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Abstract

Angiotensin-converting enzyme 2 (ACE2) is expressed in the kidney and may be a renoprotective enzyme, since it converts
angiotensin (Ang) II to Ang-(1-7). ACE2 has been detected in urine from patients with chronic kidney disease. We measured
urinary ACE2 activity and protein levels in renal transplant patients (age 54 yrs, 65% male, 38% diabetes, n = 100) and
healthy controls (age 45 yrs, 26% male, n = 50), and determined factors associated with elevated urinary ACE2 in the
patients. Urine from transplant subjects was also assayed for ACE mRNA and protein. No subjects were taking inhibitors of
the renin-angiotensin system. Urinary ACE2 levels were significantly higher in transplant patients compared to controls
(p = 0.003 for ACE2 activity, and p#0.001 for ACE2 protein by ELISA or western analysis). Transplant patients with diabetes
mellitus had significantly increased urinary ACE2 activity and protein levels compared to non-diabetics (p,0.001), while
ACE2 mRNA levels did not differ. Urinary ACE activity and protein were significantly increased in diabetic transplant subjects,
while ACE mRNA levels did not differ from non-diabetic subjects. After adjusting for confounding variables, diabetes was
significantly associated with urinary ACE2 activity (p = 0.003) and protein levels (p,0.001), while female gender was
associated with urinary mRNA levels for both ACE2 and ACE. These data indicate that urinary ACE2 is increased in renal
transplant recipients with diabetes, possibly due to increased shedding from tubular cells. Urinary ACE2 could be a marker
of renal renin-angiotensin system activation in these patients.
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Introduction

Angiotensin-converting enzyme 2 (ACE2) is a recently identified

member of the renin-angiotensin system (RAS) that degrades

angiotensin (Ang) II to the seven amino acid peptide fragment

Ang-(1-7) [1,2]. ACE2 is a homologue of angiotensin-converting

enzyme (ACE), but is not blocked by ACE inhibitors. Although

ACE2 is found in many tissues, expression is especially high in the

kidney, particularly within cells of the proximal tubule [3–5]. In

mice deletion of the ACE2 gene is associated with development of

late-stage glomerulosclerosis, and acceleration of diabetic ne-

phropathy, in the absence of hypertension [6,7]. In spontaneously

hypertensive rats, administration of human recombinant ACE2

reduces blood pressure [8], and in diabetic mice, exogenous

human ACE2 diminishes blood pressure and glomerular injury

[9]. Thus, ACE2 may be an endogenous protector against the

progression of chronic kidney disease (CKD).

In kidney tubular epithelial cells, ACE2 is localized to the apical

membrane and also appears in the cytoplasm [3,10]. ACE2 is shed

at its carboxy-terminus from the plasma membrane in cultured

human embryonic kidney cells and airway epithelial cells, a process

catalyzed by the enzyme ‘‘a disintegrin and metalloproteinase-17’’

(ADAM-17) [11–13]. Whether this process occurs in the proximal

tubule is unclear, although soluble ACE2 has been detected in

human urine [10]. In a recent study, urinary levels of ACE2

protein were significantly increased in humans with CKD (the

majority with chronic glomerulonephritis), compared to healthy

controls, as determined by enzyme-linked immunosorbent assay

(ELISA) [14]. Urinary ACE2 was also higher in diabetics with

CKD [14]. These results suggest that ACE2 may be shed into the

urine, and could be a biomarker in CKD patients. However, the

presence of urinary ACE2 has not been studied in renal transplant

recipients, and the factors associated with elevated urinary ACE2

remain unclear. Accordingly, the principle objective of the present

study was to determine if urinary ACE2 activity, protein, and

mRNA can be detected in renal transplant patients, and to identify

factors associated with the presence of ACE2. In addition, we

examined factors associated with urinary ACE activity, protein

and mRNA in these patients. Our data indicate that urinary

ACE2 is increased in renal transplant recipients with diabetes,

possibly due to increased shedding from tubular cells.

Methods

Ethics Statement
This study involved recruitment of human subjects as described

below, with written informed consent, and the study was

conducted according to the principles expressed in the Declaration

of Helsinki. The study protocols were approved by the Research
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Ethics Board of The Ottawa Hospital (protocol numbers

200951201H, 200568201H).

Study Subjects
The subjects in this study were 50 healthy controls (age

.18 yrs), recruited from the hospital or research centre staff,

with no history of kidney disease, hypertension, or diabetes, and

100 renal transplant recipients from The Ottawa Hospital Renal

Transplant Program, age .18 yrs, and .3 months post-

transplant. At the time of enrollment, half of the transplant

subjects (n = 50) were also enrolled in an ongoing randomized

controlled trial to determine the effect of the ACE inhibitor

ramipril on transplant outcomes (ACE inhibition for the

preservation of renal function and survival in kidney trans-

plantation; International Standard Randomized Controlled Trial

Number Registry ISRCTN-78129473), but had not yet received

either placebo or ramipril. These subjects had documented

significant proteinuria (.200 mg urinary protein/day) at base-

line. The 50 other transplant recipients were patients without

significant proteinuria (spot urine ACR in the normal range, or

,200 mg proteinuria/day). Subjects were excluded if they were

taking ACE inhibitors, angiotensin receptor antagonists, or renin

inhibitors, or if they were pregnant or currently had a urinary

tract infection.

After obtaining informed consent, a spot urine sample was

collected from each subject, and a blood sample was drawn for

measurement of serum creatinine (Cr) and determination of

estimated glomerular filtration rate (eGFR), using the Modification

of Diet in Renal Disease (MDRD) calculation [15]. Demographic

information was obtained via interview with the subject and/or

from the hospital chart. For transplant recipients, a diagnosis of

diabetes mellitus and the primary renal diagnoses were obtained

directly from survey of the hospital chart.

Measurement of Urinary Albumin/Creatinine
Urine samples were placed on ice, aliquoted and then

centrifuged at 12000 g for 5 min at 4uC. Measurements of urinary

albumin were performed on supernatant fractions, using an

ELISA kit (Exocell Inc., Philadelphia, PA, USA). Results were

corrected for urinary Cr concentration, using a kit specific for

human Cr (Creatinine Companion, Exocell Inc.).

Urinary ACE2 and ACE Enzyme Activity Assays
The enzyme activities of urinary ACE2 and ACE were

measured using synthetic substrates, essentially as we previously

reported [16]. All results were corrected for the Cr concentration

in the urine samples. Details on the assays can be found in Text

S1.

Urinary ACE2 ELISA
The amount of ACE2 present in urine specimens was

quantified using a commercial ELISA kit (Cat. No. AG-45A-

0022EK-KI01, AdipoGen, Seoul, Korea) according to the

protocol provided by the supplier (http://www.adipogen.com/

ag-45a-0022/ace2-human-elisa-kit.html). A standard curve was

generated by performing 1:2 serial dilutions of human

recombinant ACE2 (50 ng/ml), provided with the kit, with

the limit of detection ranging from 0.391 to 25 ng/mL. In

preliminary experiments, the average intra-assay coefficient of

variation (CV) for the assay was 2.9%, and the average inter-

assay CV value was 8.7% (n= 10). The amount of ACE2

obtained by ELISA was normalized to the subject’s urine Cr

concentration, and is reported as ng/mg Cr.

Urinary ACE2 and ACE Immunoblot Assays
Urine aliquots (supernatant fraction, 15 mL) were subjected to

immunoblot analysis for ACE2 and ACE, using commercially

available antibodies. To control for variations in urine concentra-

tion, the values obtained by densitometry were divided by the

corresponding Cr concentration for that urine sample. Details on

the assays can be found in Text S1.

Peptide N-Glycosidase F (PNGase F) Treatment
Urine aliquots (supernatant fraction, 20 mL) were subject to

deglycosylation reaction using PNGase F (Cat No. P0704S, New

England Biolabs, Ipswich, MA, USA). Deglycosylated urinary

ACE2 protein fragments were detected by western analysis.

Details of the assays can be found in Text S1.

Urinary mRNA Assays
Urine samples (40 mL) were centrifuged at 1000 g for 20 min at

4uC. Total RNA was isolated from pellet fractions and then

subjected to real-time RT-PCR for quantitation of ACE2 and

ACE (see Text S1 for assay details).

Urinary Ang II and Ang-(1-7) Assays
Urinary levels of Ang II were measured using a commercial

peptide radioimmunoassay (RIA) kit that contains an Ang II-

selective polyclonal antibody and 125I-Ang II (Peninsula Labora-

tories, San Carlos, CA, USA), essentially as described [16,17].

Ang-(1-7) levels were measured using a commercial peptide

enzyme immunoassay (EIA) kit that contains an Ang-(1-7)-selective

polyclonal antibody (Peninsula Laboratories) [16]. For assay

details, see Text S1.

Analysis
Data are presented visually as box plots. Continuous variables

are reported as the median value, with the interquartile range in

parentheses. Statistical analysis was performed by the nonpara-

metric Mann-Whitney U test for unpaired samples to compare

data in healthy controls and transplant recipients, and diabetic vs

non-diabetic transplant recipients. A linear regression model was

constructed to identify potential explanatory variables for urinary

ACE2 and ACE levels in the 100 transplant subjects. The

dependent variable was the measure under study (e.g. ACE2

activity) while the following explanatory variables were entered

into the model: age, gender, diabetes, eGFR, albuminuria,

hypertension, and use of calcineurin inhibitors. Variables were

forced in simultaneously and removed from the model if not

statistically significant. Standardized regression coefficients (b) are
presented for each dependent variable in the model. Data were

analyzed using SigmaStat (version 3.01 A; SYSTAT) and JMP

(version 8.0.1, SAS Inc.). For all data, a p value ,0.05 was

considered significant.

Results

Patient Demographics
The characteristics of the 50 healthy controls and 100

transplant subjects are depicted in Table 1. The median age for

control subjects was 45 [interquartile range (IQR), 36–50] yrs, and

26% were male. The median age for transplant subjects was 54

(IQR, 42–62) yrs, 65% were male, 38% had diabetes, and 88%

had hypertension. Median time from transplant was 3 (IQR, 1–7)

yrs. The median eGFR was 79.0 (IQR, 69.0–86.0) mls/min/

1.73 m2 in control subjects and 48.5 (IQR, 40.0–61.0) mls/min/

1.73 m2 in transplant subjects. Median albuminuria level was 0.94
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(IQR, 0.67–1.43) mg/mmol Cr in control subjects and 1.58 (IQR,

0.61–20.63) mg/mmol Cr in transplant subjects. Most transplant

patients (89%) were on triple immunosuppressant therapy

comprised of prednisone, a calcineurin inhibitor (tacrolimus or

cyclosporine), and either azathioprine or mycophenolate mofetil.

Urinary ACE2 Activity, Protein, and mRNA
As shown in Figure 1A, urinary ACE2 activity was significantly

increased in transplant patients, compared to control subjects

[control; median: 1.90 (IQR, 1.04–2.70) ng-eq/mg Cr6102 vs

transplants; median: 3.65 (IQR, 1.13–9.35) ng-eq/mg Cr6102;

p = 0.003]. Similarly urinary ACE2 protein by ELISA was

significantly increased in transplant patients, compared to controls

(Figure 1B) [control; median: 1.41 (IQR, 0.00–4.49) ng/mg Cr vs

transplants; median: 8.04 (IQR, 0.00–21.11) ng/mg Cr;

p,0.001]. In 96% of unconcentrated urine samples from control

and 94% from transplant subjects, ACE2 was identified by western

analysis as a protein doublet of 120 kDa and 90 kDa. As with

urinary ACE2 activity and ELISA measurements, western

analyses revealed a significant increase in urinary ACE2 protein

in transplant patients compared to controls (Figure 1C: p= 0.001).

Within the group of 100 transplant patients, multiple linear

regression using primary renal diseases as explanatory variables

revealed a significant association between the diagnosis of diabetic

nephropathy (n= 21) and urinary ACE2 protein by ELISA or

western analyses (p,0.001 for both). In contrast, there was no

significant association between urinary ACE2 levels and other

primary causes of renal disease in these patients. Further studies

were performed on the association between diabetes mellitus and

urinary ACE2 in the transplant patients. Of the 100 transplant

patients, 38 had a diagnosis of diabetes mellitus listed on their

hospital chart. The majority of these patients were taking insulin

(31 out of 38, 81.6%), 6 (15.8%) were taking oral hypoglycemic

agents, and only 1 patient (2.6%) was on dietary therapy alone.

Transplant patients with diabetes (n = 38) had significantly

higher levels of urinary ACE2 activity, compared to non-diabetic

(n = 62) subjects [Figure 2A: diabetics; 8.75 (IQR, 3.09–15.54) vs

non-diabetics; 2.32 (IQR, 0.63–5.37) ng-eq/mg Cr6102;

p,0.001]. Similarly, ACE2 protein levels by ELISA and western

analysis were significantly increased in diabetic subjects, compared

to non-diabetics (Figure 2B, C; p,0.001 vs non-diabetics for

both). In transplant patients with diabetes, both the 120 kDa and

the 90 kDa ACE2 protein bands were significantly increased on

westerns, compared to non-diabetics (p = 0.002 vs non-diabetics

for the 120 kDa band, and p,0.001 vs non-diabetics for the

90 kDa band). Moreover, urinary ACE2 protein levels by ELISA

were significantly increased in subjects with diabetes pre-trans-

plant (n = 21), compared to subjects who developed diabetes after

transplant (n = 17; p = 0.024).

The state of glycosylation of the urinary ACE2 proteins at

120 kDa and 90 kDa was studied by treating urine samples with

the deglycosylase enzyme PNGase F. Urinary ACE2 fragment

sizes were reduced to ,85 kDa and ,65 kDa by PNGase F

treatment, indicating that both fragments were originally glyco-

sylated (Figure 2D).

RNA was extracted from urinary pellets and subjected to real-

time PCR for ACE2. ACE2 mRNA was detected in 45% of urine

samples of transplant patients, with no significant difference

between diabetic [0.669 (IQR, 0.00–6.15) pg mRNA/mg

Cr61025] and non-diabetic subjects [0.00 (IQR, 0.00–2.06) pg

mRNA/mg Cr61025; p = 0.091].

After adjusting for potential confounding factors [age, gender,

diabetes, eGFR, albuminuria, hypertension, and use of calcineurin

inhibitors] only diabetes was significantly associated with urinary

ACE2 activity (p = 0.003) and protein levels (p,0.001, Table 2) in

transplant patients. An increase in urinary ACR was associated

with urinary ACE2 protein by ELISA (p = 0.026), but not with

ACE2 activity or ACE2 protein by western. Female gender was

associated with higher urinary ACE2 mRNA levels in transplant

patients (p = 0.004, Table 2).

Since the numbers of patients taking calcineurin inhibitors (95/

100 patients) were highly skewed (Table 1), multivariate analysis

was also performed with exclusion of this variable. This did not

alter the significance levels for any parameters reported in Table 2.

Urinary ACE Activity, Protein, and mRNA
Urinary ACE activity was detected in 65% of transplant patients

[median for all 100 patients: 1.17 (IQR, 0.00–3.43) ng-eq/mg

Cr6102]. By western analysis, ACE was detected in 94% of urine

samples of transplant patients as a protein band of approximately

190 kDa, consistent with previous studies [18] (Figure 3). Urinary

ACE activity and protein levels were significantly increased in

diabetic transplant subjects, compared to non-diabetic patients

(Figure 3A,B; p = 0.013, p = 0.019, respectively). ACE mRNA was

detected in 65% of urine samples of transplant patients, with no

significant difference between diabetic [3.06 (IQR, 0.04–19.09) pg

mRNA/mg Cr61025] and non-diabetic patients [0.77 (IQR,

0.00–13.16) pg mRNA/mg Cr61025; p = 0.18].

After adjusting for potential confounding variables, increased

urinary albumin/Cr was associated with urinary ACE protein by

western analysis in transplant patients (p,0.001, Table 2).

However, diabetes did not associate with increased urinary ACE

activity or ACE protein. Female gender and urinary albumin/Cr

Table 1. Subject demographic data.

Control (n = 50) Patients (n =100)

Age (years) 45 (36–50) 54 (42–62)

Male gender (%) 26 65

eGFR (mls/min/1.73 m2) 79.0 (69.0–86.0) 48.5 (40.0–61.0)

ACR (mg/mmol) 0.94 (0.67–1.43) 1.58 (0.61–20.63)

Diabetes % 0 38

Hypertension % 0 88

Years post-transplant N/A 3 (1–7)

Primary cause of renal
disease, %

Diabetic nephropathy N/A 21

Hypertension N/A 9

Polycystic kidney disease N/A 13

Glomerulonephritis N/A 41

Other N/A 16

Triple immunosuppression
usea %

N/A 89

CNI (Cyclosporine or Tacrolimus) % N/A 95

Prednisone % N/A 97

Mycophenolate mofetil % N/A 90

Azathioprine % N/A 8

Sirolimus % N/A 3

Values are medians with interquartile range in parentheses. Abbreviations:
eGFR: estimated glomerular filtration rate, ACR: urine albumin to Cr ratio, CNI:
calcineurin inhibitor. a calcineurin inhibitor, mycophenolate mofetil or
azathioprine, and corticosteroid. N/A: not applicable.
doi:10.1371/journal.pone.0037649.t001
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were significantly associated with increased urinary ACE mRNA

levels in transplant patients (Table 2).

Urinary Ang II and Ang-(1-7)
Transplant patient with diabetes had significantly higher levels of

urinary Ang II, compared to non-diabetics (Figure 4A: p= 0.027).

Urinary Ang-(1-7) levels did not differ between the two groups

(Figure 4B: p = 0.13). However, a significant positive linear

correlation was found between urinary ACE2 activity and urinary

Ang-(1-7) (r = 0.260, p= 0.009). In the multivariate analysis,

diabetes remained significantly associated with urinary Ang II

levels (p = 0.042, Table 2). Neither diabetes, nor any other clinical

factor (eGFR, urinary albumin/Cr, etc.) was associated with

urinary Ang-(1-7) levels in the multiple linear regression model.

Discussion

The major finding of this study is that urinary ACE2 activity

and ACE2 protein are increased in kidney transplant recipients,

compared to healthy control subjects, and the presence of diabetes

strongly associates with urinary ACE2 levels in the patient

population, by multivariate analysis. Female gender associates

significantly with urinary ACE2 mRNA and ACE mRNA levels,

which are detected in 45% and 65% of transplant recipients,

respectively.

ACE2 is expressed at relatively high levels in the kidney,

particularly in the proximal tubule, and is thought to be

renoprotective via its ability to reduce Ang II levels. ACE2 also

increases production of Ang-(1-7), which can oppose the delete-

Figure 1. Urinary ACE2 activity and protein in control subjects and renal transplant (Tx) recipients. (A) Graph depicts box plots of
urinary ACE2 activity in control subjects (n = 50) and Tx recipients (n = 100). For each box plot, median values are indicated by the line within the box,
with value shown beside or above the line. The box represents 50% of the values (25th and 75th percentiles), with the upper bar representing the 90th

percentile and the lower bar representing the 10th percentile. Open circles indicate outliers. * p = 0.003, Control vs Tx recipients. (B) Graph depicts box
plots of urinary ACE2 protein by ELISA in control subjects and Tx recipients. ** p,0.001, Control vs Tx recipients. (C) Graph depicts box plots of
urinary ACE2 protein by western analyses in control subjects and Tx recipients. Densitometry analysis was performed on both urinary ACE2 bands
(120 kDa and 90 kDa), and the sum of the two bands was used for quantitative comparisons. **p = 0.001, Control vs Tx recipients.
doi:10.1371/journal.pone.0037649.g001
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Figure 2. Urinary ACE2 activity and protein in renal transplant recipients: Effect of diabetes. (A) Graph depicts box plots of urinary ACE2
activity in transplant recipients without diabetes (No Diabetes), or with diabetes (Diabetes). For each box plot, median values are indicated by the line
within the box, with value shown above the line. The box represents 50% of the values (25th and 75th percentiles), with the upper bar representing
the 90th percentile and the lower bar representing the 10th percentile. Open circles indicate outliers. * p,0.001, Diabetes vs. No Diabetes; n = 62 (No
Diabetes), n = 38 (Diabetes). (B) Graph depicts box plots of urinary ACE2 protein by ELISA in transplant recipients without diabetes (No Diabetes), or
with diabetes (Diabetes). *p,0.001, Diabetes vs. No Diabetes. (C) Graph depicts box plots of urinary ACE2 protein by western analysis in transplant
patients without diabetes (No Diabetes), or with diabetes (Diabetes). *p,0.001, Diabetes vs. No Diabetes. Above graph is representative immunoblot
for ACE2 in urine, showing bands at 120 kDa and 90 kDa. Densitometry analysis was performed on both bands, and the sum of the two bands was
used for quantitative comparisons. The protein bands for ACE2 in urine specimens were not observed when membranes were incubated with the
secondary antibody alone, bypassing the primary antibody step. Lanes 1–3, No Diabetes. Lanes 4–6, Diabetes. Lane 7: recombinant human ACE2
protein (hACE2), used as a positive control. (D) Representative immunoblot for urinary ACE2 treated without (2) or with (+) the deglycosylase enzyme
PNGase F. Lanes 1+, 2+, 3+, and 4+ show a reduction in the sizes of urinary ACE2 fragments to ,85 kDa and ,65 kDa in urine samples treated with
PNGase F. Lanes 1 and 2, No Diabetes. Lanes 3 and 4, Diabetes. Lane 5: recombinant human ACE2 protein (hACE2).
doi:10.1371/journal.pone.0037649.g002
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rious non-hemodynamic actions of Ang II in tubular cells [19].

Kidney expression of ACE2 is reduced in experimental models,

including the remnant kidney model of CKD [16,20,21]. In

humans with diabetic nephropathy, expression of ACE2 is

decreased in glomeruli and proximal tubules [22], suggesting

a predisposition to Ang II-mediated injury.

Our results support the hypothesis that transplant patients with

diabetes exhibit increased urinary excretion of ACE2 protein. This

was independent of eGFR as determined by multivariate analysis.

Both soluble ACE2 and ACE have been detected in human urine

[10], and in humans with CKD, Mizuiri et al. reported increased

urinary levels of ACE2 protein by ELISA, compared to healthy

subjects [14]. Patients with diabetic nephropathy had higher

urinary levels of ACE2 than those without diabetic nephropathy,

and use of ACE inhibitor and/or angiotensin receptor blockers did

not affect urinary ACE2 levels [14]. In our study, no subjects were

taking inhibitors of the RAS. Using three independent assays for

urinary ACE2 (enzyme activity, ELISA, and immunoblot),

multiple linear regression revealed that diabetes was the only

variable consistently predictive of higher urinary ACE2 levels. Age

and gender had no influence on urinary ACE2 activity or protein

levels. Similarly, in patients with CKD Mizuiri et al. found no

difference in urinary ACE2 levels between males and females [14].

Although gender did not influence urinary ACE2 activity or

protein, in the present studies females had significantly higher

urinary ACE2 mRNA levels. The gene for ACE2 is located on the

X chromosome [2], and in the rat renal wrap model of

hypertension, intrarenal ACE2 activity and expression are up-

regulated by estrogens [23], raising the possibility that female

transplant recipients may express ACE2 mRNA at higher levels in

the kidney compared to males. Female gender was also associated

with higher urinary ACE mRNA levels, as was albuminuria, the

latter being in agreement with studies in patients with diabetic

nephropathy [24]. The cellular origin of urinary mRNA for ACE2

or ACE is unknown, although it has been speculated that proximal

tubular cells may be the source, since they express all components

of the RAS, and are found in the urine sediment [24]. However,

the physiological significance of urinary ACE2 or ACE mRNA

levels is unclear. In this regard, diabetes, albuminuria and eGFR

did not influence urinary ACE2 mRNA levels in our transplant

recipients, a result that differs from diabetic nephropathy patients,

where proteinuria was found to correlate positively with urinary

ACE2 mRNA, and eGFR to correlate negatively with ACE2

mRNA [24]. Factors related to transplant could therefore have an

independent influence on urinary ACE2 mRNA. As one

possibility, the use of immunosuppressive drugs in transplant

subjects might regulate shedding of cells expressing ACE2 mRNA

into the urine.

Urinary ACE2 protein could originate at least partly from

plasma (via filtration at the glomerulus), or it could be derived via

excretion from renal cells. Although Mizuiri et al. found higher

urinary ACE2 levels in CKD patients, there was no difference in

plasma ACE2 protein between CKD patients and healthy subjects

[14]. However, the CKD patients in their study had significant

albuminuria, suggesting that ACE2 may have leaked into the urine

across the glomerular barrier. In the present study, we found no

association between albuminuria and either urinary ACE2 activity

or protein levels by western analysis. The data suggest that urinary

ACE2 protein likely derives via shedding from cells along the

nephron, and not from filtration from plasma. In support of this

hypothesis, soluble ACE2 is shed from the plasma membrane in

cell culture systems, via cleavage at its ectodomain by the protease

enzyme ADAM-17 [11–13]. Interestingly, renal ADAM-17 is up-

regulated in Ang II-induced kidney injury [25], and de novo

expression occurs in human kidney disease, in proximal tubule,

podocytes, and mesangial cells [26]. Whether ADAM-17 is

activated in the transplant kidney in the presence of diabetes,

Table 2. Multiple linear regression adjusting for common variables in transplant recipients.

Dependent Variable Independent Variable Standardized Coefficient (b) 95% CI p value

ACE2 Activity

Diabetes 0.295 0.104, 0.487 0.003

ACE2 ELISA

Diabetes 0.365 0.183, 0.547 ,0.001

ACR 0.207 0.025, 0.389 0.026

ACE2 Western

Diabetes 0.332 0.143, 0.521 ,0.001

ACE2 mRNA

Gender (Female) 0.287 0.095, 0.479 0.004

ACE activity (none)

ACE Western

ACR 0.327 0.138, 0.516 ,0.001

ACE mRNA

Gender (Female) 0.222 0.033, 0.411 0.022

ACR 0.267 0.078, 0.456 0.006

Ang II

Diabetes 0.204 0.008, 0.400 0.042

Ang-(1-7) (none)

All analyses adjusted for eGFR, age, gender, albuminuria, diabetes, hypertension, and use of calcineurin inhibitors. Abbreviations: eGFR: estimated glomerular filtration
rate, ACR: urine albumin to Cr ratio.
doi:10.1371/journal.pone.0037649.t002
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and mediates shedding of soluble ACE2 into the urine requires

further study.

Two bands for ACE2 were detected by immunoblot of urine

samples in the current study. One band was found at 120 kDA,

consistent with the full-length protein, and the other at 90 kDa,

which is likely a cleaved ACE2 fragment. Thus, the 90 kDa

Figure 3. Urinary ACE activity and protein in renal transplant
recipients: Effect of diabetes. (A) Graph depicts box plots of urinary
ACE activity in transplant recipients without diabetes (No Diabetes) or
with diabetes (Diabetes). For each box plot, median values are indicated
by the line within the box, with value shown above the line. The box
represents 50% of the values (25th and 75th percentiles), with the upper
bar representing the 90th percentile and the lower bar representing the
10th percentile. Open circles indicate outliers. * p = 0.013, Diabetes vs
No Diabetes. (B) Graph shows box plots for densitometric analysis of
protein bands for urinary ACE, at 190 kDa, in transplant recipients
without diabetes (No Diabetes) or with diabetes (Diabetes). * p = 0.019,
Diabetes vs No Diabetes. Representative ACE immunoblot on urine
specimens is shown above graph. In samples from mouse cortex, ACE
appeared as a single band at 170 kDa, as expected (mACE, lane 7) (5).
This blot was not used for densitometric quantitation of urinary ACE.
Protein bands corresponding to ACE were absent when membranes
were incubated with the secondary antibody alone. Lanes 1–3, No
Diabetes. Lanes 4–6, Diabetes. Lane 7: mouse kidney cortex, used as
a positive control.
doi:10.1371/journal.pone.0037649.g003

Figure 4. Urinary Ang II and Ang-(1-7). (A) Graph shows box plots
of RIA for Ang II in urine specimens from transplant recipients without
diabetes (no Diabetes) or with diabetes (Diabetes). For each box plot,
median values are indicated by the line within the box, with value
shown above the line. The box represents 50% of the values (25th and
75th percentiles), with the upper bar representing the 90th percentile
and the lower bar representing the 10th percentile. Open circles indicate
outliers. * p = 0.027, Diabetes vs. No Diabetes. (B) Graph shows box
plots of EIA for Ang-(1-7) in urine specimens from transplant recipients
without or with diabetes. There was no significant difference between
the two groups (p = 0.126).
doi:10.1371/journal.pone.0037649.g004
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fragment does not simply represent a deglycosylated form of full-

length ACE2, since incubation with PNGase F resulted in a further

reduction in its size, as shown in Figure 2D. To determine if this

90 kDa fragment is generated by ADAM-17-mediated cleavage

of ACE2, further characterization is required, including use of

antibodies directed against the cytoplasmic carboxyterminus of

ACE2 (which may be lacking in this fragment), and/or direct

sequence analysis of the polypeptide. Furthermore, although

shedding of ACE2 fragments may occur via ADAM-17 in

transplant subjects, proteomic analysis has identified ACE2 as

one of the 1132 proteins present in urinary exosomes isolated from

human urine [27], suggesting that membrane-bound full-length

ACE2 may also be a source of urinary ACE2.

By multivariate analysis, diabetes was significantly associated

with urinary Ang II levels in transplant subjects, consistent with

intrarenal RAS activation in diabetes [28]. In this regard, although

diabetic patients had significantly higher urinary ACE activity and

ACE protein levels by immunoblot, this association was not

confirmed in the multivariate analysis. Finally, although diabetics

had higher urinary ACE2 activity and protein levels, there was no

significant association between diabetes and urinary levels of Ang-

(1-7) by multivariate analysis, suggesting that urinary Ang-(1-7)

may be influenced by other factors. A potential limitation of the

urinary angiotensin peptide measurements is that urine specimens

were not treated with protease inhibitors, which could have

affected the sensitivity for detecting differences. Interestingly,

however, we did observe a significant correlation between urinary

ACE2 activity and Ang-(1-7) levels.

Our study has a number of strengths, including the reliability

and reproducibility of the assays, the inclusion of data on mRNA,

protein, and ACE2/ACE products, and the use of multiple linear

regression to adjust for confounding variables. Limitations include

the relatively small number of subjects, the absence of plasma

ACE2 or ACE measurements, and the single time point for

urinary ACE2, ACE and peptide assays. Furthermore, it is

possible that diabetes alone may contribute to increased urinary

ACE2 levels, independent of transplant status. Studies in patients

with diabetes and normal kidney function are required to answer

this question. Larger studies are also needed to determine if

urinary ACE2 or ACE are biomarkers of transplant function or if

they may predict responsiveness to blockade of the RAS.

In summary, in renal transplant recipients diabetes is a strong

independent predictor of increased urinary levels of ACE2 activity

and protein. Our data further suggest that ACE2 may be shed into

the urine in transplant recipients, and could represent a marker to

assess the role of the kidney RAS in these patients.

Supporting Information

Text S1 Detailed methods for enzyme activity assays,
immunoblots, real-time PCR assays, and measurements
of Ang II and Ang-(1-7).
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