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Abstract: Emerging evidence suggests there is a gut-joint axis in spondyloarthritis (SpA). In a study,
subclinical gut inflammation occurred in nearly 50% of SpA. Chronic gut inflammation also correlated
with disease activity in SpA. Trillions of microorganisms reside in the human gut and interact
with the human immune system. Dysbiosis affects gut immune homeostasis and triggers different
autoimmune diseases including SpA. The absence of arthritis in HLA-B27 germ-free mice and the
development of arthritis after the introduction of commensal bacteria to HLA-B27 germ-free mice
proved to be the important role of gut bacteria in shaping SpA, other than the genetic factor. The recent
advance in gene sequencing technology promotes the identification of microorganisms. In this review,
we highlighted current evidence supporting the link between gut and axial SpA (axSpA). We also
summarized available findings of gut microbiota and its interaction with the immune system in
axSpA. Future research may explore the way to modulate gut microorganisms in axSpA and bring
gut microbiome discoveries towards application.
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1. Introduction

Spondyloarthritis (SpA) is a common chronic inflammatory disease with a disease prevalence of
0.2% to 1.6% [1]. It mainly affects young people, with around 90% of them developing symptoms before
40 years old [2]. SpA is characterized by axial inflammation and peripheral manifestations including
asymmetrical mono- or oligoarthritis, enthesitis and dactylitis. Patients often have extra-articular
manifestations including psoriasis, uveitis and inflammatory bowel disease (IBD). According to the
2009 Assessment in Spondyloarthritis International Society (ASAS) classification, patients could be
classified as axial SpA (axSpA) with predominant involvement of sacroiliac joint and/or spine or
peripheral SpA with predominant peripheral manifestation [3]. AxSpA includes radiographic and
non-radiographic SpA. Ankylosing spondylitis (AS) is the prototypic form of axSpA. Other subtypes
of SpA include reactive arthritis, psoriatic arthritis, inflammatory bowel disease (IBD)-related SpA and
undifferentiated SpA. To date, the cause of SpA is unknown.

The human gastrointestinal tract comprises up to 100 trillion bacterial microbes, which are exposed
to the host through a mucus-covered surface area of 32 m2 [4,5]. Bacteroidetes and Firmicutes are
the two major phyla, which account for nearly 90% of the microbes identified in the gastrointestinal
tract, whereas Actinobacteria, Proteobacteria and Verrucomicrobia have a lower abundance [6]. At the
genus level, Bacteroides species, Faecalibacterium, Bifidobacterium, Lachnospiraceae, Roseburia and Alistipes
show a descending order of abundance [7]. Some microbes possess specific properties; for example,
Faecalibacterium prausnitzii has anti-inflammatory effects [8]. Healthy individuals have high diversity
concerning gut microbiome composition of Bacteriodetes, Firmicute, Actinobacteria, Spirochetes
and Proteobacteria phyla. Reduction in microbiome diversity, reduction in beneficial bacteria and
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overgrowth of pathogenic microorganisms may trigger an uncontrolled immune response, leading to
intestinal injury. Multiple factors including sex, comorbidities, diet, infection, antibiotic use, genetics,
birth route, hygiene and stress affect the gut microbiome composition [9–11]. Intestinal dysbiosis, an
imbalance of the microbiota, increases intestinal permeability. The exposure of a microorganism to the
mucosal immune system triggers an immune response leading to different diseases [12].

Emerging evidence shows the link between gut and SpA. Around 5–7% of AS patients may develop
IBD [13,14]. A large population study showed that the incidence of IBD was 5.3-fold higher in AS
patients compared to healthy controls, whereas up to 13% of IBD patients developed AS, as was reported
in a meta-analysis [15]. Around 50% of AS patients had subclinical gut inflammation in which chronic
gut inflammation was associated with more extensive sacroiliac joint bone marrow edema [16,17]. Gut
inflammation was also associated with increased risk of evolution from non-radiographic axSpA to AS
and increased risk of IBD [18]. In this article, we focus on the current understanding of the relationship
between gut and axSpA and explore the potential use of microbiota in treating axSpA.

2. Bowel Permeability and Intestinal Inflammation in Autoimmune Diseases

Luminal epithelium is important in maintaining normal homeostasis. It can absorb nutrients
as well as act as a physical and biological barrier against microorganisms and antigens. Intestinal
epithelium consists of six types of cells including absorptive enterocytes, goblet cells, Paneth cells,
enteroendocrine cells, tuft cells and microfold villus cells. They secrete soluble factors such as
mucin and anti-microbial peptides (AMP) including lysozymes, defensins and cathelicidin to prevent
microbial invasion. Intercellular junctions between adjacent intestinal epithelial cells are formed by
tight junctions, adherens junctions and desmosomes, which regulate the paracellular movement of
ions, solutes and water across the epithelium [12]. Dysregulation of the interactions between luminal
epithelial cells, immune cells and luminal microbiome increases bowel permeability, resulting in
luminal antigen translocation which triggers immunological responses such as leukocyte recruitment
and a release of soluble mediators, leading to intestinal inflammation [19]. Increasing evidence suggests
that intestinal permeability is crucial in the pathogenesis of different autoimmune diseases including
type I diabetes, celiac disease and IBD [12].

Paneth cells are important in maintaining intestinal homeostasis by modulating microbial
composition and regulating innate and adaptive immune responses (Figure 1). They secrete granules
containing various anti-microbial peptides such as defensin-like human lysozyme, defensin(HD) -5
and -6, RegIIIγ, secretory phospholipase A2 (sPLA2) and inflammatory cytokines that affect intestinal
inflammation, microbiota colonization and enteric pathogen invasion [20]. Paneth cells are also a major
source of interleukin (IL)-23, a key proinflammatory cytokine, in both AS and Crohn’s disease (CD)
patients [21].

Defensins are important AMP involved in the innate immunity in the intestinal mucosal barrier.
Their productions are stimulated by exposure of pathological microbes to toll-like receptors and
intracellular sensors. Defensin can form micropores in the bacterial membrane, resulting in an efflux of
ions and water, and therefore bacterial membrane rupture. It can also prevent pathogen colonization.
Lack of defensin due to nucleotide-binding oligomerization domain-containing protein 2 (NOD-2)
mutation increases susceptibility to CD [22]. Reduction in α-defensin may affect luminal microbiota
composition [23]. Upregulation of Paneth cell derived HD-5 was observed in terminal ileum of AS
patients with acute intestinal inflammation and low inflamed ileum of CD patients. This suggests
that overexpression of HD-5 and proinflammatory cytokines such as IL-23 may be involved in the
pathogenesis of an early stage of AS and CD [21], followed by reduction in defensin, leading to bacterial
translocation and inflammatory responses.
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stimulate the production of IL-17 [30]. The absence of MAIT cells in germ-free mice showed the 
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However, there was an upregulation of IL-17 in MAIT cells in peripheral blood in AS patients. Taken 
together, the presence and activation of MAIT cells in both gut and joint of AS patients further 
support the link between gut and joint [30]. 

Figure 1. Key mechanisms in regulating gut barrier integrity.

Zonulin, a modulator of intercellular tight junctions, is important in maintaining intestinal barrier
permeability. Exposure of enteric bacteria to luminal epithelium can stimulate zonulin secretion.
Genetic and environmental stimuli can also trigger dysregulation of the zonulin-dependent intestinal
barrier, thus altering intestinal permeability [24]. Disruption of the epithelial barrier and dysbiosis can
lead to an increase in both intestinal permeability and intestinal inflammation. A study showed that
after exposure of the non-inflamed intestinal ileum of a CD patient to sodium caprate (a constitute of
milk fat which can affect tight junctions), the non-inflamed tissue showed an increase in paracellular
permeability with dilatations within tight junctions [25]. This showed luminal stimuli can alter mucosal
permeability irrespective of gut inflammation. Damage of the gut vascular barrier, upregulation of
zonulin and bacterial products were also observed in colonic tissue of AS patients [26].

Mucosal-associated invariant T (MAIT) cells are unique innate-like lymphocytes preferentially
located in mucosal and epithelial barrier tissues, in particular gut lamina propria, and possess
anti-bacterial activity [27]. Vitamin B2 (riboflavin) metabolites, produced by bacteria and fungi, can
trigger the major histocompatibility class I-like antigen presenting molecule MR1 and activate MAIT
cells. These trigger a rapid production of cytokines and chemokines responsible for host immune
defense such as interferon-γ and perforin, as well as production of pro-inflammatory cytokines
responsible for the pathogenesis of AS, including IL-17 and tumor necrosis factor (TNF)-α [27,28]. IL-7,
produced by Paneth cells in the gut, can also stimulate MAIT cells to produce IL-17 in AS patients.
Increased expression of IL-7 was also observed in both gut and synovial fluid of AS patients [29]. IL-23
is an important cytokine involved in the differentiation and maturation of T helper (Th)17 cells in AS.
While there is a high expression of IL-23 receptor in AS patients, IL-23 priming of MAIT cells fails
to stimulate the production of IL-17 [30]. The absence of MAIT cells in germ-free mice showed the
essential role of gut commensal flora in the development and expansion of MAIT cells [31]. An elevation
of MAIT cells was found in synovial joint fluid of AS patients, as well as in rheumatoid arthritis
patients [32]. Disease activity in AS patients also correlated positively with MAIT cell activation.
Similar to IBD patients, the level of blood MAIT cells in AS patients was lower than for healthy
individuals, probably due to recruitment concerning inflamed sites such as gut and joint. However,
there was an upregulation of IL-17 in MAIT cells in peripheral blood in AS patients. Taken together,
the presence and activation of MAIT cells in both gut and joint of AS patients further support the link
between gut and joint [30].
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3. Key Cytokine Pathways in the Pathogenesis of Inflammatory Bowel Disease and Spondyloarthritis

The “gut-synovial axis” was hypothesized in view of the link observed between SpA and IBD.
Various host and environmental factors, including gut dysbiosis, genetic predisposition, infection
and diet, trigger a cascade of immune responses leading to autoimmune diseases. The IL-23/ IL-17
axis is believed to be crucial in the pathogenic mechanism in axSpA and IBD (Figure 2) [33]. IL-17
promotes T cell priming and stimulates fibroblasts, endothelial and epithelial cells and immune cells
such as macrophages, to produce pro-inflammatory cytokines and chemokines [34]. IL-17A and IL-17F
also stimulate the production of anti-microbial peptides β-defensins at the epithelial layer which is
important for maintaining gut permeability [35]. Th17 cells are the main source of IL-17. Tc17 cells
(CD8+ T cells), γδ T cells, invariant natural killer T cells, natural killer cells and type 3 innate lymphoid
cells (ILC-3) also produce IL-17 [35]. Other pro-inflammatory cytokines produced by Th17 cells include
IL-6, IL-22, IL-26, interferon-γ and TNF-α. IL-23 plays a major role in activation of T cells, which results
in expansion of Th17 cells.
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Figure 2. The role of IL17/IL23 axis in spondyloarthritis (SpA).

The B27- transgenic rat model showed that Th17 cells play an important role in the development
of SpA through induction of proinflammatory cytokines such as IL-17 and TNF-α [36]. In B27/HuB2m-
transgenic rats with spondyloarthritis-like disease, the IL-23/IL-17 axis was strongly activated and was
associated with colonic inflammation. IL-23 promotes the development of colitis through upregulating
downstream proinflammatory meditators such as IL-17, IL-1, IL-6 and TNF in a rat model [37].

The serum levels of IL-17 and IL-23 were raised in AS patients compared to healthy control [38].
An abundance of IL-17-secreting cells in the facet joint was also noted in AS [39]. Similar to the
animal studies, upregulation of IL-23 was found in terminal ileum of AS and CD patients. However,
upregulation of IL-17 was only observed in the gut of CD but not in AS patients [40].

In a human clinical trial, anti-IL-17 such as secukinumab and ixekizumab were effective at treating
AS. However, anti-IL17 may worsen gut inflammation in AS patients with IBD. IL-17 is important
in maintaining intestinal epithelium barrier integrity by repairing damage epithelium and avoiding
overgrowth of bacteria that promote gut inflammation [41]. In IL-17-deficient mice, dysregulated gut
permeability and atypical distribution of epithelial tight junction protein occlusion were observed [42].
Blocking of upstream of Th17 cells by anti-IL-23 such as Risankizumab and Ustekinumab, which
are useful in treating IBD, failed to demonstrate efficacy in treating AS. Possible hypotheses include
IL-23-independent induction of IL-17 from immune cells and the presence of other key regulatory
agents other than IL-23 in targeting a Th17 response in AS [43].

Upregulation of IL-32 was observed in both CD and AS patients with chronic intestinal
inflammation [44]. IL-32 overexpression was accompanied with an increase in proinflammatory
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cytokines such as IL-1B, IFN-γ and TNF-α in CD, but not AS. Only IL-10 was strongly correlated with
IL-32 in AS, in which IL-10 is crucial in maintaining epithelial permeability [45]. Moreover, IL-22 was
also overexpressed in ileum of AS patients, which was accompanied with an increase in IL-23 but not
IL-17 [46]. IL-22 is released by the mucosal natural killer cell NKp44+. Increased expression of IL-22 is
protective against ileitis in the animal model [47]. In the absence of IL-17, IL-22 can protect gut mucosa
from inflammation by promoting goblet cell hyperplasia and mucin production [46,48]. These suggest
the tissue-protective role of IL-32 and IL-22 in gut in AS patients.

IL-17A and IL-17F are important for protecting against cutaneous infection with Candida albicans
and Staphylococcus aureus and intestinal infection by Citrobacter rodentium as shown in animal studies [35].
Segmented filamentous bacteria (SFB) are gram-positive bacteria that selectively colonize in terminal
ileum. SFB induce expression of Th17-associated genes (IL-17, IL21, Cer6, NOS2) and anti-microbial
gene RegIIIγ. Colonization with SFB alone in mice intestine is sufficient for the differentiation of Th17
cells in lamina propria, which produce IL-17 and IL-22, and protect mucosal from Citrobacter rodentium
infection [49]. Commensal bacteria promote epithelial fucosylation by prompting ILC3 to produce
IL-22 [50]. Fucosylation of intestinal epithelial cells liberates fucose into the lumen and its metabolism
is also affected by intestinal bacteria [51]. This process reduces the expression of bacterial virulence
genes, prevents colonization of intestinal opportunistic bacterium Enterococcus faecalis and enhances
tolerance of harmful bacteria such as Citrobacter rodentium [52].

4. Genetic Predisposition to the Development of Gut Inflammation and Spondyloarthritis

The genetic factor plays an important role in the pathogenesis of SpA. HLA -B27 is an allele
of the HLA-B locus in the class I region of the human major histocompatibility complex (MHC).
The association between HLA-B27 and the development of AS was the strongest between an MHC
antigen and a disease, with over 90% of the AS patients being HLA-B27 positive [2]. However, only 5%
of the HLA-B27 carrier will develop AS. Misfolding of HLA-B27 promotes endoplasmic reticulum
stress and triggers unfolded protein response, which in turn stimulates IL-23 production and bowel
inflammation [53].

Genome-wide association studies found that AS and IBD patients shared over 10% of their gene
pathways, in which genes involved in the Th17 cell pathway are of significant importance, including
IL-23R, IL-12B, STAT3 and caspase recruitment domain-containing protein 9 (CARD9) [54–56]. STAT3 is
a major signaling molecule within the Th17 lymphocyte differentiation pathway. IL-23 signals through
its receptor IL-23R and induces STAT3 phosphorylation [57]. This stimulates Th17 cells to produce
proinflammatory cytokines such as TNF, IL-1B and IL-17, leading to joint and bowel inflammation [54].
CARD9 is an adaptor protein highly expressed in dendritic cells and in macrophages which can
regulate the innate immune response to selected intracellular bacteria, fungi and viruses. It stimulates
Th17 cell differentiation, IL-23, TNF-α and other cytokines’ production, resulting in joint and gut
inflammation [33]. IL-12B encodes IL-12p40, which is the common subunit of IL-23 and IL-12.
IL-23 mediates chronic inflammation and IL-12 promotes naïve T cell differentiation. IL-12B genetic
polymorphism confers susceptibility to AS and is associated with disease severity [58].

NOD2, previously known as caspase recruitment domain-containing protein 15 (CARD15), is
an intracellular protein encoded by the NOD2 gene. The NOD2 variant is associated with CD and
predisposes CD patients to sacroiliitis [59–61]. However, NOD2 polymorphism does not confer AS
susceptibility [60].

5. Dysbiosis and Spondyloarthritis

The mouse model showed the link between gut microbiota and SpA. BALB/c ZAP-70W163C

mutated (SKG) mice increase thymic production of arthritogenic autoimmune T cells and result in
IL-17-dependent SpA-like inflammatory arthritis (Table 1). SKG mutated mice developed inflammatory
arthritis in conventional microbial conditions, but remain healthy in specific pathogen-free (SPF)
conditions [62]. β-glucan is a major component of fungal and some bacterial cell walls which can
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trigger the dectin-1 receptor in synovial cells leading to synovitis [63]. After a systemic injection of
curdlan, 1,3-β-glucan aggregated to SPF SKG mutant mice, and all developed inflammatory arthritis and
more than half of them developed small intestine inflammation, with features similar to those in CD [64].
Expression of tight junction protein occludin in ileum was significantly reduced in curdlan-treated
SPF SKG mice, as compared to naïve SPF SKG mice [62]. Moreover, curdlan-treated SKG mice had
higher incidence of arthritis and more severe ileitis as compared to germ-free SKG mice. Moreover,
injection of mannan, another microbial cell wall component, can also induce peripheral arthritis in
SKG mice, but not ileitis [64]. Together, these suggest multiple microbial cell wall components could
trigger SpA-like disease in SKG mice independently.

Table 1. Murine Models of SpA Associated with Dysbiosis.

Mice Strain Environmental Condition Reference

SKG � GF: no arthritis
� Conventional: arthritis [54]

SKG
� GF, curdlan: arthritis
� SPF, curdlan: arthritis
� GF, recolonized with ASF, curdlan: arthritis (less severe than SPF, curdlan)

[54]

SKG

� SPF: no arthritis
� Conventional: all develop arthritis
� Transfer of thymocytes/splenocytes from SPF SKG to BALB/c athymic
nude mice: severe arthritis

[55]

SKG

� SPF, Zymosan: arthritis
� Conventional, amphotericin B: no arthritis
� SPF, Zymosan, amphotericin B: arthritis
� SPF, curdlan or laminarin, SKG: chronic arthritis
� SPF, curdlan or laminarin, BALB/c: transient arthritis

[55]

SKG

� SPF: no arthritis
� SPF, curdlan, 1,3-β-glucan: all develop arthritis, 40–50% developed
dactylitis, 50–60% developed small intestine inflammation, 25% developed
acute unilateral uveitis

[56]

B27 transgenic rat
• GF: no peripheral arthritis/gut inflammation
• Conventional: 80% developed arthritis and colitis
• Different genetic background: affect gut microbiome composition

[57–60]

SKG: BALB/c ZAP-70W163C mutated. GF: Germ free. SPF: Specific pathogen-free. Zymosan includes β-glucans
and mannan, which are key components of yeast cell walls. Purified β-glucans: Curdlan and laminarin.

Despite the high genetic predisposition of HLA-B27, the concordance rate in the homozygotic
twin is only 50–70%, which signifies that other environmental factors may also play a role in the
pathogenesis. Animal models showed that the gut microbiome is essential in the development of
AS. None of the HLA-B27 germ-free mice developed AS [65]. Interestingly, after the introduction of
common luminal bacteria, over 80% of them developed AS and diarrhea [66]. Different gut microbiome
compositions also affect the degree of gut inflammation in AS patients; in particular, Bacteroides specie
was found to be associated with intestinal inflammation in B27 transgenic rats [66]. The presence of
HLA-B27 and a different genetic background can also alter gut microbiome composition in AS [67,68].
Increased abundance of bacteria that promote gut inflammation including Akkermansia muciniphila and
Prevotella were observed in the Fischer and Lewis strain B27 transgenic rats, respectively. Akkermansia
muciniphila can degrade mucin in gut epithelium and Prevotella can enhance Th17-mediated immune
responses in gut mucosa [69,70].

HLA-B27 expression can also affect intestinal metabolome. In the B27-transgenic rat model,
the administration of microbial metabolite propionate significantly reduced the production of
proinflammatory cytokines including IL-1B, IL-17A and IFN-γ and colonic inflammation [71].
An increase in Prevotella specie and a decrease in Rikenellaceae relative abundance were observed
concerning HLA-B27 transgenic animals, compared to wild type rats. The abundance of Bacteroides
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vulgatus was augmented in HLA-B27/hβ2m and hβ2m compared to wild type rats. This showed
HLA-B27 may alter the gut microbiome composition [72].

Animal models also showed that gut microbiota can promote Th17 cell differentiation, a key
driver of SpA, in lamina propria of the small intestine [73]. Th17 cells were absent in lamina propria
in germ-free K/BxN mice. Delayed onset of arthritis and less severe arthritis were also observed
in germ-free K/BxN mice. After the introduction of segmented filamentous bacteria, gram-positive,
spore-forming obligate anaerobes, to germ-free K/BxN mice, the expression of Th17 cells in lamina
propria and IL-17 production increased and the development of arthritis was accelerated [49,74].
IL-23 also alter microbiome composition in AS. In SKG mice that develop IL-23-dependent SpA-like
arthritis, the introduction of anti-IL-23 decreased Bacteroidaceae, Porphyromonadaceae and Prevotellaceae
and increased Clostridiaceae and Lachnospiraceae abundance [75].

Earlier studies proposed a role for Klebsiella in the development of AS, evidenced by the isolation of
Klebsiella from faecal cultures and detection of an anti-Klebsiella antibody in AS patients [76]. However,
the association between Klebsiella and AS is weak. Moreover, there was no significant oral microbiome
difference observed in SpA patients compared to healthy control [77].

Dysbiosis is associated with disease activity in AS patients, evidenced by the positive correlation
between the abundance of the genus Dialister in colonic biopsies and the AS Disease Activity Score
(ASDAS) [78] and the positive correlation between the abundance of Ruminococcus gnavus in faeces and
the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) [79]. Dysbiosis is also associated
with gut inflammation in AS patients [26,80]. Terminal ileum biopsies of biologic naïve AS patients
showed a strong microbial imbalance as compared to healthy controls, with increased abundance of
five families of bacteria including Lachnospiraceae, Ruminococcaceae, Rikenellaceae, Porphyromonadaceae
and Bacteroidaceae and a decrease in the abundance of two families of bacteria—Veillonellaceae and
Prevotellaceae [81]. Studies showed a distinct faecal microbiota pattern in AS patients; however, the
results are inconsistent. A higher abundance of Bifidobacterium and Prevotellaceae, including Prevotella
melaninogenica, Prevotella copri and Prevotella species, was observed in faecal samples of Chinese AS
patients, as compared to healthy controls [82]. Another study conducted in Sweden showed higher
abundance of Proteobacteria, Enterobacteriaceae, Bacilli, Streptococcus species and Actinobacteria in faecal
samples of AS patients when compared to healthy control, but lower abundance of Bacteroides and
Lachnospiraceae [80]. A study in France found disease-specific dysbiosis in SpA patients with higher
abundance of Ruminococcus gnavus in faecal samples [79]. However, the difference in Ruminococcus
gnavus abundance in faecal samples of SpA patients was not observed in another study [83]. A reduced
abundance of Bacteroides was found in SpA patients, but not in B. fragilis. A trend of decreased
abundance of Faecalibacterium prausnitzii, which demonstrated strong anti-inflammatory effects both
in vitro and in vivo, was observed in faecal samples of SpA patients [80,83,84] (Table 2).

Changes in microbiome composition were also observed in pre- and post-biologic treatment in
SpA patients. In a study of SpA and PsA patients (SpA/PsA), distinctive microbiome signatures were
observed in this cohort with increased abundance of Clostridiales and Erysipelotrichales order and
lower abundance of Bacteroidales order, when compared to healthy individuals [85]. An increase in
Clostridiales and a reduction in Bacteroidales abundance were observed in this cohort after anti-TNF
treatment. Interestingly, reverse abundance with lower abundance of Clostridiales and increase
abundance of Bacteroidales were observed post-anti-IL17 treatment.

Perturbation of mycobiome was also observed in this SpA/PsA cohort after biologic treatment.
An increase in the abundance of fungal taxa Saccharomycetales order was observed in SpA/PsA
patients after anti-TNF and anti-IL17 [85]. Candida and C. Albicans expanders before biologic treatment
were associated with higher abundance of Bacteroides post treatment. Another pilot study also
showed characteristic gut mycobiome in AS patients with an increased abundance of Ascomycota
at the taxonomic level, especially for the class of Dothideomycetes, and decreased abundance of
Basidiomycota, especially for Agaricales [86].
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Table 2. Altered Gut Microbiota in Faecal Samples in SpA Compared to Healthy Individuals in Animal
and Human Studies.

Increased Abundance Decreased Abundance Reference

HLA-B27/hβ2m,
compared to wild type Prevotella spp. Rikenellaceae [72]

HLA-B27/hβ2m and
hβ2m, compared to wild
type rats

Bacteroides vulgatus [72]

SKG mice+ anti-IL23 Clostridiaceae and
Lachnospiraceae

Bacteroidaceae, Porphyromonadaceae and
Prevotellaceae [75]

HLAB27 positive
individual (in the
absence of disease or
treatment)

Roseburia species at left
colon, right colon, rectum,
and faeces
Neisseriaceae at cecum and
ileum

Bacterioides ovatus across multiple sites
(ileum, cecum, left colon, right colon,
and faeces)
Blautia obeum at left colon and right
colon
Dorea formicigenerans at rectum and
faeces

[68]

SpA patients, compared
to RA and healthy
controls

Ruminococcus gnavus [79]

Chinese AS patients,
compared to healthy
control

Bifidobacterium and
Prevotellaceae including
Prevotella melaninogenica,
Prevotella copri and Prevotella
species

[82]

Sweden AS patients,
compared to healthy
control

Proteobacteria,
Enterobacteriaceae, Bacilli,
Streptococcus species,
Actinobacteria Bacteroides and
Lachnospiraceae

[80]

Biologic naïve PsA/SpA
patients

Clostridiales and
Erysipelotrichales order Bacteroidales order [85]

PsA/SpA patients

After anti-TNF: Clostridiales
After anti- IL17:
Bacteroidales
After anti-IL17 and anti-TNF:
Saccharomycetales order

After anti-TNF: Bacteroidales
After anti-IL17: Clostridiales [85]

AS patients
Ascomycota at taxonomic
level, especially the class of
Dothideomycetes

Basidiomycota, especially Agaricales [86]

Current studies did not give a conclusive finding of a SpA-specific gut microbiome or mycobiome
pattern. The difference in the outcomes of various studies may be explained by host factors,
environmental factors and technical variations such as DNA extraction protocol and choice of
PCR primer. With the knowledge of these factors, future studies with better study designs could be
conducted in order to identify disease-specific gut microbiome.

6. Potential Treatment: Antibiotic, Probiotic and Faecal Microbiota Transplantation

Currently, non-steroidal anti-inflammatory drugs and biologics including anti-TNF and anti-IL-17
are the mainstay of treatment for axSpA. With the growing evidence supporting the link between gut
and SpA, novel treatments that could modulate gut microbiota such as antibiotics and probiotics are
being investigated.

Sulphasalazine is mainly composed of salicylic acid and an antibiotic, sulfapyridine. It is effective
in treating both peripheral SpA and IBD. A decrease in non-spore forming anaerobes was observed in
IBD patients after taking sulphasalazine. A resolution of gut inflammation and joint improvement
after sulphasalazine is observed in seronegative SpA [87]. Moxifloxacin is a fluroquinolone group
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antibiotic that acts against some gram-positive and -negative bacteria and exhibits immunomodulatory
effects. It can inhibit proinflammatory cytokines IL-1 and TNF-α synthesis. In an open labelled pilot
study, moxifloxacin showed significant improvement in disease activity and inflammatory markers
in AS patients [88]. Another antibiotic, Rifaximin, was effective in preventing AS progression and
modulating gut microbiota composition in the mouse model [89]. However, these results were mainly
based on trials with a small sample size and animal models. Larger clinical trials are required to
validate the efficacy of antibiotics in treating SpA patients.

In view of the complexity and the dynamic changes of gut microbiome, future animal models
and human studies should be performed in order to better understand the bacterial taxonomics
and their functions in gut in SpA patients and how gut microbiome arises and evolves, such that
culprit pathogens involved in triggering SpA could be identified. This may shed light on potential
disease-specific antibiotic treatment in treating SpA.

Probiotics are a combination of beneficial live bacteria and yeast. Prebiotics are fibres that promote
growth of selected bacteria. In HLA-B27 transgenic rats that develop colitis, gastritis and systemic
inflammation, Lactobacillus rhamnosus is effective in preventing colitis [90]. Prebiotic treatment is also
effective in reducing colitis in HLA-B27 transgenic rats [91]. These suggest a potential role for probiotic
and prebiotic modulating of the disease. However, in a randomized controlled trial, oral probiotic was
not effective in treating SpA [92]. Future clinical studies are warranted to identify beneficial strains
of bacteria and thus the optimal probiotic/prebiotic formula that could modulate the gut flora and
ultimately treat SpA.

Faecal microbiota transplantation (FMT) aims to restore gut homeostasis by transferring gut
bacteria and microbes from healthy individuals’ feaces. It is highly effective in treating refractory and
recurrent Clostridium difficile infection. There is growing popularity in studying the use of FMT in
different diseases including IBD, metabolic diseases and other autoimmune diseases including axSpA.
Currently, there is an ongoing double-blinded placebo controlled randomized pilot study comparing
the use of FMT and placebo in treating active axSpA, we are hoping for promising results [93].

Another potential role of the study of gut microbiome is to identify gut bacteria that can be used
as biomarkers to predict the therapeutic efficacy of biologicsand guide personalized treatment in SpA.

7. Conclusions

Current literatures clearly demonstrates the link between gut microbiome and its interaction with
the immune system in SpA. The reality of the essential role of gut microbiome in the pathogenesis of
SpA is supported by animal models and some human studies. Future studies are required to identify
the core microbiome associated with SpA, which thus might be a promising therapeutic target for
treatment of axSpA. With a better understanding of the ecosystem in gut in axSpA, potential therapeutic
agents such as antibiotic, probiotic, prebiotic and FMT may help restore a healthy gut microbiome in
axSpA by precision microbiome manipulation, and hopefully make axSpA into a cure.
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