adverse

effects and the long-term outcome is not always satisfactory. Therefore, the quest for alterna-

tive cell types was initiated. Oral mucosal epithelial cells (OMECs) were the first alternative

autologous source to be studied in both rabbits [5] and humans [6]. Later examples of cell

sources include epidermal, embryonic, conjunctival epithelial, umbilical cord, hair follicle

bulge, immature dental pulp, orbital fat-derived and bone marrow-derived mesenchymal stem

cells [7, 8]. Of those, OMECs and conjunctival cells are hitherto the only clinically used non-

limbal cell type for the treatment of LSCD [9]. Seeking to improve transplantation success and

expand access to regenerative medicine, researchers have also investigated different storage

conditions [10–16] and transportation techniques [17–19].

The prepared epithelial stem cells in vitro may not be used immediately for transplantation

due to patient readiness and the time required for transport from laboratory units to clinics.

Such a gap gives the opportunity for phenotypic investigations [20], sterility control [21] and

flexible scheduling of surgery [22]. To establish optimal conditions, several studies have inves-

tigated various aspects of storage [10–16, 21, 23, 24]. These attempts are in line with the Euro-

pean Medicines Agency’s approval of stem cell therapy in Europe [25]. In addition,

advancements in storage technology has provided the necessary practical methods for world-

wide distribution of cultured cells from centralized laboratories to clinics [26] following rather

strict regulations for cell therapy [27] and taking into consideration an increasing demand

over the last few years [28].

Cryopreservation and refrigeration (4˚C) are two common storage methods, especially for

cultured epidermal cells. However, both suffer from the drawback of low cell viability [29–31].

Studies on cryopreservation have also shown fragmented cultured cell sheets with rather

unsuitable morphology [23], along with complicated procedures requiring specific and costly

devices. In search for an alternative and better preservation methods, our group has previously

investigated the effects of different temperatures (between 4˚C–37˚C) on the structure and

function of cultured human oral keratinocytes [16] and epidermal cells [15] for one and two

week periods, respectively.

The present study aimed to examine ten significantly differentially expressed genes among

the studied groups by Utheim et al. [32], and 20 genes from various relevant pathways using
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TaqMan gene expression array cards in cultured OMECs stored at four different temperatures

(4˚C, 12˚C, 24˚C and 37˚C) for two weeks. The morphology (light and scanning electron

microscopes) and cell viability (trypan blue exclusion test) of cultured epithelial cells were also

investigated.

2. Materials and methods

2.1. Ethical considerations

Local ethical approval and verbal informed consent were obtained before OMEC harvesting.

According to guidelines, the relevant form was completed and signed by the specialist during

interview with the next of kin before transferring cadaver to the Department of Pathology,

Oslo University Hospital. The research was conducted in accordance with the Declaration of

Helsinki. The experimental protocols were approved by The Regional Committee for Medical

and Health Research Ethics, Section C, South East Norway (reference: 2017/418).

2.2. Chemicals

The defined proprietary culture medium, CNT-Prime, was purchased from Cellntec Advanced

Cell Systems AG (Bern, Switzerland). Dulbecco’s Modified Eagle Medium/Nutrient F-12 Ham

+ GlutaMAX™-I (DMEM/F12) was bought from Invitrogen Life Technologies (Carlsbad, CA,

USA). Membrane inserts (Transwell cat. no. 3450) and 48-well non-tissue culture polystyrene

plates (Falcon 353078) were from Corning Costar (Cambridge, MA, USA) and Becton Dickin-

son Labware (Franklin Lakes, NJ, USA), respectively. The rest were obtained from Sigma

Aldrich (Oslo, Norway).

2.3. Cell isolation

Donated lower lip biopsy was harvested from cadaver’s oral cavity within 24 h post mortem in

a non-refrigerated setting. The cadaver was a 56-year-old male with heart disease and good

oral hygiene. The biopsy was transported to tissue-culture laboratory within 1 h in Dulbecco’s

Modified Eagle Medium/Nutrient F-12 Ham + GlutaMAX™-I (DMEM/F12) supplemented

with 100 U/mL penicillin-streptomycin (P/S) at room temperature and then rinsed off using

the same medium. It was cut into 1 cm × 0.5 cm pieces and then incubated in Mg2+ and Ca2

+-free Hanks’ balanced salt solution containing 1.2 U/mL dispase II at 37˚C overnight. The

separation of epithelial cell layer from the lamina propria layer was performed under a dissect-

ing microscope by sterile forceps and scalpel. Afterwards, the tissue was rinsed with DMEM/

F12, cut into explants (1–3 mm2), put on plastic inserts and allowed to attach in DMEM/F12

supplemented with 10% fetal bovine serum and P/S. Subsequently, the cultured cells were

incubated at 37˚C (5% humidified CO2) for two weeks. Then, the expanded cells were har-

vested (0.25% trypsin-EDTA solution) as passage 1 (P1) cells.

Trypan blue exclusion test was used for P1 cell counting and viability assessment before

being frozen in 5% DMSO at -80˚C overnight followed by liquid nitrogen storage. The

OMECs were seeded on culture vessels in serum-free CNT-Prime medium supplemented with

P/S on a 48-well-plate. All the cultures were incubated at 37˚C and 5% CO2. The culture

medium was changed every 2–3 days.

2.4. Cell storage

The frozen OMECs were thawed, seeded and expanded on culture flasks in serum-free

CNT-Prime medium supplemented with P/S at 37˚C with 5% CO2 for 5–7 days. The culture

medium was changed every 2–3 days. Then, cells were trypsinized and cultured on 24-well

PLOS ONE Response of human oral mucosal epithelial cells to different storage temperatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0243914 December 16, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0243914


plates with (for scanning electron microscopy) or without (for other tests) 8 mm round glass

coverslips to obtain a confluent monolayer under the same condition. Before random selection

for storage in cabinets at four different temperatures (4˚C, 12˚C, 24˚C and 37˚C with SD

0.4˚C), the storage medium containing MEM with 12.5 mM HEPES, 3.57 mM sodium bicar-

bonate and 50 mg/ml gentamycin was replaced and the 24-well plates were properly sealed.

Oral mucosa epithelial cells were isolated from a single donor and cultured on uncoated

plastic plates to minimize confounding variation, focus on temperature-associated differences

and limit variation of scaffolds in the form of biological substrates such as amniotic membrane

and fibrin [15]. Three technical replicates were used for each experiment.

2.5. Light microscopy

The morphology of individual cells and the integrity of the complete cell layer in all four differ-

ent temperature conditions were evaluated by a Leica DMIL inverted phase contrast micro-

scope (Leica Microsystems, Wetzlar, Germany) coupled with a Canon EOS 5D mark II camera

(Canon, Oslo, Norway). The images were captured at random positions within each well at 4×,

10×, 20× and 40× magnification before (baseline) and after two weeks incubation time (4˚C,

12˚C, 24˚C and 37˚C).

2.6. Scanning electron microscopy

Immediately after the incubation period, fixative (PHEM 0.2M, Glutaraldehyde 2% and Para-

formaldehyde 8%) pre-adjusted to desired temperature was added in a 1:1 ratio to each well.

Afterwards, the plates were returned to their respective storage cabinets for 15 min. Then,

fixed cells on each coverslip were dehydrated using a graded ethanol series consisting of a

10-min treatment with 70, 80, 90, and 96% ethanol, followed by 4 x 15-min treatments with

100% ethanol. Samples were then critical point dried (BAL-TEC CPD 030 Critical Point

Dryer) and coverslips were mounted on SEM stubs using carbon tape. Finally, samples were

sputter coated with 6 nm platinum using a Cressington 308R coating system, then all samples

were examined and digital images recorded using a Hitachi S-4800 Field Emission Scanning

Electron Microscope operated at 5.0 kV.

2.7. Cell viability test

The viability of cultured cells was evaluated by the trypan blue exclusion test [33].

2.8. TaqMan gene expression array cards

The cells were harvested directly in RLT buffer (Qiagen, Hilden, Germany) and mixed by

pipetting up and down. The lysate was then passed through a needle (0.9-mm diameter)

attached to a sterile plastic syringe 10 times for achieving a homogenous lysate. RNeasy micro

kit (Qiagen, Hilden, Germany) was used for extraction and purification of total RNA. Concen-

tration and purity of isolated RNA were assessed by spectrophotometry (Nanodrop, Wilming-

ton, Germany). Using the High Capacity cDNA RT Kit (Applied Biosystems, Abingdon, UK),

reverse transcription (RT) was performed with 200 ng of total RNA per 20 μL RT reaction

based on the manufacturer’s instruction.

Comparative relative quantification was performed using the TaqMan Gene Expression

Array Card for 30 genes (Table 1). The choice of genes was partly based on our previous study

Utheim et al [32], in which cultured oral keratinocytes were examined for gene expression

after one week storage at 4˚C, 12˚C and 37˚C. Ten significantly differentially expressed genes

(CCNH, CDKN2B, GADD45B, GAS5, HDAC6, HIST2H4B, HUS1, RPSA, TBRG4 and TGFB2)
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among the studied groups were selected, accordingly. In addition, 19 genes from various rele-

vant pathways were included. GAPDH was also included to evaluate whether energy consump-

tion originated from oxidative phosphorylation or glycolysis.

The samples were prepared for PCR by mixing 55 μL of cDNA with 55 μL of TaqMan™ Uni-

versal PCR Master Mix, no AmpErase™ UNG (Applied Biosystems, Germany). Then, each fill

reservoir of a TaqMan Array Card (Applied Biosystems, Germany) were loaded with 100 μL of

sample-specific PCR reaction mix. Three wells were allocated per gene in this experiment. The

array cards were run in the QuantStudioTM 12K Flex Real-time PCR system (Applied Biosys-

tems, Germany) under the following conditions: 50˚C for 2 min, 95˚C for 10 min, then 40

cycles of 95˚C for 15s and 60˚C for 60s. All samples were run in triplicates.

2.9. Real-time quantitative polymerase chain reaction (RT-qPCR)

Comparative relative quantification was performed on prepared cDNA using the StepOne-

PlusTM Real-Time polymerase chain reaction (PCR) system (Applied Biosystems) and Taq-

man Gene Expression assays following protocols from the manufacturer (Applied Biosystems)

Table 1. The list of genes examined using the TaqMan gene expression array in this study.

Gene Symbol Gene Name TaqMan Assay ID

BRCA2 BRCA2, DNA repair associated Hs00609073_m1

CCNA2 Cyclin A2 Hs00996788_m1

CCNH Cyclin H Hs00236923_m1

CDKN1A Cyclin dependent kinase inhibitor 1A Hs00355782_m1

CDKN2B Cyclin dependent kinase inhibitor 2B Hs00793225_m1

EFEMP1 EGF containing fibulin like extracellular matrix protein 1 Hs00244575_m1

EPHA4 EPH receptor A4 Hs00953178_m1

ERBB3 Erb-b2 receptor tyrosine kinase 3 Hs00176538_m1

GADD45B Growth arrest and DNA damage inducible beta Hs00169587_m1

GAS5 Growth arrest specific 5 (non-protein coding) Hs05021116_g1

HDAC6 Histone deacetylase 6 Hs00997427_m1

HIST1H4B Histone cluster 1, H4b Hs00374342_s1

HIST2H4A; HIST2HB Histone cluster 2, H4a Hs00269118_s1

HUS1 HUS1 checkpoint clamp component Hs00189595_m1

ITGB8 Integrin subunit beta 8 Hs00174456_m1

RPL13A Ribosomal protein L13a Hs04194366_g1

RPSA Ribosomal protein SA Hs03046712_g1

TAF1D TATA-box binding protein associated factor, RNA polymerase I subunit D Hs00225533_m1

TBRG4 Transforming growth factor beta regulator 4 Hs01056250_g1

TGFB2 Transforming growth factor beta 2 Hs00234244_m1

HPRT1 Hypoxanthine phosphoribosyltransferase 1 Hs02800695_m1

NAIP NLR family apoptosis inhibitory protein Hs03037952_m1

CASP4 Caspase 4 Hs01031951_m1

IKBKE inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon Hs01063858_m1

PPARA peroxisome proliferator activated receptor alpha Hs00947536_m1

TP53 tumor protein p53 Hs01034249_m1

KRT1 keratin 1 Hs00196158_m1

KRT10 keratin 10 Hs00166289_m1

KPNA2 karyopherin subunit alpha 2 Hs00818252_g1

GAPDH Glyceraldehyde-3-phosphate dehydrogenase Hs99999905_m1

https://doi.org/10.1371/journal.pone.0243914.t001
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for 4 genes (ΔNp63α, TJP1, CLND1 and OCLN) (Table 2). All the samples were run in tripli-

cates (each reaction: 2.0 μL cDNA, total volume 20 μL). The thermo cycling parameters were

95˚C for 10 min followed by 40 cycles of 95˚C for 15 s and 60˚C for 1 min.

2.10. Statistical analysis

The analysis of gene expression data was performed using the Relative Expression Software

Tool (REST©, Relative Expression Software Tool, Weihenstephan, Germany). REST imple-

ments the Pair Wise Fixed Reallocation Randomization Test© to investigate the significance of

changes in gene expression [34]. The Mann-Whitney U test was performed using GraphPad

Prism 6.0 (GraphPad Software, San Diego, CA) in the analysis of results from the cell viability

experiment [35, 36]. A p value of� 0.05 was considered to be significant. The data are pre-

sented as the mean ± standard error.

3. Results

3.1. Examination of cell morphology

The confluent monolayer culture of OMECs presented typical cobblestone appearance under

light microscope before storage (Fig 1). A two-week cultured OMECs at 4˚C resulted in mor-

phological features resembling non-stored baseline control cells. However, uneven cell-cell

contact in some spots led to cell separation and deviation from uniform polygonal morphol-

ogy. Two weeks after the established incubation period, phase contrast micrographs of cells

stored at 12˚C has identified mainly cells with rounded morphology. At 24˚C, the mosaic-like

growth pattern typical of epithelial cells at confluence had completely disappeared. Most of the

cells were detached at 37˚C and formed cell clusters. The detached and/or loosened cells at

4˚C, 12˚C, 24˚C and especially 37˚C were easily washed away during medium change.

The evaluation of cell-cell contacts and cell adhesion of non-stored baseline OMECs using

SEM demonstrated a uniform, closely attached and solid monolayer of cells with distinct cell

borders (Fig 2). At 4˚C, epithelial cells retained extended filopodia, enlarged flattened appear-

ance and microvilli on the apical surface similar to non-stored baseline control cells, but there

was evidence of cell separation between some adjacent cells. The clustered cells, forming

uneven islands, at 12˚C and 24˚C resulted in apparent changes in cultured epithelial cells mor-

phology. Blebbing was also seen on some of the cells. At 37˚C, the remaining irregular,

shrunken and disintegrated cells were surrounded by debris.

3.2. Assessment of cell viability

The viability of OMECs incubated for two weeks was decreased with increasing storage tem-

perature compared to non-stored baseline control cells (Fig 3). The 4˚C experimental group

with 58% viability had the highest number of living cells, whereas the 37˚C group recorded no

Table 2. The list of primers used in gene expression analyses using RT-qPCR.

Gene Symbol Gene Name TaqMan Assay ID

ΔNp63α Tumor protein p63 Hs00978343_m1

TJP1 Tight junction protein 1 HS01551861_m1

CLND1 Claudin1 HS00221623_m1

OCLN Occludin Hs00170162_m1

ERBB3 Erb-b2 receptor tyrosine kinase 3 Hs00176538_m1

https://doi.org/10.1371/journal.pone.0243914.t002
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living cells. The 12˚C and 24˚C study groups, presented 14% and 2% viability, respectively.

The cell viability in all groups was significantly lower than baseline control (p� 0.05).

3.3. Evaluation of gene expression

This study considered a log2-fold change significant at thresholds above 1 and below -1 (i.e.,>

two-fold change). Moreover, this approach was only applied to 4˚C, 12˚C and 24˚C groups as

all cells died upon storage at 37˚C (Supplementary). Thus, altered expression at this tempera-

ture was deemed irrelevant. We identified 18 differentially expressed genes upon storage using

the TaqMan Gene Expression Array (Fig 4). Four of them (CDKN1A, TBRG4, PPARA and

TP53) were downregulated in all four different temperature conditions when compared to

non-stored baseline control (p� 0.05). Four other genes were also downregulated at 4˚C and

37˚C, with upregulation at 12˚C (EFEMP1), 24˚C (CCNH and CASP4), or both 12˚C and 24˚C

(GADD45B). Similarly, significant downregulation for all 4 temperature conditions, excluding

insignificant changes at 4˚C (HIST2H4A; HIST2HB) and 12˚C (RPSA and IKBKE), were also

observed. In contrast, EPHA4 showed significant upregulation at 4˚C, 12˚C and 24˚C. Six

genes (HIST1H4B, TAF1D, TGFB2, KRT1, KRT10 and GAPDH) presented a combination of

significant (both downregulation and upregulation) as well as insignificant changes in expres-

sion in studied groups of each different temperature conditions.

Results from RT-qPCR (Fig 5) indicated that ΔNp63α, TJP1 and CLND1 were significantly

upregulated at 4˚C but OCLN remained unchanged. At 12˚C, three of genes (ΔNp63α, CLND1

Fig 1. Light microscope images (4×, 10×, 20× and 40× magnification) of human oral mucosal epithelial cells incubated for 2 weeks at four storage temperatures

(4˚C, 12˚C, 24˚C and 37˚C) and non-stored control. Morphology of cells at 4˚C was most similar to control, although cell separation in some spots resulted in

deviation from uniform polygonal morphology. Cells mainly held rounded morphology at 12˚C, whereas the typical cobblestone appearance at confluence was totally

disappeared at 24˚C. Most of cells were detached at 37˚C and formed cell clusters.

https://doi.org/10.1371/journal.pone.0243914.g001
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Fig 2. Scanning electron micrographs of human oral mucosal epithelial cells incubated for 2 weeks at four storage temperatures (4˚C, 12˚C, 24˚C and 37˚C) and

non-stored control. The cells in control were closely attached to each other with distinct cell borders (Arrow). Cells at 4˚C retained the most similar morphology

compared to the control, but there was evidence of cell separation between some adjacent cells (Square). Clustered cells formed uneven islands at 12˚C and 24˚C and

blebbing morphology was seen on some of the cells (Arrow). At 37˚C, the remaining irregular and shrunken cells were surrounded by debris.

https://doi.org/10.1371/journal.pone.0243914.g002

Fig 3. Cell viability of human oral mucosal epithelial cells sheets incubated for 2 weeks at four storage

temperatures (4˚C, 12˚C, 24˚C and 37˚C) relative to non-stored control. Asterisk (�) above the bar denotes

significant differences (p� 0.05) as compared with the non-stored control.

https://doi.org/10.1371/journal.pone.0243914.g003
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Fig 4. TaqMan array cards analysis of the expression of 18 genes in human oral mucosal epithelial cell sheets

incubated for 2 weeks at four storage temperatures (4˚C, 12˚C, 24˚C and 37˚C) relative to non-stored control.

Asterisks (�) above the bar denote significant differences (p� 0.05).

https://doi.org/10.1371/journal.pone.0243914.g004

Fig 5. RT-qPCR analysis of the expression of 4 genes in human oral mucosal epithelial cell sheets incubated for 2

weeks at four storage temperatures (4˚C, 12˚C, 24˚C and 37˚C) relative to non-stored control. Asterisks (�) above

the bar denote significant differences (p� 0.05).

https://doi.org/10.1371/journal.pone.0243914.g005
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and OCLN) were significantly downregulated, except unchanged TJP1. At 24˚C, significant

downregulation was observed for ΔNp63α and TJP1, whereas upregulation for CLND1 and

OCLN.

4. Discussion

To establish optimal storage conditions for OMECs to maximize transplantation success and

extend access to regenerative medicine, this study aimed to assess the morphology, cell viabil-

ity and expression of selected genes of cultured OMECs stored at four different temperatures

(4˚C, 12˚C, 24˚C and 37˚C) for two weeks. The overall morphology and ultrastructure of cells

stored at 4˚C was most similar to non-stored baseline controls, whereas the 37˚C group was

the most dissimilar ones with only dead cells. The presence of cell separation between some

adjacent cells at 4˚C group and prominent morphological deformation, shrinkage, and mem-

brane blebbing at higher temperatures in our study were also observed by others, Islam et al

[16] and Jackson et al [15] for cultured oral keratinocytes and epidermal cells after one and

two weeks of storage, respectively. However, the authors found that mid range temperature

groups of 12˚C, 16˚C and 20˚C resulted in the best preserved morphology.

Cells stored at 4˚C had the highest viability rate (58%) compared to other three experimen-

tal groups with higher temperatures, whereas the 37˚C group presented no living cells. The for-

mer is in the viability range of suspended human oral keratinocyte (~63%) in DMEM, assessed

using trypan blue exclusion test, after three days storage at 4˚C [37]. Comparably, Islam et al

[16] showed that adherent human oral keratinocytes cultured in HEPES-MEM had ~45% via-

bility, as measured by calcein-acetoxymethyl ester fluorescence, following one week storage at

4˚C. The highest viability of the latter study, however, belonged to 12˚C group (~85%).

Other cell types have also been studied for the effect of storage temperature. For example,

human retinal pigment epithelium [38], epidermal keratinocytes [15] and conjunctival epithe-

lium [39] recorded ~4% (one week), ~18% (two weeks) and ~72% (one week) viable cells at

4˚C, respectively. For those cell types, the viability was greatest at 16˚C (~48%,), 24˚C (~97%,)

and 12˚C (~95%), respectively. This variation may be due to the cell types, the culture medium,

storage period or the viability assay used. Nevertheless, the survival of donor cells on the ocular

surface after limbal stem cells allografts has been found not to correlate with clinical outcomes

[40]. Additionally, hypothermia (2–8˚C) is a rather commonly used storage temperature prior

to transplantation [41].

Our gene analysis revealed that GAPDH, an important enzyme for energy metabolism, was

affected by temperature. Significant GAPDH downregulation was only observed at 4˚C

(excluding 37˚C with no viability). Similar response has also been demonstrated for corneal

cultures [42] and oral keratinocytes [16]. Based on Arrhenius equation, the principle behind

hypothermic storage is that the low temperature reduces chemical reaction rates and hence

declines cellular metabolic activities, which lowers the demand for oxygen and substrates [43].

The temperature dependant metabolic status, indicated as lactate/glucose ratio, has been previ-

ously shown to be inversely correlated with oxygen tension in epidermal keratinocytes [15].

Additionally, the glycolytic pathway has been suggested to play a major role in keratinocyte

energy production, regardless of available oxygen level [15, 44–46]. For human oral keratino-

cytes, Islam et al [16] suggested glycolysis could be responsible for at least partial energy pro-

duction at 4–37˚C after one week of storage. GAPDH is widely used as a housekeeping gene

for RT-qPCR or loading control for western blot. Therefore, researchers should be mindful in

selecting appropriate endogenous controls in molecular research associated with temperature.

In the present study, ERBB3 was used as reference gene because its expression level was unaf-

fected by experimental factors.
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Histones are positively charged basic nuclear proteins that play important structural and

functional roles in the transition between active and inactive chromatin states through com-

pacting DNA [47]. Hence, they play a central role in transcription regulation, DNA repair,

DNA replication and chromosomal stability [48]. In this study, HIST1H4B, one of the histone

cluster genes, was highly upregulated at 4˚C. HIST2H4A/B, another member of the same fam-

ily, was not significantly different at 4˚C when compared to non-stored baseline control. In

accordance with our finding, Raeder et al. [49], have reported the upregulation of HIST1H4B
in culture of human limbal epithelial cells stored at 4˚C for 2–7 days. Low temperature may

induce expression of this histone H4 encoding gene in order to acclimatize the cells to hypo-

thermia by stabilizing nucleosomes and repressing transcription, even after 2 weeks storage.

The effect of temperature on stored OMECs was also observed in the expression of genes

involved in cell adhesion, migration, motility and differentiation. EFEMP1 was upregulated at

12˚C. As a member of the fibulin family of extracellular glycoproteins, it is associated with

multiple structural and functional roles including morphology, growth, adhesion and motility

[50]. RPSA, another multifunctional gene (involved in e.g., cell adhesion, differentiation and

migration), remained unchanged at 12˚C but was downregulated at all other temperature con-

ditions. Finally, EPHA4 was significantly upregulated at 4˚C, 12˚C and 24˚C. Its key functions

are the maintenance of the basement membrane and the integrity of the extracellular matrix

[51]. Among genes used as differentiation markers, PPARA and TP53 were downregulated at

all four temperature conditions. CDKN1A, alias p21, responded in the same fashion. This gene

has been previously shown to be under the transcriptional control of p53 [52]. Two other dif-

ferentiation markers, KRT1 and KRT10, were either unchanged (4˚C) or downregulated (24˚C

and 12˚C, respectively), except an upregulation at 12˚C for KRT1. The 37˚C group was not

evaluated due to a majority of dead cells. The expression pattern of differentiation markers fol-

lowing storage have been previously reported by our group in other cultured epithelial cells

[14, 38, 53]. Using immunostaining, Islam et al [16] presented similar results for putative stem

cell markers in oral keratinocytes stored for one week at 4˚C, 12˚C and 20˚C. These results

indicated that the expression levels of some adhesion-, growth- and apoptosis-related genes

were favourable for cultured epithelial cells at 4˚C–24˚C.

The expression level of ΔNp63α, a stemness marker for OMECs [54, 55], was significantly

upregulated at 4˚C compared to other experimental groups. The clinical success in treatment

of LSCD has been linked to the high number of cells with ΔNp63α expression in transplanta-

tion of cultured LSC sheets [20]. The satisfactory results have been observed by authors in 78%

of patients when LSCs cultures expressed more than 3% ΔNp63α. Another important factor in

transplantation is the maintenance of barrier function of cultured sheet [56], which is partly

defined by cell membrane and cell junctions [57]. For example, Claudin and occludin, mem-

bers of tight junctions transmembrane proteins, interact with zonula occludens proteins such

as TJP1 (alias ZO-1) on cell’s plasma membrane face for anchoring them to the actin cytoskele-

ton [58]. These markers have previously been examined in human and rabbit cultivated

OMEC sheets [56]. Our study indicated that genes associated with tight junction were either

upregulated (TJP1 and CLND1) or unchanged (OCLN) at 4˚C. Additionally, the culture of

OMECs presented upregulation of CLND1 and OCLN at 24˚C. Although 37˚C led to highest

expression level of tight junction-associated genes, storage of OMECs for two weeks is disad-

vantageous due to the dominance of dead cells, downregulation of stemness gene (ΔNp63α)

and overexpression of keratinization markers (KRT1 and KRT10).

The upregulation of GADD45B, stress-induced growth arrest gene, is indicative of the high

level of stress imposed on OMECs after two weeks of storage at 12˚C and 24˚C. GADD45B is

considered a crucial factor in DNA repair, cell survival, growth arrest, apoptosis and DNA

demethylation [59–61]. Similarly, TGFB2 showed upregulated levels at the same storage
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temperatures, whereas CCNH was only upregulated at 12˚C. TGFB2 belongs to a group of pro-

teins that regulate several cellular functions, especially inhibition of cell proliferation through

cell cycle arrest in G1 phase [62, 63]. Its regulatory role is mediated by a series of formation,

activation and subsequent inactivation of the G1 cyclin-dependent kinase (CDK) complexes,

another group of proteins that are partly controlled by cyclins (e.g., CCNH) [64, 65]. The levels

and activities of both G1 cyclins and CDKs are directly affected by TGFB2 [66, 67].

One unanticipated finding was the upregulation of TAF1D, a histone-relevant transcrip-

tional regulation gene, at 4˚C and 24˚C. It is in contrast to downregulation of TBRG4, also

termed cell cycle progression restoration protein 2, in all four experimental groups. TAF1D,

the largest subunit of TFIID, is an essential component of transcription machinery which acts

through harboring bromodomains and histone acetyltransferase activity [68, 69]. It is difficult

to explain this result, but it might be related to the association revealed between TAF1D and

genotoxic/oxidative stress-induced apoptosis [70]. In this context, we observed upregulated

stress-induced growth arrest gene (GADD45B) at 24˚C. Moreover, the apoptosis-associated

gene CASP4 was also upregulated at 24˚C, in contrast to other downregulated groups. This

was supported by our photomicrographs illustrating cells with membrane blebbing, indicative

of apoptosis [71]. However, others have reported cold storage-induced apoptosis and/or

necrosis in oral keratinocytes [16] and epithelial cells [71].

The list of 22 regulated genes was subjected to DAVID Functional Annotation Tool

(https://david.ncifcrf.gov/) to test for over-representation in functional pathways. Unsurpris-

ingly, Cell Cycle came out as the most significantly affected in the KEGG PATHWAY Data-

base, and the only relevant, sustaining significance after adjustment for multiple testing by the

Benjamini–Hochberg method [72] (p = 3.4E-3, and the 5 genes: CCNH, CDKN1A, GADD45B,

TGFB2 and TP53). If more experiments had been performed, the statistical power would

increase, and we would probably find more affected genes as well as signaling pathways giving

further insight in the cellular processes affected upon storage.

Our study had some limitations. We decided not to adjust p-values for multiple testing to

avoid false negative findings (type II statistical errors), at the expense of increasing the likeli-

hood of including false positives (type I statistical errors). Another limitation was the use of

cells from a single donor, at the possible risk of systemic factors’ influence (e.g. donor health

and age) on extrapolation of the results [73–75].

The results of morphology, cell viability and gene expression assays in the current study

showed that 4˚C is the most appropriate temperature to store OMECs for up two weeks. Simi-

larly, Utheim et al [32] found that storage at 4˚C and 12˚C are more suitable for transplanta-

tion than 37˚C after one-week culture of oral keratinocytes. However, these results differ from

a previous study reporting 12˚C and 16˚C as optimal temperatures for cultured oral keratino-

cytes to maintain their structure and function after one week of storage [16]. Another similar

study also found 12˚C and 24˚C superior for storage of cultured epidermal cells for two weeks

[15]. Whilst our findings did not confirm their conclusions, it did support refrigeration (2˚C–

8˚C), one of the current methods employed in the storage of cultured epithelial cells [41].

Although this simple technique may be practical for short-term storage, several drawbacks

such as limited shelf-life, high cost, risk of contamination and genetic drift have discouraged

its application for long-term preservation [76].

5. Conclusions

This study found that the morphology of cultured human OMECs stored at 4˚C for two weeks

was most similar to non-stored baseline controls. Additionally, cells stored at 4˚C had the

highest viability rate (58%) when compared to other temperatures experimental groups. Gene
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analysis also revealed some levels of interruption at 12˚C and/or 24˚C through e.g., stress-

induced growth arrest (GADD45B) and cell proliferation inhibition genes (TGFB2). However,

some genes involved in cell adhesion, migration, motility and differentiation maintained tran-

scription levels beneficial for cultured epithelial cells at 4˚C–24˚C. Taken together, these

results suggest that storing OMECs at 4˚C for two-week is the most appropriate temperature

with the highest viability rate and morphology rather similar to pre-stored OME cells. There-

fore, it is most likely to be the best storage conditions for clinical transplantation.
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