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ABSTRACT Previously, we showed that mutations in Mycobacterium tuberculosis
panD, involved in coenzyme A biosynthesis, cause resistance against pyrazinoic acid,
the bioactive component of the prodrug pyrazinamide. To identify additional resis-
tance mechanisms, we isolated mutants resistant against pyrazinoic acid and sub-
jected panD wild-type strains to whole-genome sequencing. Eight of the nine resis-
tant strains harbored missense mutations in the unfoldase ClpC1 associated with the
caseinolytic protease complex.
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Pyrazinamide (PZA) is a critical component of the current first-line drug regimen to
treat tuberculosis (TB). Inclusion of PZA in the regimen in the 1980s shortened the

duration of therapy from 12 to 6 months (1). However, a 6-month regimen is still too
lengthy for ensuring compliance, not only affecting cure rates, but also facilitating the
development of drug resistance. Thus, shortening the treatment to 2 months or less is
a major goal in TB drug development (2). Most new drug combinations under devel-
opment include PZA, although its target(s) remains ill defined (3). Due to the clinically
proven sterilizing activity of PZA, identifying its mechanism of action may provide clues
to develop novel approaches for discovering shorter chemotherapeutic regimens.

PZA is a prodrug that must be converted to its bioactive form, pyrazinoic acid (POA).
Prodrug conversion is carried out by the host’s metabolism (4) and the bacterial
amidase PncA, the inactivation of which causes PZA resistance in vitro (5). POA appears
to have multiple bacterial targets. POA was proposed to act as an ionophore, causing
intracellular acidification (6, 7), though this model was questioned (8). Biochemical and
protein binding studies have identified at least two possible targets for POA, namely,
fatty acid synthetase I (FASI) (9) and 30S ribosomal S1 protein (RpsA) (10). This suggests
that POA may interfere with fatty acid synthesis and with trans-translation, which is a
rescue mechanism that frees ribosomes stalled in translation. Recently, we demon-
strated that at least two independent mechanisms of resistance to POA/PZA exist in
Mycobacterium bovis BCG. First, high-level POA resistance is caused by missense
mutations in aspartate decarboxylase panD (also reported in references 11 and 12),
indicating that POA interferes with pantothenate and coenzyme A biosynthesis (13).
Second, low-level POA resistance is caused by the loss of phthiocerol dimycocerosate
(PDIM) virulence factor biosynthesis via frameshift mutations in the polyketide synthase
genes mas and ppsA through ppsE (ppsA-E) (14). We also showed that the two resistance
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mechanisms were recapitulated in virulent Mycobacterium tuberculosis by whole-
genome sequencing of 10 in vitro-isolated POA-resistant strains (14).

Here, we asked whether additional “panD-like” mechanisms, i.e., high-level POA/PZA
resistance mechanisms independent of panD mutations, can be identified in M. tuber-
culosis. To avoid selecting strains with loss-of-function mutations in the prodrug-
activating amidase PncA, we selected M. tuberculosis H37Rv directly on 7H10 agar
containing POA, i.e., on agar containing the bioactive form of PZA instead of the
prodrug. We carried out spontaneous mutant selection, colony purification on respec-
tive POA-containing agar to verify drug resistance, and cryopreservation of resistant
strains for four independent batches of M. tuberculosis cultures by plating on 2 mM or
4 mM POA as described previously (14). We chose these high concentrations of POA to
avoid selecting low-level resistance mutations in mas and in ppsA-E (which can be
selected on 1 mM POA [14]). We observed spontaneous mutation frequencies of 10�4

(2 mM POA) and 10�5 (4 mM POA), consistent with the frequencies reported
previously by us (14) and by Lanoix et al. (15). The frozen stocks were expanded in
7H9 broth and genomic DNA was extracted (16). To identify panD-independent POA
resistance mechanisms, we picked a total of 21 POA-resistant strains from the 4
independent selection experiments and showed by targeted sequencing that 12 of the
strains carried expected (11, 12, 14) panD resistance mutations, while the remaining 9
strains harbored wild-type panD genes. Targeted panD sequencing was carried out by
PCR amplification of the panD locus as described in reference 11 using Phusion
polymerase (Thermo Scientific) followed by capillary sequencing of the PCR product,
performed by AIT Biotech, Singapore, using BigDye Terminator chemistry. The 12 panD
mutation-containing POA-resistant strains were excluded from this study. We deter-
mined the MICs to POA of the 9 POA-resistant panD wild-type M. tuberculosis strains to
confirm resistance in liquid culture, and they were found to display 4-fold increases in
MIC50 values, indicating high levels of POA resistance similar to that of the represen-
tative panD mutant strain POAr 1 described previously in reference 14 (Table 1 and Fig.
1A). To verify that these strains displayed POA resistance specifically and not general
antibiotic resistance, we measured MICs for rifampin and isoniazid and found that the
strains showed wild-type-like susceptibility to these first-line TB drugs (Fig. 1B and C).
We determined the MICs shown in Fig. 1A to C using the broth dilution method as
described previously with minor modifications (4). The strains were grown to mid-log
phase, spun down, and resuspended in fresh 7H9 medium adjusted to an optical

TABLE 1 Sequence polymorphisms and POA and PZA broth and agar MICs of POA-resistant M. tuberculosis strains

M. tuberculosis H37Rv
straina

Mutations POAb PZAb

clpC1c Other genes
MIC50 (mM)
in broth

MICd (mM)
in agar S/Re

MICd (mM)
in agar

Wild-type —f — 1.5 1 S 2
POAr 1 (panD1)g I — panD: Δ380A 6.0 �4 R �4
POAr 11 (clpC1-1) 1, I G-10Ch — 5.5 �4 R �4
POAr 12 (clpC1-2) 2, II C262G/Leu88Val mmpL7: T534G/Asp178Glu 5.5 �4 R �4
POAr 13 (clpC1-3) 3, I G296A/Gly99Asp — 6.0 �4 R �4
POAr 14 (clpC1-3) 4, I G296A/Gly99Asp — 6.0 �4 R �4
POAr 15 (clpC1-4) 4, II T323C/Ile108Thr — 6.5 �4 R �4
POAr 16 (clpC1-5) 3, I G341T/Arg114Leu — 5.0 �4 R �4
POAr 17 (clpC1-6) 1, II C577G/Arg193Gly Rv3626c: G710T/Arg237Leu 6.0 �4 R �4
POAr 18 (clpC1-7) 2, II A625G/Lys209Glu — 6.0 �4 R �4
POAr 19 (clpC1-8) 3, I T866C/Leu289Pro ppe47: Ins14G; yrbE4B: G715A/Gly239Arg 6.0 �4 R �4
aMutants were isolated from four independent batches of bacterial cultures: 1 and 2, selected on Middlebrook 7H10 agar containing 0.5% glycerol; 3 and 4, selected
on Middlebrook 7H10 agar without glycerol; I, mutants were selected on agar containing 2 mM POA; II, mutants were selected with 4 mM POA.

bDrug susceptibility tests were carried out 3 times independently and mean values are shown.
cPolymorphisms were identified by whole-genome sequencing and verified by targeted sequencing as described in the text.
dMaximum concentration of drug tested was 4 mM.
eBACTEC MGIT 960 test for susceptibility (S) or resistance (R) to 100 �g/ml PZA.
f—, not applicable.
gIsolated and described in reference 14.
hThe polymorphism is 10 bp upstream of the clpC1 start codon in the transcribed but untranslated leader sequence (see Fig. 1E).
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density at 600 nm (OD600) of 0.1. Next, 100 �l of the cell suspension was added to wells
containing 100 �l 2-fold serially diluted drugs in transparent flat-bottomed 96-well
plates (Corning Costar) and sealed with Breathe-Easy membranes (Sigma-Aldrich). The
plates were incubated for 7 days at 37°C with shaking at 80 rpm, and OD600 was
measured using a spectrophotometer (Tecan Infinite M200 Pro). In addition to broth
MICs, POA agar MICs were determined. The agar MIC was defined as the concentration
of drug that suppressed colony formation when plating 104 CFU from mid-log cultures
on 7H10 agar plates (in 3 independent experiments) and incubating for 3 weeks at 37°C
as described previously (17). The 9 POA-resistant panD wild-type strains displayed at
least 4-fold increases in agar MIC for POA compared with that of wild-type M. tuber-
culosis H37Rv (Table 1). Furthermore, we demonstrated that each of the 9 strains was
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FIG 1 Characterization of pyrazinoic acid (POA)-resistant panD wild-type M. tuberculosis strains. Growth
inhibition dose-response curves of 9 POA-resistant panD wild-type strains, POAr 11 to 19, POA-sensitive
wild-type M. tuberculosis H37Rv, and a representative POA-resistant panD mutant strain, POAr 1, isolated
previously (14), for (A) POA, (B) rifampin (RIF), and (C) isoniazid (INH). Experiments were carried out 3
times independently with technical replicates. Mean values and standard deviations from results of
representative experiments are shown. (D) Location of 7 ClpC1 amino acid sequence polymorphisms in
POA-resistant panD wild-type M. tuberculosis strains POAr 12 to 19. ClpC1 domain organization is shown
as described in reference 23. Within the N-terminal domain, two repeats are labeled I and II. A and B in
the D1 and D2 domains indicate Walker A and Walker B motifs, respectively. (E) Location of the
nucleotide sequence polymorphism G to C (�10) in the untranslated leader mRNA of clpC1 in POA-
resistant panD wild-type M. tuberculosis strain POAr 11. The organization of the clpC1 upstream region is
shown as described in reference 20. A conserved TANNNT promoter motif (TACAGT) and the transcrip-
tional start site (TSS), located 55 bp upstream of the clpC1 coding sequence, are indicated (20). Refer to
Table 1 for genotypes and phenotypes of strains.
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also resistant to the prodrug PZA using the Bactec MGIT 960 PZA susceptibility test (18)
and by determining PZA agar MICs (19) as shown in Table 1. Altogether, the broth and
agar MICs of the POA-resistant panD wild-type strains for POA and PZA revealed that
all 9 strains showed (i) resistance to the bioactive form of PZA (POA) and the prodrug
PZA itself, (ii) similar resistance levels, and (iii) resistance levels similar to the resistance
level of the previously identified panD mutant strain (14). In other words, the resistance
levels were “high” compared with the low level of resistance caused by mutations in the
polyketide synthases Mas and PpsA-E (14).

To identify the genomic polymorphisms associated with resistance, the 9 POA/PZA-
resistant panD wild-type strains were subjected to whole-genome sequencing. Whole-
genome sequencing was performed on Illumina MiSeq as described previously (14). As
was expected from selecting for resistance on agar containing high POA concentra-
tions, we did not detect low POA resistance conferring mas or ppsA-E mutations (14) in
the 9 strains. Table 1 shows that 8 of the 9 strains (POAr 12 to 19) carried nonsynony-
mous single nucleotide polymorphisms in the coding sequences of ClpC1 (Rv3596c).
These 8 clpC1 missense mutation-harboring strains presented 7 different amino acid
substitutions in the N-terminal and D1 domains of this 848-amino-acid protein (Fig. 1D),
with one pair carrying identical amino acid changes (Table 1, POAr 13 and 14). As the
members of this pair were isolated from different selection experiments (i.e., from
independently grown cultures), they likely represent independent mutational events
and are not clonal in nature. The remaining POA-resistant strain, POAr 11, showed a
nucleotide polymorphism 10 bp upstream of the ClpC1 encoding sequence in the
leader mRNA of the transcript (Table 1 and Fig. 1E) (20). Whether this mutation affects
the expression level of the ClpC1 protein remains to be determined. The mutations in
the clpC1 gene were confirmed by targeted PCR sequencing using the following primer
pairs: 5=-CGGCGACCTGACATTTGGCTACC-3= and 5=-ACGCCTTCCCCTTCATGGATCAGG-3=
for strain POAr 11 carrying a mutation upstream of ClpC1 encoding sequence, and
5=-ACATATGTTCGAACGATTTACCGACCGTGC-3= and 5=-TGAATTCACCCATGTCAATCTGA
ATAAGCGC-3= for the remaining strains with mutations in the ClpC1-encoding region.
Taken together, all 9 POA/PZA-resistant panD wild-type M. tuberculosis strains harbored
nucleotide polymorphisms in the clpC1 locus. This result suggests that the observed
mutations in this gene cause POA/PZA resistance.

Caseinolytic protein C (ClpC) can be found in both prokaryotes and eukaryotes. ClpC
belongs to class I of the AAA� (ATPases associated with a variety of cellular activities)
superfamily containing one N-terminal and two nucleotide-binding domains (D1 and
D2), the latter harboring the Walker A and Walker B motifs required for ATP binding and
hydrolysis (21) (Fig. 1D). Bacterial ClpC proteins have been reported to function as
molecular chaperones and specificity factors involved in determining substrates to be
degraded by the caseinolytic protease complex (22). Similarly, in M. tuberculosis, the
ClpC homolog ClpC1 self-associates to form oligomers displaying ATPase and molecular
chaperone activities in vitro (23). ClpC1 works as an unfoldase in concert with the
proteases ClpP1 and ClpP2 of the caseinolytic protease complex (24), and it was
demonstrated that this degradative protease is essential for the viability of M. tuber-
culosis (25). Due to the critical role of this protease in survival and virulence, different
components of this complex have been proposed as attractive therapeutic targets (26).
Our POA-resistant strains harbor missense mutations in 2 different regions of the ClpC1
protein. We observed 4 different missense mutations in the N-terminal domain of
ClpC1, with 3 located in the N-terminal repeat II (as annotated by reference 23) and the
fourth mutation just outside this repeat (Fig. 1D). While the exact role of the N-terminal
domain of M. tuberculosis ClpC1 is unclear, it is interesting to note that it acts as the
binding site of several novel antimycobacterials, including cyclomarin (27), lassomycin
(28), and ecumicin (29). In other prokaryotes, the N-terminal domain of ClpC is the site
for interacting with adaptor proteins, either acting as the binding site or aiding in
substrate recognition (21, 30). The other 3 missense mutations are located in the D1
domain, flanking the Walker A and Walker B motifs (Fig. 1D).

Yee et al. Antimicrobial Agents and Chemotherapy

February 2017 Volume 61 Issue 2 e02342-16 aac.asm.org 4

http://aac.asm.org


It remains to be determined whether the observed missense mutations in the
coding regions of clpC1 cause POA/PZA resistance via a direct mechanism, for instance,
by preventing binding of the drug to the ClpC1 protein, or an indirect mechanism, for
instance, by affecting the substrate selectivity of the ClpC1 unfoldase and therefore the
level of some proteins targeted for degradation by the caseinolytic protease complex.

Similar to the POA/PZA-associated resistance mutations in panD isolated in vitro (11,
12, 14), clpC1 polymorphisms appear to not be strongly associated with PZA resistance
in clinical isolates of M. tuberculosis. In the Genome-wide Mycobacterium tuberculosis
variation (GMTV) database (31), we did not find any strains with the clpC1 polymor-
phisms observed in our POA-resistant strains. It has been shown that clpC1 is essential
for growth in vitro (32, 33) and for survival within macrophages (34). Whether the
absence of our POA/PZA resistance-causing mutations in clinical isolates results from a
loss of in vivo fitness is under investigation in mouse infection studies.

In conclusion, we add here to the growing list of POA/PZA candidate targets and
resistance mechanisms, including fatty acid synthetase I (FASI), ribosomal protein S1
(RpsA), the aspartate decarboxylase PanD, and the polyketide synthases Mas and
PpsA-E, by demonstrating that missense mutations in the unfoldase/ATPase ClpC1 of
the caseinolytic protease complex are associated with POA and PZA resistance. This
provides further support for a working model suggesting that the excellent sterilizing
activity of PZA may be due, in part, to it being a “dirty drug”, i.e., this small “fragment-
like” antimycobacterial can hit multiple targets and pathways inside the tubercle
bacillus (35).
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