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Surgery and chemotherapy may increase depression tendency in patients with rectal

cancer (RC). Nevertheless, few comprehensive studies are conducted on alterations

of brain network induced by depression tendency in patients with RC. Resting-state

functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) data

were collected from 42 patients with RC with surgery and chemotherapy and 38 healthy

controls (HCs). Functional network (FN) was constructed from extracting average time

courses in brain regions, and structural network (SN) was established by deterministic

tractography. Graph theoretical analysis was used to calculate network properties.

Networks resilient of two networks were assessed. Clinical correlation analysis was

explored between altered network parameters and Hamilton depression scale (HAMD)

score. This study revealed impaired FN and SN at both local and global levels and

changed nodal efficiency and abnormal small-worldness property in patients with RC.

On the whole, all FNs are more robust than SN. Moreover, compared with HC, patients

with RC show less robustness in both networks. Regions with decreased nodal efficiency

were associated with HAMD score. These cognitive dysfunctions are mainly attributable

to depression-related brain functional and structural network alterations. Brain network

reorganization is to prevent patients with RC from more serious depression after surgery

and chemotherapy.
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INTRODUCTION

Rectal cancer (RC) is a disease characterized by a high
mortality rate. Patients with RC usually suffer from tremendous
psychological stress, which leads to a series of psychological
diseases (1, 2). Some contemporary studies showed that various
discomfort symptoms caused by chemotherapy could induce
cognitive impairment in patients with cancer, including impaired
attention, memory, and executive function (3, 4). The long-
term emotional distress of the patient increased the risk of
depression (5). Depression-related factors may contribute to the
less optimal network topology in the functional network (FN)
(6, 7) and structural network (SN) (8) of patients with cancer.
Neuroimaging studies reported that a considerable number
of patients with cancer with surgery and chemotherapy had
morphological variation and functional abnormalities in brain,
such as decreased hippocampal volume (9), lower white matter
volume (10), memory difficulties (1), and cognitive deficit (11).
Therefore, research on FN and SN in this study could bring new
insights into the neurophysiological mechanisms in patients with
RC, and through the analysis of brain images, the emotional
distress of patients with RC could be diagnosed and treated,
thereby improving the quality of life of patients (12).

Combining multimodal data can reveal hidden relationships

among different data, unifying different findings in brain imaging

(13). Therefore, multimodal imaging is a prominent method
in cognitive neuroscience research. Graph-based functional
and structural brain connectivity analysis is a new method,
which provides evidence for the complexity of the brain
by modeling the interactions between different brain regions
(14, 15). Previous studies have consistently shown that the
brain functional network is organized in a small-worldness
property, with local specialization and high global information
transmission capabilities (16, 17). Bruno et al. (1) reported
significantly reduced shortest path length and small-worldness
property in the breast cancer group. Several findings point that
the functional network of patients with cancer loses its ability
to support various cognitive functions following chemotherapy
(18, 19). Observational studies found that alterations in brain
structural network had an adverse impact on the cognition of
cancer survivors (20, 21). Although there are many studies on
brain cognitive impairment in patients with cancer, less is known
about FN and SN abnormalities in patients with RC. We used
multimodal neuroimaging to investigate the alterations in FCs
and SCs for gaining insight into the brain cognitive dysfunction
in patients with RC.

In view of the poor understanding of psychological disorders
and cognitive impairment of RC survivors in existing studies,
it is essential to study the depression tendency and related
factors in patients with RC. Therefore, this study investigated
the abnormalities in FN and SN using graph theory analysis in
patients with RC with surgery and chemotherapy characterized
by depression tendency compared with healthy controls (HCs).
We hypothesized that patients with RC would show altered
small-worldness property and topological architecture in the
FN and SN due to the effects of depression tendency. We
sought to expand our understanding of the resilience of the

brain network in patients with RC. The study also explored
the potential association between the significant alterations
in network properties of patients with RC and severity of
depression symptoms.

METHODS

Participants
A total of 42 patients with RC with surgery and chemotherapy
were recruited from the Gansu Provincial Hospital, whereas
the 38 age- and gender-matched healthy control participants
were recruited through newspaper advertisements. They were
recruited from July 2017 to June 2020. All participants were
diagnosed according to DSM-IV criteria by two experienced
psychiatrists. They have executed the evaluation of 17-item
Hamilton Rating Scale for Depression (HAMD-17). The
evaluation results showed that all the patients with RC included
in the experiment had depression tendency. All participants were
given written informed consent when image scanning. None of
the subjects took any psychotropic drugs.

Data Acquisition
Magnetic resonance imaging data were acquired using a 3.0 T
Siemens Trio scanner (Siemens Erlangen, Germany). Subjects
were asked to relax with eyes closed and not to think about
anything. The structural image was acquired with a T1-weighted
spin-echo sequence: TR/TE = 2530/2.98ms, slice thickness =

1mm, slice gap= 0.8mm, FOV= 256∗256mm, The resting-state
functional images (rs-fMRI) were obtained with the following
parameters: TR/TE = 2,000/30ms, 64∗64 matrix, FOV =

224∗224mm, total 240 volumes, 32 sequential ascending axial
slices of 3.5mm thickness. Diffusion tensor imaging (DTI) data
were acquired using a single-shot echo-planar imaging-based
sequence with the following parameters: TR = 11,600, TE = 85,
FOV = 256mm ∗ 256mm, acquisition matrix = 112∗112, axial
slices= 32, 64 diffusion directions with b= 1,000 s/mm2, and an
additional image without b= 0 s/mm2.

Data Processing
We used the SPM8 (Statistical Parametric Mapping: http://www.
fil.ion.ucl.ac.uk/spm) and DPARSFA (Data Processing Assistant
Resting-State: http://www.restfmri.net) on the preprocessing of
all the rs-fMRI data (22). The specific preprocessed steps
were as follows: (1) the first 10 volumes of the fMRI were
removed; (2) we performed the slice timing, head movement
correction, and rearrangement; (3) all subjects were excluded if
their head motion which was >2.0mm maximum displacement
in any of the x, y, or z directions was >2◦ (23); (4) all
the rs-fMRI data were spatially normalized to the Montreal
Neurological Institute (MNI) space using structural image
normalization parameters; (5) the smoothing Gaussian kernel of
full width at half maximum (FWHM) was 8mm (24); (6) the 24
head motion parameters, averaged global, white matter signals,
and cerebrospinal fluid were processed by nuisance covariates
regression (25); (7) removing linear trends; and (8) temporal
band-pass filtering (0.01–0.08Hz) (26).
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The DTI data were preprocessed using PANDA (http://
www.nitrc.org/projects/panda) (27) in MATLAB2014a. The
specific preprocessed steps were as follows: in MATLAB2014a.
(1) converting DICOM files into NIfTI images; (2) estimating
the brain mask; (3) cropped the image; (4) correction of the
eddy current effect and head motions; (5) averaging multiple
acquisitions; and (7) FA metrics calculation.

Construction of Brain Networks
The Human Brainnetome Atlas (246 Atlas) were used to
demarcate the nodes and edges of the brain network (28). In
each subject, 246 atlas were used to construct brain networks for
further graph theory analysis.

The GRETNA (a toolbox for analyzing brain network,
www.nitrc.org/projects/gretna/) were used to construct the
functional brain network. For each subject, Pearson correlation
coefficient was used to construct the correlation matrix which
the mean time series of each region was represented each
node. Fisher Z transform was applied to each matrix to convert
the data into Z-scores. A FA-weighted symmetric matrix was
constructed for each participant by deterministic tractography as
the following analysis basis. Each matrix represented the white
matter network of the cerebral cortex, and each row or column in
network represented the brain region of 246 atlas.

Threshold Calculation
To construct an undirected binary network and make the
generated graph metrics stable, it is necessary to be thresholded
for the weight of the brain networks. There is no fixed method
to determine the threshold in current research. Therefore, in FN,
we used sparsity (26–50%) with a step of 1% (29) to divide the
network threshold. Then, we calculated the topological properties
of FN in a series of threshold range. In SN, we use FA (0.20.42)
with a step of 0.2 as the threshold of the network according to
the previous study (30). The small-worldness property is related
to the threshold of the network (31), so we need to calculate a
network threshold to get effective network properties.

Whole Brain Network Organization
Graph theoretical analyses of the FN and SN in patients with
RC and HC were calculated with routines from the GRETNA
toolbox. The network topological properties at the global levels
were calculated, including (1) properties that suggest network
segregation of brain, such as the normalized clustering coefficient
(γ), the local efficiency Eloc (G); (2) properties that indicate
network integration of the brain, such as the normalized
shortest path length(λ), the global efficiency Eglob (G); (3) small-
worldness (δ) property which evaluates the balance of segregation
and integration.

The nodal efficiency (Enod) measures the ability of a particular
node to propagate information with all other nodes in the
network. It is considered as the inverse of the harmonic mean
of the minimum path length between an index node and all other
nodes in the network.

TABLE 1 | Demographic and clinical characteristics of subjects.

Variables (Mean ± SD) Patients with RC

(n = 42)

Healthy controls

(n = 38)

p-value

Gender (M:F) 23:19 22:16 0.564#

Age (years) 50.89 ± 7.50 48.96 ± 7.93 0.756*

HAMD 9.94 ± 4.93 _ _

SD, standard deviation; HAMD, Hamilton depression rating scale. # and * indicate p-value

for chi-square test and two-sample t-test, respectively.

Network Resilience Analysis
Network resilience refers to the ability to withstand perturbations
or failures in the network, which is usually related to the stability
of complex networks (32, 33). In FN and SN, we used random
or targeted attacks with fixed sparsity or FA values to evaluate
the network resilience, so as to ensure that all anatomical regions
were involved in the network, thus minimizing the number
of false-positive paths (32). In targeted attack analysis, the
betweenness value of each node in the network was calculated
and sorted in descending order. We deleted the nodes in
the network in order of betweenness value and calculated the
global efficiency of each network after attack (34). In random
attack analysis, we deleted the nodes of network randomly and
calculated the global efficiency of each network after attack.

Statistical Analysis
The demographic and clinical characteristics of the patients with
RC and HC were analyzed by chi-square test and two-sample
t-tests using SPSS 21. We performed statistical comparisons
of topological measures between the two groups using non-
parametric permutation tests with 5,000 iterations for each
sparsity and FA value (35). For the Enod, the non-parametric
permutation tests was repeated at the sparsity = 26% and the FA
value = 0.42. FDR correction was conducted for all these results.
Besides, we used Pearson correlation analyses to explore the
correlations in patients with RC between nodes with significant
difference in Enod and the severity of depression (HAMD score).

RESULTS

Demographic Characteristics
Demographic information is summarized in Table 1. There is no
significant difference in age (p = 0.564) and gender (χ2

=1.312,
p = 0.765) between the two groups. There was a significant
difference in HAMD score between the two groups (p < 0.001).

The Alterations of FN and SN Properties
In the functional network, patients with RC have a higher shortest
path length (λ) than HC (Figure 1B, sparsity = 26%). Since
there is no significant difference in the clustering coefficient (γ)
between the two groups under the same sparsity (Figure 1A), this
leads to the abnormal small-worldness(σ ) (Figure 1C) of patients
with RC. The local efficiency has increased in patients with RC
(Figure 1D, sparsity = 26%), and there is no significant change
in global efficiency (Figure 1E).
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FIGURE 1 | Functional connectivity network at different sparsity for patients with RC (the blue line) and controls (the pink line) and their statistical comparison results

(p < 0.05 5,000 permutation test, FDR correction). (A) Gamma, (B) lambda, (C) sigma, (D) local efficiency, and (E) global efficiency. The black triangles indicate a

significant group difference.

FIGURE 2 | Structural connectivity network at different FA threshold for RC (the blue line) and controls (the pink line) and their statistical comparison results (p < 0.05

5000 permutation test, FDR correction). (A) Gamma, (B) lambda, (C) sigma, (D) local efficiency, and (E) global efficiency. The black triangles indicate a significant

group difference.
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TABLE 2 | Brain regions with significant group effect in the nodal efficiency

between patients with RC and HC for FN.

Regions Patients with RC Control p-value

RC < HC

vmPu.R 0.5580 ± 0.0582 0.6190 ± 0.0578 0.0002

dCa.L 0.5116 ± 0.0694 0.5816 ± 0.0592 0.0002

GP.R 0.5575 ± 0.0732 0.6195 ± 0.0526 0.0002

vmPu.L 0.5765 ± 0.0490 0.6264 ± 0.0542 0.0002

TL.R 0.5874 ± 0.0466 0.5941 ± 0.0533 0.0008

PPtha.R 0.5245 ± 0.0737 0.5846 ± 0.0519 0.0004

GP.L 0.5581 ± 0.0661 0.6107 ± 0.0620 0.0006

lPFtha.R 0.5645 ± 0.0698 0.6148 ± 0.0589 0.0032

vCa.R 0.5223 ± 0.0507 0.5645 ± 0.0514 0.0044

A7m.R 0.6101 ± 0.0540 0.6404 ± 0.0656 0.0060

Otha.R 0.5318 ± 0.0491 0.5833 ± 0.0610 0.0052

mPMtha.R 0.5719 ± 0.0416 0.6158 ± 0.0542 0.0060

msOccG.R 0.6029 ± 0.0705 0.6429 ± 0.0569 0.0098

dCa.R 0.5286 ± 0.0650 0.5701 ± 0.0647 0.0090

mPFtha.R 0.5545 ± 0.0615 0.6007 ± 0.0778 0.0090

RC > HC

A23v.L 0.6719 ± 0.0485 0.6601 ± 0.0612 0.0018

A40rd.L 0.6862 ± 0.0527 0.6738 ± 0.0686 0.0042

A40rv.L 0.7195 ± 0.0408 0.6875 ± 0.0388 0.0048

A23v,R 0.6742 ± 0.0394 0.6360 ± 0.0479 0.0064

A4tl.R 0.7038 ± 0.0857 0.6709 ± 0.0631 0.0048

vmPu, ventromedial putamen; dCa, dorsal caudate; GP, globus pallidus; TL, area TL

(lateral PPHC, posterior parahippocampal gyrus); PPtha, posterior parietal thalamus;

lPFtha, lateral prefrontal thalamus; vCa, ventral caudate; A7m, medial area 7(PEp); Otha,

occipital thalamus; mPMtha, pre-motor thalamus; msOccG, medial superior occipital

gyrus; mPFtha, medial prefrontal thalamus; L, left; R, right.

In the structural network, the clustering coefficient (γ)
(Figure 2A, FA = 0.32) and small-worldness(σ ) (Figure 2C,
FA= 0.32, 0.34, and 0.38) of patients with RC is larger than that
of HC, the shortest path length (λ) (Figure 1B) being unchanged.
In addition, compared with HC, the global efficiency of patients
with RC has increased (Figure 2E, FA= 0.28–0.32).

Regional Efficiency Comparison
In FN, patients with RC showed that significantly decreased
nodal efficiency. There were several regions including bilateral
basal ganglia, right parahippocampal gyrus, bilateral thalamus,
right precuneus, and right lateral occipital cortex. Meanwhile,
the increased nodal efficiency was mainly in frontal lobe (orbital
gyrus), basal ganglia, left inferior frontal gyrus, left amygdala,
bilateral cingulate gyrus, left inferior parietal lobule, and right
precentral gyrus in FN and SN for patients with RC (p < 0.05,
after 5,000 permutation test, FDR test) (Tables 2, 3; Figure 3).

The Analysis of Network Resilience
With the targeted and random attack, a significantly decreased
decline of the global efficiency was found in FN and SN
(Figure 4). In both networks, the global efficiency of patients with
RC decreased faster over a wide percentage of removal, which
reflected that the networks of patients with RC were more fragile.

TABLE 3 | Brain regions with significant group effect in the nodal efficiency

between patients with RC and HC for SN.

Regions Patients with RC Control p-value

RC > HC

A12/47l.L 0.2498 ± 0.0352 0.2099 ± 0.0717 0.0036

dlPu.L 0.3117 ± 0.0386 0.2774 ± 0.0610 0.0036

A44op.L 0.2461 ± 0.0316 0.2105 ± 0.0698 0.0054

A32sg.L 0.2365 ± 0.0365 0.1857 ± 0.0993 0.0062

LAmyg.L 0.2589 ± 0.0269 0.2148 ± 0.0923 0.0086

A12/47l, lateral area 12/47; dlPu, dorsolateral putamen; A44op, opercular area 44; A32sg,

subgenual area 32; LAmyg, lateral amygdala; L, left; R, right.

In all subjects, the resilience of structural network is weaker than
that of functional network under the same threshold.

Correlations Between Network Properties
and HAMD Scores for RC
In the analysis, there were correlations between the HAMD
score and the nodes with significant Enod in the FN. For FN,
mPMtha.R (r = 0.389, p = 0.023) (Figure 5B), and for SN,
LAmyg.L (r= 0.440, p= 0.01) (Figure 5A).

DISCUSSION

In this study, different topological organizations of FN and SN
in patients with RC and HC were explored. The findings pointed
patients with RC displayed altered small-worldness property and
global topological organization compared with HC. Moreover,
there were regions with significant abnormal Enod being mainly
distributed in frontal region, subcortical regions, and central
region in patients with RC. In addition, patients with RC showed
vulnerable network resilience in both networks, and FNwould be
more stable than SN across participants.

Network Properties
Many studies have used fMRI (36, 37) and DTI (21) images
to explore the global and regional brain network properties of
patients with breast cancer and lung cancer, but there are still
few studies on rectal cancer. Compared with HC, the functional
networks of patients with RC displayed a higher shortest path
length (λ) and decreased small-worldness(σ ), reflecting reduced
global integration and disrupted organization balance (1, 21).
Our results also revealed increased local efficiency in patients
with RC. It is a measure of local information transmission
among adjacent nodes and therefore an indication of network
segregation (38, 39). Previous studies demonstrated reduced local
efficiency, a common measure of the brain network’s response
to computational attack, associated with patients with breast
cancer (21, 40). Due to brain structural damage, decreased local
efficiency would affect the fault tolerant ability of brain network.
More detail, the result of weakening network fault tolerance is
that if a node in the brain is damaged, the connection between
previously linked nodes would be greatly affected (41). Therefore,
reduced local efficiency is a risk factor for patients with RC.
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FIGURE 3 | Regions with significant differences in nodal efficiency between patients with RC and HC. Nonparametric permutation tests were applied to nodal

efficiency of all 246 cortical regions (p < 0.05; 5,000 permutation test, FDR correction). (A) Represented FN, and (B) represented SN. Red is for increased nodal

efficiency in RC patients group, while blue is for decreased nodal efficiency in RC patients group. L, left; R, right.

Recently, researchers use graph theory to analyze complex brain
functional networks after chemotherapy. It has been proved
that chemotherapy-related cognitive deficits were associated
with abnormal topological alterations of brain functional and
structural network (42, 43). In this study, increased shortest path
length and decreased local efficiency in patients with RC with
surgery and chemotherapy could be seen as a brain compensation
mechanism, which included changing the global pathway and
adjusting regional activity to preserve a seesaw-like balance of the
brain network.

Patients with RC showed increased clustering coefficients
(γ), small-worldness(σ ), and global efficiency in SN (Figure 2).
Abnormal small-worldness property of SN indicated that
the local specialization and global integration of brain in
patients with RC were disrupted, where the SN tended to
be more randomized (44). Global efficiency is the inverse of
the average shortest path between nodes. When nodes could
interact directly, the efficiency is high (21). Therefore, global
efficiency is an indicator of network function integration and
parallel information processing capability (41). The present
results of abnormal network properties reflected the undesired
topological organization in SN, which exhibited that the deficits
of emotional and cognitive processing in patients with RC might
result from network damages. Besides, the increased network
properties of SN in patients with RC might suggest that local
nerve fibers reconstructed in response to the abnormalities in
brain functional network. The compensatory response of the
SN is activated for maintaining brain functional integrity to
compensate the cognitive impairment caused by chemotherapy
to patients with RC (24). Aforementioned evidence illuminated
that cognitive deficit related to patients with RC may act via
disrupted coordination between global and regional networks.

Nodal Efficiency of Networks
To explore the functional and structural characteristics of the
human brain more accurately and quantitatively, our study

employed a new standard brain atlas, containing 246 brain
regions. This atlas would allow brain network analysis to
use predefined nodes in an informed manner (45). Therefore,
more detailed division of brain regions provides better help
in multimodal data analysis. We observed decreased Enod only
in FN of patients with RC. The significantly changed regions
were located in bilateral basal ganglia, bilateral thalamus,
right parahippocampal gyrus, right precuneus, and right lateral
occipital cortex. The basal ganglia is not only related to motor
control, but also related to the cognitive and limbic functions
(45). Moreover, basal ganglia is the collection of subcortical
nuclei surrounding the thalamus (46). Abnormal activation of
basal ganglia/thalamus was found in the depressive studies
(47), suggesting that abnormalities in these brain regions may
lead to abnormal emotional processing mechanisms. Prior
studies reported that parahippocampal gyrus and precuneus
were associated with memory function, so alterations in these
regions might affect memory decline (48, 49). Task fMRI study
of memory factors found that the occipital cortex of patients
with cancer was more significantly correlated with vigor and
fatigue scores (50). Frequent fatigue is a common symptom of
patients with cancer (51). Aforementioned evidence indicated
that the decreased Enod of FN in this study represented alterations
in regional characteristics of the brain network, which further
affected the cognitive impairment of patients with RC.

Furthermore, the increased nodal efficiency was mainly in
frontal cortex, left amygdala, bilateral cingulate gyrus, left inferior
parietal lobule, and right precentral gyrus in FN and SN for
patients with RC. In experiments with high-demand condition,
the right inferior frontal gyrus and other components of the
two hemisphere working memory circuitry in patients with
cancer were found greater activation than the control group in
a prior study (52). These abnormalities might be a compensation

mechanism to preserve normal thinking and responsiveness in

patients with cancer. In addition, chemotherapy affects estrogen
levels in patients with cancer. Estrogen levels are thought
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FIGURE 4 | Network resilience under random and target analysis. The alterations of global efficiency under removing node at random (first panel) and targeted pattern

(second panel). The blue line corresponded to the performance of HC, pink line for RC. The (A,C) were for FN and the (B,D) were for SN.

to have neuroprotective effects in the brain, thus helping to
maintain cognitive function (53). Therefore, female patients with
cancer are more likely to develop cognitive impairment in brain
regions related to learning and memory after chemotherapy,
such as hippocampus and amygdala (54). The anterior cingulate
cortex is involved in attention control, response selection, and
error monitoring (55). Abnormal brain activity patterns in the
attention-controlled regions, including the anterior cingulate
gyrus, are related to anxiety (56). The emotional fluctuation
caused by excessive psychological stress in patients with RC
could induce abnormal activation of cingulate gyrus. Saykin et
al. (57) revealed that the activation of frontal and parietal lobes
increased during the speech working memory task 1 month
after chemotherapy. Compared with controls, the cancer group
showed significantly greater activation in right precentral gyrus
and right cingulate gyrus (19). Moreover, in the SN, the nodal
efficiency was only increased. We speculated that after surgery
and chemotherapy, the node efficiency of SN showed more

obvious activation to maintain the robustness of overall network
at the expense of other network property, such as integration.
These results improved the understanding of chemotherapy-
induced cognitive impairment in patients with RC from the
perspective of brain node efficiency.

As shown in Figure 5, the patients with RC showed a
positive relationship between HAMD and decreased nodal
efficiency in mPMtha.R of FN, as well as a positive relationship
between HAMD and increased nodal efficiency in LAmyg.L
of SN. The correlation between the changed node efficiency
and HAMD score may indicate impaired cognitive control
combined with abnormal affective processing in patients with RC
(29). A prior study suggested that regions sensitive to negative
emotions were hyperactive in processing negative information
(36), and it was not surprising to find a significant positive
correlation between increased nodal efficiency and HAMD in the
amygdala. Moreover, the positive relationship between HAMD
and decreased nodal efficiency revealed that abnormal activation
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FIGURE 5 | (A,B) The nodal efficiency of several regions was positively correlated with the HAMD score for FN and SN. The brain map showed regions with

decreased Enod (Blue for mPMtha.R and pink for LAmyg.L). mPFtha, medial prefrontal thalamus; LAmyg, lateral amygdala; L, left; R, right.

of FN in patients with RCmight cause cognitive impairments and
depressed mood (58). Therefore, we speculated that alterations
in brain network properties assist us to study the depression
tendency in patients with RC after chemotherapy and surgery.

Comparison of Network Resilience
In both networks, a key finding of significantly decreased
resilience to targeted and random attack was found (Figure 4).
Being more effective than other network properties to measure
network integration performance, global efficiency of the FN and
SN was utilized to explore network resilience quantitatively (34).
In this study, both networks of patients with RC were more
vulnerable and SN is less resilient than FN, which were consistent
with our previous research results (59). This finding enhanced
the conclusion that lower brain resilience was associated with
progressive deterioration of cognitive impairment in breast
cancer survivors (21). Similar results were investigated in other
neurological diseases such as major depressive disorders (33) and
temporal lobe epilepsy (32). A previous study showed that the
degree distribution of brain network followed the exponentially
truncated power law (60). This exponentially truncated power
law distribution may be helpful in resisting the targeted attack
of the hubs, which means that the brain networks of two groups
were almost constant when deletion rate was low (61). The
deletion ratios reaching 50%, and the decline rate of global
efficiency in networks began to exhibit obvious differences.
Exploring the resilient of networks actually simulated the process
of cognitive decline in all participants. In detail, as the important
nodes were deleted, the functional and structural integrity of
brain networks were impaired. Additionally, the FN was more
resilient than the SN this study, which were similar to these
findings in the previous studies (30, 62). A prior study discovered
that there was commonly a functional connectivity between

regions that have no direct structural connectivity, implying
that functional network was a more stable system in brain
network (63). Therefore, functional networks were more robust
to node removal. Our results may provide a new direction for
studying cognitive impairment in patients with RC after surgery
and chemotherapy.

CONCLUSION

This study explores the effects of depression tendency on
brain functional and structural network in patients with RC
with surgery and chemotherapy through multimodal brain
connectivity analysis. Patients with RC show the abnormal small-
worldness property and network topological organization in FN
and SN. The alterations in nodal parameter are mainly observed
in the limbic and parietal lobes as well as the subcortical nuclei in
patients with RC. The patients with RC demonstrate significant
cognitive impairment compared with HC, and this impairment
may be associated with lower network attack tolerance. The
discovery of functional and structural networks is critical
for understanding the neurobiological mechanism associated
with depression tendency in patients with RC with surgery
and chemotherapy.

LIMITATION

The lack of follow-up data limited the ability of studying the
causal relationship between alterations in brain network and
depression tendency of patients with RC. The statistical power is
restricted by small sample size to some extent. Finally, this study
lacks the joint analysis for multimodal data. It is very meaningful
to use different modal data for fusion research.
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