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Prioritizing Parkinson’s disease genes using
population-scale transcriptomic data
Yang I. Li1, Garrett Wong2, Jack Humphrey 3,4 & Towfique Raj2

Genome-wide association studies (GWAS) have identified over 41 susceptibility loci asso-

ciated with Parkinson’s Disease (PD) but identifying putative causal genes and the underlying

mechanisms remains challenging. Here, we leverage large-scale transcriptomic datasets to

prioritize genes that are likely to affect PD by using a transcriptome-wide association study

(TWAS) approach. Using this approach, we identify 66 gene associations whose predicted

expression or splicing levels in dorsolateral prefrontal cortex (DLFPC) and peripheral

monocytes are significantly associated with PD risk. We uncover many novel genes

associated with PD but also novel mechanisms for known associations such as MAPT, for

which we find that variation in exon 3 splicing explains the common genetic association.

Genes identified in our analyses belong to the same or related pathways including lysosomal

and innate immune function. Overall, our study provides a strong foundation for further

mechanistic studies that will elucidate the molecular drivers of PD.
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Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder after Alzheimer’s disease (AD). PD
is characterized by the formation of intracytoplasmic

inclusions known as Lewy bodies containing α-synuclein (α-syn)
and by the loss of dopaminergic neurons primarily in the
substantia nigra1,2. Over the past decade, a number of genetic
susceptibility factors have been identified for PD, including
nine genes linked to heritable, monogenic forms of PD2. More
recently, over 41 genetic susceptibility loci have been associated
with late-onset PD in the largest genome-wide association studies
(GWAS) meta-analysis of PD to date3. Within these risk loci, a
few genes have been identified as potentially causal, but for the
majority of loci, it is not yet known which genes underlie PD risk.
More generally, it is currently unclear whether PD risk genes
identified thus far by GWAS studies belong to coherent pathways
such as those involved in lysosomal and autophagy function as
was previously suggested3.

The integration of large-scale functional genomics data with
GWAS has been a powerful approach to characterize the func-
tional effects of associated variants3,4. PD is generally considered
to be a disease involving neurons1,2. As such, many studies have
attempted to use functional genomics data in post-mortem
human brains to ascribe function to PD risk variants5–7. How-
ever, previous studies were underpowered due to limited sample
sizes and the high cellular heterogeneity of brain tissues, but in
few cases, they have led to novel biological hypotheses about the
mechanisms underlying PD-associated genetic associations. For
instance, at the MAPT locus, a well-characterized inversion at
17q21 marks the PD-associated H2 haplotype, which has been
reported to be associated with exon 10 exclusion8, MAPT exon
3 inclusion9, and also increased total MAPT expression8. While
these reports suggest that MAPT is involved in PD, it is unknown
what specific mechanism drives the association to PD and whe-
ther the H1/H2 haplotypes are also associated with differential
expression and/or splicing of other genes in the locus.

Beyond neuronal cells, immune cells have also been suggested
to play a role in PD10. For example, we have previously used
genomic approaches to show that PD-associated loci are
enriched in expression quantitative loci (eQTLs) from peripheral
monocytes but not CD4+ T cells10. Similarly, recent studies
used cell-type-specific functional annotations to show that
genes in PD GWAS loci are preferentially expressed in CD14+

monocytes11,12. These findings support the involvement of the
innate-immune cells, including peripheral monocytes and central
nervous system (CNS) microglia, in the etiology of PD.

Here, we use a transcriptome-wide association study (TWAS)
approach to prioritize candidate PD genes and to better under-
stand the primary mechanisms that underlie PD genetic risk
factors. Previously, TWAS used expression quantitative trait loci
(eQTL) data to impute RNA expression levels onto large cohorts
of individuals from GWASs to identify putative genes involved
in complex autoimmune diseases13 or cardio-metabolic traits14.
We have recently shown that genetic effects on RNA splicing,
or splicing QTL (sQTLs), are likely primary mediators of genetic
effects on complex disease at many GWAS loci15. Importantly,
the genetic effects on RNA splicing are largely independent of
that on RNA expression15, and therefore we reason that they
could help us identify additional links between disease-associated
variants and candidate disease genes.

In this study, we consider both the genetic effects on RNA
expression and splicing to prioritize disease-relevant genes.
To this end, we obtain PD GWAS data and large-scale tran-
scriptomics data that are publicly available. We first use
broad atlases of gene expression that include brain16,17 and
immune cell types17,18 to find tissues or cell types with specifically
expressed genes (SEGs) for PD susceptibility loci. We

then leverage large-scale transcriptomic data from primary
monocytes10,19,20 and a large-scale dorsolateral prefrontal cortex
(DLPFC) dataset21 to perform a TWAS of PD. We prioritize
66 genes whose predicted expression or splicing levels in per-
ipheral monocytes cells and in DLPFC are significantly associated
with PD risk. Overall, our study suggests that a TWAS approach
considering both genetic effects on RNA expression and splicing
is a powerful method to identify specific genes and mechanisms
at each GWAS locus as determinants of PD risk.

Results
Heritability enrichment of expressed genes identifies PD-
relevant tissues. To obtain a better understanding of how genetic
variants affect PD risk, we first identified tissues or cell types
likely to be relevant in PD pathology. To this end, we used linkage
disequilibrium (LD) score regression for SEGs (LDSC-SEG),
which is a computational method that identifies tissues in which
genes with increased expression are enriched in single-nucleotide
polymorphisms (SNPs) that tag an unexpectedly large amount of
PD heritability22. When applied to 53 tissues from the genotype
tissue expression (GTEx) project16, we detected an enrichment at
a 5% false discovery rate (FDR) threshold (−log10 p value >2.86)
for six tissues including the amygdala, substantia nigra, anterior
cingulate cortex, frontal cortex, hypothalamus, and cervical (C1)
spinal cord (Fig. 1b). These findings can be replicated using a
larger expression panel comprising of 152 cell types17 (Supple-
mentary Figure 1). In contrast, there is no enrichment of SNP
heritability near genes expressed in CNS tissues for AD, a neu-
rodegenerative disorder thought to share common etiologies with
PD. The contrast in disease-associated variants enrichment in
CNS tissues between PD and AD suggests that neuronal cell types
are affected in fundamentally different ways in the two neuro-
degenerative diseases. Moreover, when we used LDSC-SEG on
expression data from sorted primary mouse CNS cells23, we
found that neurons (p= 0.024, t-test) and oligodendrocytes (p=
0.028, t-test), but not astrocytes (p= 0.91, t-test), preferentially
expressed genes enriched in SNP heritability for PD pathology
(Supplementary Figure 2). Finally, we applied LDSC-SEG on an
atlas of 291 mouse immunological cell types18 in order to assess
whether PD signal enrichment near genes specifically expressed
in myeloid cells are higher than compared to other immune cell
types, as previous results suggest11,12 (Fig. 1b). However, again
unlike for AD, where a marked enrichment for myeloid cell types
was observed, the enrichment in PD is weak or absent, although it
may be that specific cellular processes within myeloid cells are
enriched for PD susceptibility genes24.

We next asked whether PD-associated variants were enriched
among molecular (including expression, splicing, histone marks,
and DNA methylation) QTLs in DLPFC27,28 and immune cell
types10,29 using GARFIELD30 (Fig. 1c). GARFIELD uses func-
tional annotations to assess whether GWAS signals are enriched
for specific functions. Here we annotated each SNP by whether
they were molecular QTLs in different datasets and cell types. To
this end, we used eQTL and sQTL obtained from DLPFC RNA-
sequencing (RNA-seq) samples from the Religious Orders Study
(ROS) and Memory and Aging Project (MAP)27 and Common-
Mind Consortium (CMC)21, which consists of 450 and 452 post-
mortem DLPFC, respectively. The eQTL and QTL for histone
marks for immune cell types were obtained from the ImmVar
Consortium (n= 461)10, the BLUEPRINT Consortium (n= 197)
29, and a study by Fairfax et al.19 (n= 432). As expected15, we
found that most molecular QTLs in both immune cell types and
DLPFC were enriched in PD-associated variants, which implies a
widespread gene regulatory impact for PD-associated variants.
More interestingly, however, we found that genetic variants that
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affect RNA splicing in DLPFC were highly enriched (14× fold
enrichment) in variants associated with PD (at a p value cut-off
<10−5; Fig. 1c), an observation that was shared in the two DLPFC
datasets21,27. eQTLs in monocytes were also highly enriched
among variants associated with PD (7× fold enrichment; Fig. 1c).
Altogether, these results motivated us to consider both RNA
splicing and RNA expression in DLPFC and monocytes as
mediators of genetic effects on PD risk.

TWAS of PD. To identify and prioritize candidate PD genes, we
performed TWAS14 using summary-level data from a PD GWAS
of 108,990 individuals of European ancestry (13,708 cases and
95,282 controls)31 and transcriptome panels from peripheral
monocytes and DLPFC. The TWAS approach uses information
from the RNA expression or splicing measured in a reference
panel and the PD GWAS summary statistics to evaluate the
association between the genetic component of expression and
PD status (see Methods). We built TWAS models using gene
expression data from primary peripheral monocytes in three
independent cohorts10,19,20 and DLFPC RNA-seq data (n= 452)
from CMC21. In addition to using gene expression to build pre-
dictive models, RNA-seq data from DLFPC allowed us to con-
sider alternative splicing in PD by quantifying “percent spliced
in” of splicing events32. However, we were unable to build
a model with RNA splicing in monocytes as population-level
RNA-seq data for this cell type was not available at the time
of this study.

We used the FUSION software (see URLs) to estimate the
heritability, build predictive models, and perform TWAS. For
each reference panel, FUSION estimates the heritability of gene
expression and alternative splicing explained by local SNPs (i.e.,
1 Mb from TSS of each gene) using linear-mixed models33. Genes
or splicing events that are nominally significant at p< 0.01 for
SNP heritability (cis-hg2) are used for training predictive models
(Supplementary Figure 3). FUSION fits four predictive linear
models (see Methods) for every gene or intronic excision event
using local SNPs as predictors. The models with the best cross-
validation prediction accuracy are kept for prediction into GWAS
(Supplementary Figures 4 and 5). In total, 17,798 tissue-specific
models, including 4721 monocyte expression, 5383 DLPFC
expression, and 7695 DLFPC alternatively spliced introns, were
used for TWAS. The square of correlation (R2) between predicted
and observed gene expression levels normalized by corresponding
cis-hg2 was calculated to measure prediction accuracy. Across all
cohorts least absolute shrinkage and selection operator (LASSO)
attained the best predictive performance, with 30% improvement
in prediction R2 over other models (Supplementary Figure 5). We
found the average in-sample prediction accuracy (R2/cis-hg2)
to be 54, 72, and 73% for monocyte, DLFPC expression, and
DLFPC splicing, respectively. These results are consistent
previous TWAS analyses14 and suggest that most of the signal
in cis-regulated total expression and splicing levels is captured
by the fitted models.

Using these TWAS models, we found that the expression of 29
genes is significantly associated with PD in monocytes (Fig. 2a),
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Fig. 1 Enrichment of tissues and cell types in Parkinson’s disease (PD). a Study design. Using PD genome-wide association studies (GWAS) summary
statistics and gene expression datasets to: (1) identify tissues and cell types enriched in PD GWAS signal, and (2) to identify genes and mechanisms
through which PD-associated loci act to affect disease risk. b Linkage disequilibrium (LD) score regression in specifically expressed genes (LD-SEG)
analysis applied to late-onset AD (17,008 cases and 37,154 controls)26 and PD (13,708 cases and 95,282 controls)31 GWAS summary statistics. Top
panel: Regions of the genome with specific expression in central nervous system (CNS) tissues are highly enriched for PD GWAS signal, among 53 tissues
obtained from the Genotype-Tissue expression project (GTEx). Shown in red bars are CNS tissues. Six CNS tissues (amygdala, substantia nigra, anterior
cingulate cortex, frontal cortex, hypothalamus, and cervical (C1) spinal cord) are significant at 5% false discovery rate (FDR) (dotted line). Bottom panel:
LD-SEG analysis using immune cells from the ImmGen Consortium. c Enrichment of gene expression, splicing, methylation and chromatin quantitative loci
(QTL) in PD GWAS (p value < 10–5) across tissues and cell types with GARFIELD. GARFIELD leverages GWAS signal with functional annotations to find
features such as QTL annotations relevant to a phenotype of interest. All molecular QTLs were enriched in PD-associated variants, and that brain splicing
QTLs (sQTLs) showed the strongest enrichment in PD-associated variants among all molecular QTLs
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and that 44 genes are significantly associated with PD in DLPFC
through RNA expression and/or splicing (FDR < .05) (Fig. 2b,
Supplementary Data 1). Nineteen out of the 66 unique TWAS
genes are in known PD GWAS susceptibility loci. Of the 29 genes
associated with PD in monocytes, several genes were in novel PD

loci but previously associated with AD, for example, CD33 and
PILRB26,34,35. CD33 protein level was previously shown to be
affected by PD risk variants in monocytes36, and PILRB is a
binding partner for TYROBP (DAP12), the main regulator of the
microglia network activated in AD37. The overlap between PD
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and AD risk genes supports the existence of shared genetic risk
factors—which likely involve immune-mediated mechanisms—
for the two neurodegenerative diseases38,39.

In addition to new PD loci, we also observed significant
associations with several genes previously known to play a role in
PD, for example, SNCA and LRRK2 (Supplementary Data 1).
Interestingly, we found SNCA to be significantly associated with
PD using both the monocyte and DLPFC TWAS models, but that
LRRK2 was only significantly associated with PD in monocytes.
We, therefore, asked whether the LRRK2 risk loci show evidence
of cell-type-specific effects in monocytes, and not in cells from
the CNS. Indeed, we found that the PD risk allele (rs76904798-T)
at the LRRK2 locus is associated with increased expression of
LRRK2 in monocytes (rs76904798, p= 2.93 × 10−8), but not in
DLFPC (p= 0.98) (Fig. 2c). At this locus, the GWAS signal
colocalizes with the eQTL signal in monocytes with posterior
probability 0.99 (Fig. 2d; Supplementary Figure 6). Recent studies
have shown that both SNCA and LRRK2 are highly expressed
in human microglia39, and that the expression levels of these
two genes are elevated in peripheral monocytes of PD patients
compared to age-matched controls40,41. In addition, both
GPNMB and GBP7 were previously shown to be differentially
expressed in PD brains vs. controls42. In total, seven genes
(SNCA, CLASP2, TMEM175, GPNMB, CTSB, CAMLG, and
NUDT14) were significant in both monocyte and DLPFC
TWAS models. The finding that PD risk loci have cell-type-
specific effects in monocytes also support the hypothesis that
peripheral monocytes play a role in the progression of PD and/or
may serve as a proxy for microglial activities within the brain.

To determine if the association signals for PD GWAS and
expression (or splicing) are driven by the same causal variant,
we next used coloc43 to assess colocalization between the PD
association signal at these TWAS loci and expression or splicing
QTLs. We found that 10 of 29 loci, or 34%, had evidence of
colocalization with monocyte eQTLs. In DLPFC, we found that
12 of 18 loci, or 67%, had evidence of colocalization with DLPFC
eQTLs, and 4 of 26 loci, or 15%, had evidence of colocalization
with DLPFC sQTLs (Supplementary Data 1). The significantly
lower colocalization between GWAS signals and sQTLs compared
to eQTLs is unexpected, as we found higher enrichment for PD
GWAS signal among sQTLs than eQTLs (Figs. 1c, 2e–g). A
plausible explanation is that our TWAS models for RNA splicing
produced a higher false-positive rate than our TWAS model for
RNA expression. However, another possibility is that genetic
variants that affect RNA splicing tend to have smaller effects on
complex traits or to be secondary associations. Approaches such
as coloc depend on the alignment of strong effects both at the
GWAS and QTL mapping levels, and thus they have limited
ability to detect colocalization between weak GWAS and/or sQTL

signals. Indeed, when we plotted the posterior probabilities of our
coloc analyses, we found that coloc performed well for eQTLs
(Fig. 3e, f), assigning all probability density to H3 (independent
signals) or H4 (colocalized signal). However, for a large number
of sQTLs, coloc was underpowered to find evidence for
colocalization (Fig. 2f), because it did not find evidence
supporting the GWAS loci (H1), the sQTL association (H2), or
neither (H0). Overall, our analysis indicates that the sQTL signal
is independent of the GWAS signal for 5 loci (Fig. 2f) and
colocalizes at 4 loci, but for the remaining 17 of the 26 loci that
were associated with PD through RNA splicing, it is unknown
whether the sQTL colocalizes with the PD GWAS signal or not.

We next sought to validate the results from our splicing TWAS
analysis using a replication approach. We performed replication
analyses of our TWAS in independent transcriptome27 and
GWAS datasets (a cohort of 23andMe research participants; 4124
cases and 62,037 controls31). We first assessed whether the
DLPFC TWAS results could be replicated in an independent
transcriptomic reference panel by performing TWAS using
DLPFC RNA-seq data from ROSMAP (n= 450)28. Before
validating the TWAS results in ROSMAP, we evaluated cross-
cohort prediction of the genes and intronic splicing in CMC and
ROSMAP. The average cis-heritability estimates between the
ROSMAP and CMC were strongly correlated across genes and
intronic splicing (Pearson’s r= 0.54). The prediction accuracy
between the two cohorts was also strongly correlated (Pearson’s r
= 0.43 and 0.16 for R2 and R2/hg2, respectively) (Supplementary
Figures 7–8). The weaker correlation of the normalized prediction
accuracy is likely due to due differences in the average cis-
heritability estimates between ROSMAP (cis-hg2= 0.098) and
CMC (cis-hg2= 0.078). To test the predictive consistency for
models of gene expression and splicing, we compared predicted
gene expression and splicing for CMC DLFPC samples to
measured ROSMAP DLFPC gene expression and splicing. We
found a highly significant replication (mean R2 for expression=
0.071; p= 1.3 × 10−36; mean R2 for splicing= 0.047; p= 2.1 × 10
−29), with 50.2% genes and splicing having R2 > 0.01 (Supple-
mentary Figure 9). Together, these results suggest that fitted
models in CMC predict similar levels of cis-regulated expression
on average in ROSMAP.

We then attempted to validate the TWAS results from models
fitted in CMC with models fitted in ROSMAP. We found that 21
and 11 out of 44 genes replicated at a nominal p<0.05 and an
adjusted p < 0.001 (0.05/44), respectively, with expression and
splicing models from ROSMAP. Interestingly, 8 out of 44 TWAS
genes located in PD GWAS suggestive regions (5 × 10−8 < p < 1 ×
10−6) were replicated in ROSMAP. The direction of effect for
most of the associations was concordant (Supplementary Table 1;
Supplementary Figure 10). Thus, the genetic effects on splicing

Fig. 2 Transcriptome-wide association study of Parkinson’s disease (PD). a Manhattan plot of PD transcriptome-wide association study (TWAS) using
gene expression models from peripheral monocytes10,19,20. Each point represents a single gene tested, with physical position plotted on the x-axis and
Z-score of association between gene expression or intronic splicing with PD plotted on the y-axis. Colored (black or blue) points represent significant
association to PD at 5% false discovery rate (FDR). Genes that are also identified with TWAS models from prefrontal cortex are labeled with black points.
b Manhattan plot of PD TWAS using expression and splicing models from dorsolateral prefrontal cortex (CommonMind Consortium (CMC))21. Genes
associated through variation in gene expression and splicing are labeled with blue and green points, respectively. Genes that are also identified with TWAS
models from monocytes are labeled with black points. c Boxplot showing the association between a single-nucleotide polymorphism (SNP) (rs76904798)
that tags the PD genome-wide association studies (GWAS) risk loci at LRRK2 and gene expression level of LRRK2 in monocytes (top) and dorsolateral
prefrontal cortex (DLPFC) (bottom). rs76904798 is significantly associated with the expression level of LRRK2 in monocytes, but not in DLFPC.
d LocusZoom plot for the region surrounding LRRK2 shows colocalization of the monocytes LRRK2 expression quantitative loci (eQTL) (top) and PD GWAS
association signal (bottom). e–g Ternary plots showing coloc posterior probabilities that TWAS loci found using RNA expression in monocytes, RNA
expression in DLPFC, and RNA splicing in DLPFC, respectively, belong to different sharing configurations (colocalizing, independent, or underpowered).
We considered H0+H1+H2 as evidence for the lack of test power. H0: no causal variant, H1: causal variant for PD GWAS only, H2: causal variant for
QTL only, H3: two distinct causal variants, H4: one common causal variant
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Fig. 3 Parkinson’s disease (PD) risk alleles affect splicing of nearby genes. a Replication of transcriptome-wide association study (TWAS) Z-score across
two PD cohorts (23andMe and IPDGC). b TWAS signal at the MAPT locus is explained by the single-nucleotide polymorphisms (SNP) rs17665188, which
is associated withMAPT exon 3 inclusion levels. rs17665188 tags the known H1/H2 haplotypes, which have been shown to be associated with PD45. The T
allele, which tags the H2 haplotype, doubles inclusion of exon 3 and is associated with increased risk for PD. c PD TWAS signal at the MAPT locus (gray)
and TWAS signal after removing the effect of MAPT exon 3 inclusion (cyan). This analysis shows that the association is largely explained by MAPT exon 3
inclusion. d Heatmap of genes identified from our TWAS analysis using imputed RNA splicing and expression (splicing and expression, respectively). The
rows “splicing minus exp” and “exp minus splicing” denote association strengths after conditioning on expression and splicing, respectively. SNCA is
the only gene associated with PD through both a genetic effect on RNA splicing and expression. e PD-associated variants at theMTOR locus are associated
with an increase in a minor MTOR isoform that extends the 5′ of an exon in the 5′-untranslated region (5′-UTR)
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are robust and unlikely to be due to artifacts unique to one of
the datasets. To further replicate our findings, we repeated our
TWAS using the CMC data and the PD GWAS summary
statistics31 (using the 23andMe cohort only). When we compared
the Z-scores obtained from these two TWAS, we found that
12 genes discovered in International Parkinson Disease Genomics
Consortium (IPDGC) cohort (e.g., MAPT, SNCA, ATG14, DVL3,
and MTOR) could be replicated (Fig. 3a). These two comple-
mentary replication efforts demonstrate the robustness of our
TWAS results.

PD genetic variants often affect splicing of nearby genes. To
obtain a better understanding of the associations identified in our
TWAS, we next focused on dissecting the mechanisms by which
specific genes were associated with PD. We identified many
known PD genes, such as MAPT, the microtubule-associated
protein tau (chr17:44049311:44055741; p= 2.60 × 10−24, Fig. 3b)
and SNCA (chr4:90756843:90757894; p= 1.70 × 10−16) that were
associated with PD through RNA splicing. However, several
genes, including MAPT, were found in both our RNA expression
and splicing TWAS analyses. This finding is consistent with the
existence of contradictory studies that either proposes that dif-
ferences in MAPT expression8, or that differences in MAPT
splicing (exon 3 inclusion44 or exon 10 inclusion8) are driving
the PD genetic association at this locus. We, therefore, asked
whether the associations we identified were more likely to be
mediated through RNA splicing or through RNA expression and
whether we could predict which gene or splicing event is most
likely to be causal. At the MAPT locus, six associations to splicing
events in three genes were identified. Using FUSION14, we
found that only one splicing event (inclusion of MAPT exon 3)
remained significant after conditioning on all other association
signals, which include MAPT total RNA expression levels and
other MAPT RNA splicing events (conditional p < 2.60 × 10−24;
Fig. 3c, d; Supplementary Table 2). To identify which genetic
variant is associated to MAPT exon 3 inclusion, we searched
our splicing QTL data from DLPFC and found that a nearby
SNP (rs17665188/chr17:44357351) was strongly associated to
exon 3 inclusion levels. Importantly, this SNP tags (r2 > 0.93)
the two well-known haplotypes (H1/H2)44. Haplotype H2
is associated with increased MAPT exon 3 inclusion in DLPFC
(p < 2.2 × 10−16, LR t-test). Therefore, we conclude that splicing
variation of MAPT exon 3 in the brain explains the reported
association between the H1/H2 haplotypes and PD45.

While some of the genes we identified were located within loci
previously identified using GWAS, we discovered 47 associations
that were in PD GWAS loci at suggestive level of significance
(Supplementary File 1). Most of these were located in loci with
suggestive associations in PD GWAS (5 × 10−8 < p < 1 × 10−6,
Supplementary Figures 11–49), and four genes (CTSB, PDLIM2,
GALC, and C8orf5) were previously found to be genome-wide
significant in PD GWAS meta-analysis3. One of these genes
is cathepsin B (CTSB), which is a part of protease essential in
α-syn lysosomal degradation46. We also detected MTOR as a
novel candidate PD gene (Fig. 3e; Supplementary Figure 11).
MTOR is a highly conserved serine/threonine kinase expressed
in most mammalian cell types and plays a central role in the
regulation of autophagy47,48. Of note, recent data have shown
that dysregulation of mammalian target of rapamycin (mTOR)
is implicated in the pathogenesis of PD49,50, and it has been
suggested as a novel therapeutic target for PD. Here, we found
that a putative PD risk SNP (rs207655) was associated with a
significant increase in usage of a rare MTOR isoform (Fig. 3e).
Our results highlight the important role of RNA splicing in
mediating the effects of risk loci on PD.

PD TWAS genes form coherent functional pathways. We
hypothesized that the newly identified TWAS genes may be part
of the same network or pathway as known PD susceptibility
genes. To test this, we used GeNets51 to measure the protein-
protein interaction (PPI) network connectivity of our TWAS
genes with known PD susceptibility genes. Most of these known
PD susceptibility genes (PARK2, PARK7, PINK1) were linked to
PD through studies on familial forms of PD and do not harbor
functional common genetic variation. Thus, GWAS and TWAS
approaches will not be able to identify these known PD sus-
ceptibility genes. Nevertheless, we reasoned that putative PD
genes identified using our TWAS approach may functionally
interact with these genes through protein-protein or gene reg-
ulatory interactions.

As expected, we found that monogenic PD genes form a PPI
network that is directly connected (i.e., they form shared
communities) to genes in PD GWAS loci (p < 7.2 × 10−3)
(Fig. 4a). When we incorporated the TWAS genes with known
PD susceptibility genes (including the monogenic genes), we
found an expanded PPI network with four distinct communities
of genes encoding for proteins that physically interact (Fig. 4b;
p < 2.3 × 10−3). The genes in the TWAS-prioritized PPI network
are highly enriched for biological pathways including lysosome
(Bonferroni p= 0.0017) and α-syn aggregation pathways (Bon-
ferroni p= 1.8 × 10−5) (Fig. 4b). These results support our
hypothesis that the novel candidate PD genes we identified in
this study are part of a larger set of interacting genes with
coherent biological function, of which the lysosome pathway may
be particularly central in the etiology of PD.

Discussion
In this study, we demonstrate the ability of our TWAS approach
to detect a large number of genes relevant to PD without
any prior information. This suggests that our approach may be
widely applicable to other complex traits and diseases. Impor-
tantly, our work highlights RNA splicing as an important
mediator of genetic effects on disease and therefore implies that
future TWAS should include RNA splicing as an intermediate
molecular phenotype when large-scale RNA-seq data is available
in a relevant cell type or tissue.

Our work also advances our understanding of PD in a genomic
context. For example, while a growing body of evidence has
implicated several mechanisms such as innate-immune response
in PD pathophysiology, it remains unclear which genes and
specific pathways are involved. Our analysis of gene expression
in monocytes suggests that PD-associated genetic risk factors
influence innate-immune mechanisms. Although recent work
suggests that LRRK2 levels are increased in monocytes of PD
patients52, a causal relationship between PD susceptibility and
LRRK2 was not established. By combining PD GWAS and gene
expression data we provide evidence that the common variant
rs76904798 regulates the expression of LRRK2 in peripheral
monocytes but not in the cortex (Fig. 2b). Further experimental
work is necessary to understand the mechanisms by which
LRRK2 expression may modulate monocyte gene expression and
function in PD.

We also leveraged PD GWAS data and large-scale tran-
scriptomic data from human cortex to identify genes for which
the genetic component of expression level or differential splicing
is associated with PD. TWAS corroborated many of the known
PD genes but also identified several candidate disease genes in
suggestive PD loci. Our analysis implicates gene expression and
splicing regulation in cortical tissue as key mechanisms that
mediate genetic risk for PD. Notably, genes in suggestive PD loci
(e.g., CTSB and MTOR) identified in our study, but not in PD
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GWAS, further support growing evidence of the involvement of
lysosomal functions in the etiology of PD.

Our study prioritizes genes for subsequent experimental fol-
low-up, which will help interrogate the molecular mechanisms
underlying PD. Our catalog of splicing QTLs in DLFPC are made
available with this study (see URLs) and provides a starting point
for further mechanistic work to elucidate the role of associated
genes in PD. More importantly, our approach is widely applicable
to complex traits for which GWAS data are available. We expect
that TWAS using both RNA expression and RNA splicing as
intermediates will be a powerful strategy to prioritize disease-
relevant genes, particularly in light of the increasing number of
large-scale transcriptome datasets, such as the ones from the
GTEx Consortium, that are publicly available.

Methods
Transcriptomic atlases for LDSC-SEG. Data for LDSC-SEG was prepared as
described in ref. 22. The following data were used in our LDSC-SEG analyses: (1)
GTEx samples that had more than four samples with at least one read count per
million and at least 100 genes with at least one read count per million were TPM
normalized53. (2) Publicly available data for DEPICT17 was downloaded and
pruned so that no two tissues had r2>0.99. Two sets of highly correlated tissues
(eyelid, conjunctiva, anterior eye segment, tarsal bones, foot bones, and bones of
the lower extremity; and connective tissue, bone and bones, skeleton, and bone
marrow) were removed completely, leaving 152 tissues. (3) Affymetrix_; GeneChip
expression array data from mouse forebrain sorted cells were downloaded from
GEO (GSE9566)23. (4) Publicly available gene expression data from the ImmGen
project18 was downloaded from GEO (GSE15907, GSE37448). Ensembl orthologs
were used to map to human genes.

Transcriptomics panels for TWAS. The following panels were used in our study:
(1) CMC RNA-seq data: generation and processing were previously described21.
Briefly, DLPFC (Brodmann areas 9/46) was dissected from post-mortem brains of
258 individuals with schizophrenia and 279 control subjects. These individuals
were of diverse ancestry, had no AD or PD neuropathology, had no acute neu-
rological insults (anoxia, stroke, or traumatic brain injury) immediately before
death, and were not on ventilators near the time of death. Total RNA was isolated
from homogenized tissue and ribosomal RNA depleted. One hundred base pair
paired-end reads were obtained using an Illumina_; HiSeq 2500, and mapped using
TopHat. Genotyping was performed using the Illumina Infinium
HumanOmniExpressExome-8 v1.1b chip. (2) Fairfax et al. monocyte expression
data generation was previously described in ref. 19. In short, blood was collected
from 432 individuals of European ancestry, and CD14+ monocytes were isolated
from peripheral blood mononuclear cells via magnetic activated cell sorter. RNA

was quantified using the Illumina HumanHT-12 v4 BeadChip. Expression was
normalized and transformed using robust spline normalization in R using the Lumi
package, and corrected for batch effects using the ComBat package. The effect of
incubation time on expression was regressed out of the normalized expression
values. Genotyping was performed using the Illumina HumanOmniExpress-12
v1.0 chip. (3) Cardiogenic monocyte expression data generation was previously
described in20,54. Monocytes were sorted from whole blood from individuals of
European descent, and expression was assessed from RNA using the Illumina
HumanRef 8 v3 Beadchip. Individuals were genotyped on Illumina Human 610
Quad custom arrays. The gene expression data is available via the European
Genome-phenome Archive (EGA ID: EGAS00001000411). (4) ROSMAP RNA-seq
data generation was previously described in refs. 27,28. ROSMAP is a prospective
cohort of aging individuals, where individuals are healthy at enrollment and 38%
have clinical Alzheimer’s disease at the time of death. DLPFC gray matter was
dissected from 540 post-mortem brains. Sequencing libraries were prepared using a
strand-specific dUTP protocol with poly-A selection, and sequencing on an Illu-
mina HiSeq produced 101 bp paired-end reads. Individuals were genotyped on an
Affymetrix GeneChip 6.0. For all transcriptome datasets used in this study see
Supplementary Table 3.

GWAS datasets. We performed TWAS using PD GWAS summary statistics from
Nalls et al.31. For discovery, we restricted our GWAS from PD cases and controls to
International Parkinson Disease Genomics Consortium (IPDGC), PD GWAS
Consortium, The Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) Consortium, PDGENE, and Ashkenazi studies cohorts (9581 cases and
33245 controls). For replication, we used the summary statistics from 23andMe
subsets only (v2 and v3) from Nalls et al.31 (4124 cases and 62,037 controls).

TWAS studies. TWAS is a powerful strategy that integrates SNP-expression
correlation (cis-SNP effect sizes), GWAS summary statistics and LD reference
panels to assess the association between the cis-genetic component of expression
and GWAS14. TWAS can leverage large-scale RNA-seq data to impute tissue-
specific genetic expression levels from genotypes (or summary statistics) in larger
samples, which can be tested to identify potentially novel associated genes13,14. We
used the FUSION tool55 (see URLs) to perform TWAS for each transcriptome
reference panel. The first step in FUSION is to estimate the heritability of each
feature (gene expression or intron usage) using a robust version of GCTA-
GREML33, which generates heritability estimates per feature as well as the like-
lihood ratio tests p value. Only genes or intron usage that were significant for
heritability estimates at a Bonferroni-corrected p < 0.05 were retained for further
analysis. The expression or intron usage predictive weights were computed by five
different models implemented in the FUSION framework: best linear unbiased
prediction, Bayesian sparse linear mixed model, LASSO, Elastic Net, and top SNPs.
A cross-validation for each of the desired models are then performed. The model
with the best cross-validation prediction accuracy are used for predicting expres-
sion or intron usage into the GWAS. The imputed gene expression or intron usage
are then used to correlate to PD GWAS summary statistics (see “GWAS Datasets”)
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Fig. 4 Proteins nominated by Parkinson’s disease transcriptome-wide association study (PD TWAS) form expanded protein-protein interaction (PPI) and
are enriched in the lysosomal pathway. a The PPI network connectivity are statistically significant (p < 7.2 × 10−3) and form two communities (represented
by blue and red nodes). bWe also applied GeNets to evaluate PPI network connectivity between protein products nominated by PD TWAS and monogenic
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to perform TWAS and identify significant associations. To account for multiple
hypotheses, we applied an FDR of 5% within each expression and splicing reference
panel (see “Transcriptomics panels for TWAS”) that was used.

Joint and conditional analysis. Joint and conditional analyses of each locus with
multiple TWAS association signal were performed using the summary statistic-
based method described in refs. 55,56. This approach requires TWAS association
statistics and a correlation matrix to evaluate the joint/conditional model. The
correlation matrix was estimated by predicting the cis-genetic component of
expression (or intron usage) for each TWAS gene/intron cluster into the 1000
Genomes genotypes. Then, Pearson’s correlations were calculated across all pairs of
genes/intron cluster and between all gene/SNP pairs. The FUSION tool (see URLs)
was used to perform the joint and conditional analyses and generate regional
scatterplots.

Splicing QTL mapping. We used Leafcutter32 to obtain intron excision ratios,
which is the proportion of intron defining reads to the total number of reads
from the intron cluster it belongs to. We used the alignments from STAR as an
input to LeafCutter. Before quantifying intron excision ratios, we used WASP57 to
remove read-mapping biases caused by allele-specific reads. The intron excision
ratios were standardized across individuals for each intron and quantile normalized
across introns15. The normalized intron excision ratios were used as our phenotype
matrix. To map sQTLs, we used linear regression (implemented in fastQTL58) to
test for associations between SNP dosages (minor allele frequency (MAF) > 0.01)
within 100 kb of intron clusters and the rows of our phenotype matrix that
correspond to the intron excision ratio within each intron cluster. We used the
first three principal components of the genotype matrix to account for the effect
of ancestry plus the first 15 principal components of the phenotype matrix to
regress out the effect of known and hidden confounding factors. An adaptive
permutation scheme58 (implemented in fastQTL) was used to estimate the number
of sQTLs for any given FDR. An empirical p value for the most significant QTL
for each intron cluster was calculated. Benjamini–Hochberg correction on the
permutation p values was applied to extract all significant sQTL pairs with an
FDR of 5%. All significant sQTLs are available via the DLPFC sQTL browser
(see URLs).

Colocalization. We used coloc 2.3-143 to colocalize the PD association signal at
TWAS loci with QTL signals. For each locus, we examined all SNPs available in
both datasets within 500Mb of the SNP identified in TWAS as the top QTL SNP,
and ran coloc.abf with default parameters and priors. We called the signals colo-
calized when (coloc H3+H4 ≥ 0.8 and H4∕H3 ≥ 2)58.

GWAS enrichment. The GARFIELD tool was used to test for enrichment of
GWAS SNPs among sQTL and other publicly available QTL datasets30. GAR-
FIELD annotates GWAS SNPs (LD pruned; r2 > 0.1) based on functional infor-
mation overlap. Then, quantifies fold enrichment at GWAS p< 10−5 cut-off and
assesses the significance by permutation testing (matching the SNP sets for MAF,
distance to nearest transcription start site, and the number of LD proxies).

PPI network and pathway analysis. The GeNets online tool (see URLs) was used
to construct the PPI networks. GeNets builds PPI network using evidence of
physical interaction from the InWeb database, which contains 420,000 high-
confidence pair-wise interactions involving 12,793 proteins51. GeNets displays
community structures, which are also known as modules or clusters. The com-
munity structures highlight genes that are more connected to one another than
they are to other genes in other modules. To assess the statistical significance of the
networks, GeNets applies a within-degree node-label permutation strategy. Briefly,
it builds random networks that mimic the structure of the original network and
evaluates network connectivity parameters on these random networks to generate
empirical distributions for comparison to the original network. In addition to PPI
network construction, GeNets allows for gene set enrichment analysis on genes
within the PPI network. The following gene sets and databases were used for
enrichment analysis: Molecular Signatures Database (MSigDB) Curated Gene Sets
(C2), Kyoto Encyclopedia of Genes and Genomes (KEGG), BioCarta, and Reac-
tome. A hypergeometric testing is applied to get p value for gene set enrichment.

URLs. For FUSION, see http://gusevlab.org/projects/fusion/; for DLPFC sQTL
browser, see https://rajlab.shinyapps.io/sQTLviz_CMC/; for CMC Knowledge
Portal, see https://www.synapse.org/#!Synapse:syn2759792; for AMP-AD Knowl-
edge Portal, see https://www.synapse.org/#!Synapse:syn2580853; for Rush Alzhei-
mer’s Disease Center Research Resource Sharing Hub, see http://www.radc.rush.
edu; for GeNets, see https://apps.broadinstitute.org/genets.

Data availability
TWAS results, sQTL summary statistics, and splicing visualization browser is available at
https://rajlab.shinyapps.io/sQTLviz_CMC/. FUSION software, CMC weights, and
reference LD are available at http://gusevlab.org/projects/fusion/. RNA-seq data for CMC
is available via the CMC Knowledge Portal, https://www.synapse.org/#!Synapse:

syn2759792. RNA-seq and genotype data for ROSMAP is available via the AMP-AD
Knowledge Portal, https://www.synapse.org/#!Synapse:syn2580853. The precomputed
DLFPC and monocytes gene expression or splicing weights are available upon request
from the corresponding author.
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