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In the present study, a systematic effort has been made to predict the hemolytic potency
of chemically modified peptides. All models have been trained, tested, and evaluated on a
dataset that contains 583 modified hemolytic peptides and a balanced number of non-
hemolytic peptides. Machine learning techniques have been used to build the
classification models using an immense range of peptide features that include 2D, 3D
descriptors, fingerprints, atom, and diatom compositions. Random Forest based model
developed using fingerprints as an input feature achieved maximum accuracy of 78.33%
with AUC of 0.86 on the main dataset and accuracy of 78.29% with AUC of 0.85 on the
validation dataset. Models developed in this study have been incorporated in a web server
“HemoPImod” to facilitate the scientific community (http://webs.iiitd.edu.in/raghava/
hemopimod/).

Keywords: modified hemolytic peptides, machine learning, chemical descriptors, fingerprints, random
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INTRODUCTION

Development of a new class of biologics and biologics-based drugs gains more importance in today's
world. Among the biologics-based drugs, the peptide is a major class of molecule for the
pharmaceutical companies as they are complacent of small molecules but biochemically and
therapeutically different (Uhlig et al., 2014). The peptide-based therapeutics have a wide range of
advantages over the conventional approach in terms of high target selectivity with minimum side
effects (Oo and Kalbag, 2016). Apart from this, peptide based mimetics serve an attractive class to
design new drug carriers, lead compounds, and excipients (Songok et al., 2018). Advancement in
high-throughput screening and peptide synthesis techniques mark the avenue of peptide-based drug
era. There are currently more than a hundred peptide-based drugs in the clinical trial development
phases (Lau and Dunn, 2018). However, enthusiasm in peptide research is tempered by some
intrinsic limitation of peptides such as immunogenicity (Fernandez et al., 2017), short half-life,
proteolytic degradation, low bioavailability (Bruno et al., 2013), and toxicity (Chaudhary et al.,
2016). Hemolytic concentration (HC50) is the commonly used indicator of peptide toxicity (Ruiz
et al., 2014). HC50 refers to the 50% lysis of normal human erythrocytes under physiological
conditions. Peptide rich in positively-charged amino acids binds to the negatively charged lipid
bilayer of erythrocyte, leads to membrane disintegration and thus allowing water and other solute
in.org February 2020 | Volume 11 | Article 541
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molecules to enter into the cell. This will increase the osmotic
gradient inside the erythrocyte, which leads to cell swelling and
bursting (Li et al., 2005) (Figure 1).

To improve the pharmacological properties of peptide-based
drugs, a wide range of chemical and structural modifications
have been proposed in the past. It includes PEGylated peptides
(Kapoor et al., 2019), peptide lipidation (Menacho-Melgar et al.,
2019), peptide acetylation and amidation (da Silva et al., 2014),
incorporation of unnatural D-amino acids (Khara et al., 2016),
and N-methylation (Chatterjee et al., 2008), etc. The overall goal
of chemical/structural modification in the peptide is to improve
solubility (Mahajan et al.), membrane permeation and decrease
hemolysis (Lee and Lee, 2008) without tempering the therapeutic
activity. In the past, numerous resources or databases have been
developed to maintain different type of peptides that include cell-
penetrating (Agrawal et al., 2016), antihypertensive (Kumar
et al., 2015), anti-tuberculosis (Usmani et al., 2018), etc.
properties. Besides, numerous tools have been developed to
predict the therapeutic properties of natural peptides like
ToxinPred for toxicity (Gupta et al., 2013), Antifp for
antifungal (Agrawal et al., 2018), etc. Limited attempts have
been made to predict the therapeutic properties of modified
peptides that include ‘CellPPD-MOD' for modified cell-
penetrating peptides (Kumar et al., 2018) and ‘AntiMPmod' for
modified antimicrobial (Agrawal and Raghava, 2018) peptides.
Although attempts have been made to predict the hemolytic
potency of natural peptides (Raghava et al., 1994; Chaudhary
et al., 2016; Win et al., 2017), thus far, there is no method that can
predict the hemolytic potency of chemically modified peptides.
The present study aims to develop various machine learning-
based models to predict the hemolytic potency of chemically and
structurally modified peptides.
MATERIALS AND METHODS

Creation of Dataset
We extracted chemically modified hemolytic peptides from
Hemolytik database (Gautam et al., 2014), which stores
experimentally validated peptides with their hemolytic
potencies. All the peptides satisfying the following criteria were
selected for our datasets; i) Peptide has at least one modified
Frontiers in Pharmacology | www.frontiersin.org 2
amino acid; ii) Hazardous Concentration (HC50) or Half
Maximum Effective Concentration (EC50) should be ≤100 mM;
iii) Minimum Hemolytic Concentration (MHC) should be
≤250 mg/ml; and iv) >10% hemolytic activity up to 100 mM
(Chaudhary et al., 2016). Peptides that do not meet the criteria
mentioned above are considered as non-hemolytic in nature and
serve the basis for the generation of datasets having non-
hemolytic peptides. Finally, we got a dataset of 583 hemolytic
and 583 non-hemolytic peptides, where each peptide has at least
one non-natural or chemically modified amino acid. We used the
PEPstrMOD script (Singh et al., 2015) for predicting the
structure of each peptide in our dataset. The peptide length
was kept 5–30 amino acids because the PEPstrMOD script has a
limitation, i.e., length of the peptide. These structures were used
for computing a wide range of descriptors.

Evaluation of Models
The extracted peptide data were categorized into two datasets,
i.e., main dataset and validation dataset. The main dataset
constitutes the 0.8 part of the complete dataset (i.e., 466
modified hemolytic and 466 non-hemolytic peptides), and the
remaining validation dataset contains 0.2 part of the dataset (i.e.,
117 modified hemolytic and 117 non-hemolytic peptides). The
peptides in both datasets were selected randomly to avoid bias.

We trained and tested the models using five-fold cross-
validation technique on the main dataset. Five-fold cross-
validation is a commonly used protocol where data is divided
into five equal sets, where four sets are used for training, and the
remaining set is used for validating the performance of the
model. This process was iterated until each set was used once
in testing the model. The final performance of the developed
model was estimated by moderating the performance of each set
(Nagpal et al., 2018). The external dataset is used to evaluate the
overall performance of the best trained model developed on the
main dataset.

Model Development
Computation of Peptide Descriptors
Peptide descriptors or features such as atomic descriptors (atom
composition, diatom composition), and chemical descriptors
(2D, 3D, fingerprints, and combined) were utilized to develop
various machine learning prediction models.
FIGURE 1 | Figure illustrating mechanism of hemolysis by peptides.
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Atom Composition
To compute the atomic composition of modified hemolytic and
non-hemolytic peptides, firstly, peptide tertiary structures were
converted into SMILES (Simplified Molecular-input Line-entry
System) format using Open Babel software. It is an open-source
software that is routinely used in computational chemistry and
other related areas to interconvert file formats (O'Boyle et al.,
2011). The generated SMILE format of peptide structures was
used to figure out the atomic composition of peptides viz. C, H,
O, N, S, Cl, Br, and F. This led to the generation of a vector size of
eight, and the formula used to compute this is as follows:-

Percent   composition   of   atom(a)

=  
Total   no :   of   atom(a)

Total   no :   of   all   possible   atoms
� 100 (1)

Where atom (a) is a single atom from the above mentioned
eight atoms.

Diatom Composition
The diatom composition of the peptides was computed in the
same way as the composition of atoms. It helped to get a better
understanding about the pair of atoms in every peptide, e.g., C-
N, C-C, C-O, C-S, C-H, etc. The formula used to compute the
diatom composition of peptide utilizes a vector size of 64 and is
as follows:

Percent   composition     of  Diatom(a)

=  
Total   no :   of  Diatom(a)

Total   no :   of   all   possible   diatoms
� 100 (2)

Where diatom (a) is a pair of atoms from possible 64 diatoms.

Chemical Descriptors
Structure-activity relationship (SAR) is often used in QSAR-based
studies as there is a correlation between the molecular structure of
a compound and its biological activity (Mafud et al., 2016). In the
present study, we used PaDEL, an open-source software for
calculating various descriptors of peptides (Yap, 2011). We used
this software for calculating 2D, 3D descriptors, and fingerprints.

Feature Selection
It has been shown in the past that all descriptors do not correlate
with biological activity. Hence, we removed unnecessary
descriptors as they can create noise in data and may lead to
false repercussions. To remove such bias, while developing the
prediction model, we used a feature selection technique using
WEKA, an open-source software, at its default parameters
(Smith and Frank, 2016). We applied “CfsSubsetEval” as an
attribute evaluator with “BestFirst” as a search method in WEKA
software with default settings in the forward direction with
lookup size, D = 1, and amount of backtracking, N = 5.

Machine Learning Methods
To predict the nature of chemically modified hemolytic peptide,
we employed different machine learning algorithms using Scikit-
Frontiers in Pharmacology | www.frontiersin.org 3
learn. We implemented widely used classifiers as described
below, along with their default parameters. 1). Ridge classifier:
It classifies the data by using parameters that include alpha, max
iter, and solver that controls the processing of classifiers. The
classifier learns the model and generates a coefficient vector that
best fits the data (Grüning and Kropf, 2006). 2). Random forest
(RF): This is a tree-based classifier algorithm, which trains each
decision tree with the different training datasets. The new object
is classified based on the votes given by each tree in the forest for
the attributes of the new object (Robu and Hora, 2012). 3). K-
nearest neighbor (KNN): This Method classifies the new object
based on the distance to the labelled/known instances in the
training dataset (Hussain et al., 2015). 4). Extra Tree: Predicts the
outcome of the new object by taking the average of outputs from
all aggregated trees (Geurts et al., 2006).
Performance Measure
The outcome of the generated model was assessed using various
parameters that are threshold-dependent and threshold-
independent. The threshold-dependent parameters used in this
study are sensitivity (Sen), Specificity (Spc), Accuracy (Acc), and
Matthews correlation coefficient (MCC), using the following
equations. These measurements obtained from these
parameters are expressed in terms of true positive (TP), false
negative (FN), true negative (TN), and false positive (FP).These
can be calculated using equations 3–6.

Sensitivity =  
TP

TP + FN
� 100 (3)

Specificity =  
TN

TN + FP
� 100 (4)

Accuracy =  
TP + TN

TP + FP + TN + FN
� 100 (5)

Matthew0s  Correlation  Coefficient

=  
(TN � TP) − (FN � FP)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðFP+TPÞðFN+TPÞðFP+TNÞðFN+TNÞp � 100 (6)
Where TN and TP denote perfectly predicted modified non-
hemolytic peptides and hemolytic peptides, respectively. FN and
FP denote badly predicted modified non-hemolytic peptides and
hemolytic peptides, respectively.

Most of the above-used measurements have a drawback—the
performance of the developed models depends on the threshold.
To overcome this bias, we adopted threshold-independent
parameters to evaluate the performance of developed models.
A well-known threshold-independent measure is Receiver
Operating Characteristics (ROC). We computed the area under
curve (AUC) in ROC plot to get the overall performance. pROC
package developed in R was used for computing the AUROC
(Robin et al., 2011).
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RESULTS

We used Scikit-learn (a Python library) for developing prediction
models by employing diverse approaches of machine learning
like Ridge Classifier, Random Forest, KNN, and ExtraTree. The
developed models were based on different features/descriptors,
which can discriminate modified hemolytic peptides from non-
hemolytic ones. The interpretation of results is provided below
in detail.
Structure-Based Model
To develop the structure-based model, the tertiary structure of
hemolytic peptides is generated using PEPstrMod (Singh et al.,
2015). These structures were further used for extracting different
types of features and descriptors. The model is created using
discrete structural features of the peptide. First, the model is
developed by using the atomic composition of peptide tertiary
structures. To compute the atomic composition of peptide,
structure data format (sdf) is first converted to SMILES, and
then the atomic composition was computed. Prediction models
were developed using the Scikit-learn library by implementing
different classifiers like ExtraTree, RF, KNN, and Ridge classifier
using an input feature as atomic composition. RF-based
classification ML model yielded the highest accuracy, which is
70.49%, MCC of 0.41, and AUC of 0.81 on the main dataset. The
performance attained on the validation dataset has 69.66%
accuracy, MCC of 0.39, and AUC of 0.78. Performance of
various methods with parameters are presented in Table 1.

Beside atomic composition, the diatomic composition-based
model was also developed. The model achieves the highest
accuracy of 74.36% with MCC of 0.49 and AUC of 0.87. On
the validation dataset, we gathered the accuracy of 75.98% with
MCC 0.52 and AUC of 0.88. Here, the ExtraTree-based model
Frontiers in Pharmacology | www.frontiersin.org 4
performed best among all the classifiers used for prediction.
Performance of various methods with parameters are presented
in Table 2.
Chemical Descriptors-Based Prediction
We used PaDEL software to compute 2D descriptors, 3D
descriptors, and fingerprints from the tertiary structure of
peptides. We then used WEKA to select the best features using
“CfsSubsetEval” with the search method of “BestFirst” at default
parameters, as explained in the Materials and Methods section.
Individual models for 2D descriptors, 3D descriptors, and
Fingerprints, as well as a single model combining all
descriptors, were developed. In the case of 2D descriptors, a
total of 221 descriptors were calculated initially, and then 20
features were selected by implementing the feature selection
technique. We applied different machine learning techniques
on both the datasets, i.e., before and after feature selection, and
observed that the RF-based model achieved the maximum
accuracy of 75.88%, MCC of 0.52, and AUC of 0.83 for the
main dataset and 76.21% accuracy, 0.52 MCC, and 0.81 AUC for
the validation dataset before feature selection (Table 3). But in
the case of the dataset after feature selection, ExtraTree-based
model achieved the maximum accuracy of 75.66%, MCC of 0.51,
and AUC of 0.82 for the main dataset and 74.54% accuracy, 0.49
MCC, and 0.80 AUC for the validation dataset (Table S1).

In the case of 3D descriptors, a total of 20 features were
calculated and were reduced to 4 after applying feature selection.
Of the 20 features, ExtraTree model performed better than other
models and achieved maximum accuracy of 65.74%, MCC of
0.31, and AUC value of 0.70 on the main dataset and 63.25%
accuracy, 0.27 MCC, and 0.68 AUC on the validation dataset
(Table 4). But of the 4 reduced features, the RF model performed
better than other models and achieved maximum accuracy of
TABLE 1 | Performance achieved by scikit ML on the composition of the atoms.

Methods (Parameters) Main Dataset Validation Dataset

Sen Spc Acc MCC AUC Sen Spc Acc MCC AUC

RF (n_estimators = 100) 72.75 68.24 70.49 0.41 0.81 68.89 70.43 69.66 0.39 0.78
KNN (n_neighbors = 5,algorithm = ‘brute',weights = ‘distance') 70.39 68.24 69.31 0.39 0.79 68.38 71.79 70.09 0.4 0.80
Ridge (alpha = 0.01) 54.51 59.23 56.87 0.14 0.72 52.99 58.12 55.56 0.11 0.71
Extratree (n_estimators = 60) 74.03 66.74 70.39 0.41 0.81 74.87 68.03 71.45 0.43 0.82
Fe
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TABLE 2 | Performance achieved by scikit ML on the composition of the diatom.

Methods (Parameters) Main Dataset Validation Dataset

Sen Spc Acc MCC AUC Sen Spc Acc MCC AUC

RF (n_estimators = 100) 73.61 74.03 73.82 0.48 0.83 78.46 74.36 76.41 0.53 0.86
KNN
(n_neighbors = 10,algorithm = ‘ball_tree',weights = ‘uniform')

72.32 61.59 66.95 0.34 0.81 73.5 72.65 73.08 0.46 0.84

Ridge (alpha = 1) 57.51 57.51 57.51 0.15 0.72 55.56 63.25 59.4 0.19 0.75
Extratree (n_estimators = 200) 75.54 73.18 74.36 0.49 0.87 77.78 74.19 75.98 0.52 0.88
le 54
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63.59%, MCC of 0.27, and AUC value of 0.69 on the main dataset
and 61.97% accuracy, 0.24 MCC, and 0.67 AUC on the validation
dataset (Table S2).

The different types of fingerprints generated 13,508 features,
which were reduced to 28 after feature selection. The
performance of different classifiers was evaluated on 13,508
features (Table 5), and RF showed the best performance with a
maximum accuracy of 78.33%, MCC of 0.56, and AUC of 0.86 on
the main dataset and accuracy of 78.29%, MCC of 0.57, and AUC
of 0.85 on the validation dataset. In the case of the 28 reduced
features, RF showed the best performance with an accuracy of
78.31%, MCC of 0.57, and AUC of 0.86 on the main dataset and
accuracy of 75.56%, MCC of 0.51, and AUC of 0.83 on the
validation dataset (Table S3).
Frontiers in Pharmacology | www.frontiersin.org 5
Finally, we combined all the 2D, 3D descriptors, and
fingerprints at the same time, which generated 13,739 features.
Feature selection on all combined descriptors leads to 34
features. Of the 13,739 features, we observed the maximum
accuracy of 78.42%, MCC of 0.57, and AUC of 0.86 on the
main dataset and 78.46% accuracy, 0.57 MCC, and 0.84 AUC on
the validation dataset by RF model (Table 6). In the case of the
34 reduced features, Extratree showed a maximum accuracy of
77.9%, MCC of 0.56, and AUC of 0.85 on the main dataset and
accuracy of 74.44%, MCC of 0.49, and AUC of 0.81 on the
validation dataset (Table S4).

We prepared the ROC curve (Robin et al., 2011) of all the
datasets, i.e., 2D, 3D, fingerprints, and the combination of three,
(all PaDEL descriptors), atom composition, and diatom
TABLE 3 | Performance achieved by scikit ML on the 2D descriptors.

Methods (Parameters) Main Dataset Validation Dataset

Sen Spc Acc MCC AUC Sen Spc Acc MCC AUC

RF (n_estimators = 1000) 79.37 72.49 75.88 0.52 0.83 76.76 75.69 76.21 0.52 0.81
KNN (n_neighbors = 8,algorithm = ‘kd_tree',weights = ‘distance') 67.94 61.35 64.6 0.29 0.72 61.26 63.79 62.56 0.25 0.67
Ridge (alpha = 1) 71.08 78.38 74.78 0.5 0.81 58.56 82.76 70.93 0.43 0.74
Extratree (n_estimator = 40) 76.01 73.8 74.89 0.5 0.82 73.87 77.07 75.51 0.51 0.80
Feb
ruary 2020
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TABLE 4 | Performance achieved by scikit ML on the 3D descriptors.

Methods (Parameters) Main Dataset Validation Dataset

Sen Spc Acc MCC AUC Sen Spc Acc MCC AUC

RF (n_estimators = 800) 60.22 66.09 63.16 0.26 0.69 58.29 65.64 61.97 0.24 0.67
KNN (n_neighbors = 10,algorithm = ‘ball_tree',weights = ‘distance') 60.43 54.94 57.68 0.15 0.61 51.28 58.97 55.13 0.1 0.59
Ridge (alpha = 0.01) 58.71 60.73 59.72 0.19 0.65 49.57 63.25 56.41 0.13 0.59
Extratree (n_estimator = 70) 65.59 65.88 65.74 0.31 0.70 61.71 64.79 63.25 0.27 0.68
TABLE 6 | Performance achieved by scikit ML on the 2D, 3D, and fingerprints descriptors.

Methods (Parameters) Main Dataset Validation Dataset

Sen Spc Acc MCC AUC Sen Spc Acc MCC AUC

RF (n_estimators = 200) 77.73 79.09 78.42 0.57 0.86 79.83 77.09 78.46 0.57 0.84
KNN (n_neighbors = 10,algorithm = ‘kd_tree',weights = ‘distance') 62.88 62.5 62.69 0.25 0.67 49.57 58.97 54.27 0.09 0.60
Ridge (alpha = 1) 62.45 53.02 57.7 0.16 0.61 63.25 48.72 55.98 0.12 0.58
Extratree (n_estimator = 1000) 80.35 74.35 77.33 0.55 0.85 82.05 72.31 77.18 0.55 0.83
TABLE 5 | Performance achieved by scikit ML on the fingerprints descriptors.

Methods (Parameters) Main Dataset Validation Dataset

Sen Spc Acc MCC AUC Sen Spc Acc MCC AUC

RF (n_estimators = 800) 77.51 77.16 78.33 0.56 0.86 80.85 75.73 78.29 0.57 0.85
KNN (n_neighbors = 8,algorithm = ‘ball_tree',weights = ‘distance') 75.98 70.69 73.32 0.47 0.81 77.78 70.94 74.36 0.49 0.79
Ridge (alpha = 1) 75.76 71.55 73.64 0.47 0.81 76.92 70.09 73.5 0.47 0.80
Extratree (n_estimator = 300) 78.6 73.71 76.14 0.52 0.84 78.46 75.56 77.01 0.54 0.82
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composition (Figure 2), to compare the performances of models
on various structural features.

Webserver Implementation
HemoPImod (https://webs.iiitd.edu.in/raghava/hemopimod/) is
developed as a computational tool to facilitate the scientific
community. The RF-based model performed best among all
the models, hence implemented in the webserver. This model
helps to predict the hemolytic or non-hemolytic potential of the
modified peptide. The user interface of the tools is deliberately
kept very simple. The only required input is the tertiary structure
of the modified peptide in the PDB format. If a user doesn't have
the tertiary structure of the modified peptide, the structure can be
generated from PEPstrMOD. From the threshold panel, the user
is advised to select the appropriate threshold value. After data
processing, the result page provides information on the nature of
input peptide with probability score, and in the text, as well as
graphical form. We are also providing a standalone version of the
model, which is present in the webserver and integrated into the
GPSRdocker (Agrawal et al., 2019).
DISCUSSION

In the last few decades, emphasis on the development of the
therapeutic peptides has been increased. Most of the clinically
approved therapeutic peptide drugs act as a natural substance in
Frontiers in Pharmacology | www.frontiersin.org 6
the human body. Therapeutic peptides have various limitations,
such as short half-life, oral bioavailability, etc., which decreases
their efficacy. These kinds of limitations can be improved with
the help of modifications in the peptide (Bruno et al., 2013) such
as chemical modification in some CPPs, which improved its
bioavailability like cysteine residue modification enhanced the
stability of Tat peptide and thus enhanced the plasmid delivery
(Lo and Wang, 2008). Polyethylene glycol (PEG), lipids, and
proteins such as Fc fragments has been used as a half-life
extension strategy (Wang and Ying, 2016). Hence,
modification is an important aspect of peptide-based
therapeutic drug development. Thus, various computational
research is being focused on modified peptides such as
“Prediction of Cell-Penetrating Potential of Modified Peptides
Containing Natural and Chemically Modified Residues”
(Gautam et al., 2013; Gautam et al., 2015; Kumar et al., 2018),
“Antimicrobial Potential of a Chemically Modified Peptide”
(Agrawal and Raghava, 2018), etc. While developing
therapeutic peptides, consideration of its hemolytic activity is
an important step. In the past, various computational methods
were developed that are capable of predicting the hemolytic
potency of the peptides [for instance, Hemopi (Chaudhary et al.,
2016)], but all of them were based on peptides possessing only
natural amino acids. But as technology permits, modifications
can be considered as features in computational methods by
considering the structural information. Hence, by keeping the
importance of peptide modification in mind, we have developed
a computational method to predict the hemolytic activity of
peptides based on the structural features. We developed the
computational method with the help of various machine learning
techniques such as RF, KNN, Ridge, and ExtraTree by using
different kind of datasets such as atom composition, diatom
composition, PaDEL descriptors (2D, 3D, and fingerprints) as
well as by combining 2D, 3D descriptors, and fingerprints.

We obtained the best performance by implementing RF using
PaDEL descriptors (fingerprints) as input feature with an
accuracy of 78.33%, MCC of 0.56, and AUC of 0.86 on the
main dataset and accuracy of 78.29%, MCC of 0.57, and AUC of
0.85 on the validation dataset. We hold an opinion that the
development of this method will highly assist in the research of
therapeutic peptides-based drug development. As better tools for
structure prediction will develop, we will be able to improve this
computational method; due to shortcomings of the structure
prediction tools, we are not able to incorporate peptides beyond
the length of 7–25 amino acid and with modifications that are
present in PEPstrMOD. Hence, in conclusion, this method can
be improved by the improvement in the structure
prediction tool.
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