
Inferring the Rate-Length Law of Protein Folding
Thomas J. Lane1, Vijay S. Pande2*

1 Department of Chemistry, Stanford University, Stanford, California, United States of America, 2 Departments of Chemistry, Computer Science, and Biophysics, Stanford

University, Stanford, California, United States of America

Abstract

We investigate the rate-length scaling law of protein folding, a key undetermined scaling law in the analytical theory of protein
folding. Available data yield statistically significant evidence for the existence of a rate-length law capable of predicting folding
times to within about two orders of magnitude (over 9 decades of variation). Unambiguous determination of the functional
form of such a law could provide key mechanistic insight into folding. Four proposed laws from literature (power law,
exponential, and two stretched exponentials) are tested against one another, and it is found that the power law best explains
the data by a modest margin. We conclude that more data is necessary to unequivocally infer the rate-length law. Such data
could be obtained through a small number of protein folding experiments on large protein domains.
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Introduction

A deep understanding of protein folding must involve a

description of the general mechanisms involved. It is reasonable

to suspect this will consist of a simple model, based on microscopic

physics, expressed in a simple mathematical language. Such a

model would show how biological sequences are able to employ

physics to spontaneously self-assemble into intricate molecular

machines.

Simple models of this sort often start by postulating a

mechanism of folding, and then derive the consequences of that

mechanism [1–12]. This suggests it might be possible to infer the

general mechanisms of protein folding by verifying the specific

predictions of these models. For a simple model of protein folding,

however, there is a limited set of general experimental trends that

can be readily predicted. One such experimental trend is the law

governing how folding times scale with chain length. This is

perhaps the simplest comparison of theory and experiment

possible, but has not yet been unambiguously inferred despite

nearly two decades of active research [2,7].

Polymer theory provides strong precedent for using chain-

length scaling laws as a point of connection between experiment

and theory. In polymer theory, for instance, comparing the

theoretically predicted scaling of the longest relaxation time and

polymer diffusion constant as a function of polymer chain length

demonstrates deficiencies in the classical Rouse model [13].

Inclusion of hydrodynamic interactions – as is done e.g. in the

Zimm model [14] – is necessary to get the correct scaling laws for

these kinetic parameters [15]. Thus, comparing chain-length

scaling laws in theory and experiment yields new scientific insight,

namely that hydrodynamic effects contribute significantly to

polymer dynamics in solution. Our hope is that by determining

a rate-length law for protein folding, similar comparisons between

experiment and theory will yield new insight into how proteins

fold.

The rate-length law is also an interesting result in and of itself.

Such a law can be viewed as a statement of the computational

complexity of protein folding – given a problem of size N
(residues), how does one expect the time-to-solution (folding) to

scale? Levinthal pointed out that an exhaustive search would result

in exponential scaling, and suggested that this would result in

unreasonably large folding times [16]. Thus, in many ways, a

resolution to Levinthal’s paradox is likely to be phrased directly as

a rate scaling law, either non-exponential (polynomial) or

exponential with an explicitly small exponential factor.

A number of issues complicate inferring such a law from

experiment, most importantly the fact that available kinetic data

on protein folding spans a very limited range of chain lengths -

about 30 to 300 residues [17]. The statistical power of the data is

inherently limited by the fact that protein domain sizes barely span

a single order of magnitude, and that most studies of folding have

focused on small, well-behaved model systems.

Further complicating the inference of the rate-length scaling law

is the fact that chain length is certainly not the only factor affecting

folding rates. In fact, it has been argued that it is a fairly weak

predictor of the folding time [18,19]. For instance, there seems to

be some correlation of folding times with topological complexity of

the native state, such that if two proteins have the same number of

residues, but different folds, they may take different amounts of

time to fold [18,20]. Moreover, even protein mutants with the

same native structure can have at least 3 orders of magnitude

variation in their folding rates [21]. Thus, we expect that

experimental data on the scaling of folding time with chain length

should be very noisy, and difficult to statistically estimate.

Nonetheless, as we will demonstrate, there does seem to be a

significant correlation between the number of residues (N) and

folding times (t). Many different mathematical forms of this scaling

law have been postulated, either from theory or empirically, but all

fall into one of three basic classes. Shaknovich [2], Cieplak [3,4],

and co-workers have proposed a power-law, t*Nn. We recently
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constructed a model that suggested exponential scaling, t*eaN [1],

consistent with predictions made by Zwanzig, Szabo and Bagchi

[5,6]. Finally, Thirumalai [7,8], Muñoz [9], Takada [10], Finkelstein

[11], and co-workers have suggested a stretched exponentials,

t*eaNb

, with b as 1=2 or 2=3. Wolynes has proposed the law may

conditionally change between all four suggested models [12].

Each model for the rate-length law derives from a different

model of the fundamental physics of folding. Exponential rate laws

have been estimated based on models of protein folding as a biased

conformational search [1,5,6]. Stretched exponentials have been

derived by modeling folding as a critical nucleation process [11] or

random energy model [7–9]. Power laws [2–4] and stretched

exponentials [10] have been posited empirically based on

simulation. Finally, lack of a strong rate-length relationship was

suggested based on experimental data [18,19]. Clearly, different

postulates for folding mechanisms lead to different predictions for

the rate-length law (or lack thereof). Thus, inferring the rate-length

law of protein folding may directly inform our understanding of

the mechanisms by which all proteins fold.

In what follows, we develop and apply two methods for

choosing between these models and evaluate how each proposed

model performs.

Modeling Methods

Below, we outline two complementary methods for inferring which

proposed scaling law is the most reasonable. First, we present a

method capable of fitting each model’s parameters to the known data,

and examining how well each model explains the data. Next, we

investigate a second discriminatory method, which proposes that

folding times must be below a certain threshold value to be biologically

viable. It has been demonstrated that in the crowded milieu of the cell,

proteins must fold rapidly to avoid aggregation or degradation. We

suggest that this implies that we can check the reasonableness of any

model by seeing if its prediction for this threshold time is reasonable

with what has been observed empirically in biology.

In this study we focus on single-domain globular proteins. Kinetic

data for the folding times of proteins were taken from the KineticDB

[17], which reports protein folding times at zero denaturant, near

room temperature, and under neutral pH. Other data sets exist [22–

24], but were not consistent with one another – despite this, they

yielded very similar results (Fig. S1, Table S1 in File S1).

Direct Method: Likelihood Maximization
We want to estimate the parameters for each proposed form of

the scaling law. In what follows, we adopt a model that accounts

not only for this scaling law, but all other factors (topology,

experimental conditions, etc.) via a random Gaussian component.

Thus, by fitting each model, we not only learn parameters for each

proposed model, but also get an estimate for the relative

importance of these other factors in determining folding times.

We assert the following model for the folding time,

log t=t0~f (N)zX ð1Þ

where

f (N)~

n log N power-law

aN exponential

aN1=2 stretched exp: (1=2)

aN2=3 stretched exp: (2=3)

const: null

0
BBBBBB@

are the proposed folding rate laws, X represents a random variable

distributed (independently and identically) as a zero-mean

Gaussian, X*N (0,s2), and t0 is a fit constant accounting for

units of time. These models include the four proposed rate-

length laws suggested in the literature and a null model that

corresponds to the lack of a rate-length relationship. By

adding X to the logarithm of the folding time (1), we model

random variation in relative terms, and it enters as a

multiplicative factor.

The random variable X models all contributions to the

folding rate not accounted for by the chain length. In a first-

principles model, this would possibly include effects due to

specific sequences, folded state topology, experimental condi-

tions, or perhaps other factors. Here, we lump these terms into a

single random variable in order to focus on the chain length

exclusively.

Equation (1) implies t is distributed as a log-normal, with

location parameter f (N) and scale parameter s. The likelihood of

the entire data set (assuming n independent measurements) is

L~ P
n

i~1

1

ti

ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp {

(log ti=t0{f (Ni))
2

2s2

" #
ð2Þ

We have three parameters for each model, s, t0, and a or n for the

exponential and power-law families, respectively.

We have fit these parameters by maximizing the likelihood L.

Model comparison can then be performed by investigating the

ratio of the likelihoods of two alternative models (Table 1). We

have adopted the simple likelihood approach (versus a full-fledged

Bayesian analysis) because the number of fit parameters are small

and equal for each model, the models are simple and low-

dimensional, and we have little prior information about the

parameters. See Fig. S3 and Table S2 in File S1 for a Bayesian

Table 1. Likelihood Ratios of L-Maximized Models.

Model 1 Pr. Law Exp. S. E. 1/2 S. E. 2/3 Null

Power Law 1:59:103 7:98:100 3:82:101 1:17:1013

Exponential 6:30:10{4 5:03:10{3 2:41:10{2 7:36:109

S. E. 1/2 1:25:10{1 1:99:102 4:79:100 1:46:1012

S. E. 2/3 2:61:10{2 4:15:101 2:09:10{1 3:05:1011

Null 8:56:10{14 1:36:10{10 6:83:10{10 3:27:10{12

Primary model is on the left, alternate model along the top - thus, a larger number favors the model in the leftmost column.
doi:10.1371/journal.pone.0078606.t001
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analysis and comparison. Note that parameters (a, n) obtained

from likelihood maximization of this model will be equivalent to

those obtained by performing least-squares regression for the

stated models on the logarithms of the folding times. Our

maximum likelihood approach provides an estimate of the width

of the fits involved (in the form of s) and also a mechanism for

rigorous model comparison via likelihood ratios.

Indirect Method: Biological Limits
We postulate that there exists a critical time, tc, that places a

biological upper bound on folding times. Specifically, if a protein

folds slower than this time (i.e. twtc) then that protein will be

much more likely to aggregate during the course of folding, and

therefore is evolutionarily selected against.

The majority of biologically observed proteins should have

folding times less than tc, but we postulate that some proteins will

have greater times. These proteins are those that receive help

folding from chaperones or other cellular machinery. It has been

estimated that about C&10% of proteins fall into this category

[25].

Together, these assumptions allow us to build a model for the

predicted distribution of protein chain lengths. The size distribu-

tion of domains (Fig. 1) can be roughly approximated by a

Gaussian with parameters mN and sN . In that case,

ð?
f {1(tc=t0)

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

N

q exp
(N{mN )2

2s2
N

" #
~C ð3Þ

where f {1(tc=t0)~Nc is the chain length corresponding to tc for

a specific model (power law, exponential, etc.), and C is the

percentage of proteins with folding times slower than tc.

This framework is, of course, an approximation. There are

undoubtedly many other factors affecting the optimal sizes of

proteins beyond merely their folding times. Metabolic efficiency,

structural packing constraints [26,27], and the behavior of specific

proteins in their local cellular environments certainly play a role.

Nonetheless, the concept of an upper limit to the folding times is

reasonable, and our aim here is to simply extract some general

comments about the reasonableness of predicted folding times,

rather than make quantitatively accurate predictions.

Results and Discussion

Direct fitting of all proposed models to the available data yields

reasonable results for each (Fig. 2). Each model reports a scale

parameter (s) of approximately 3, which indicates that 68% of

proteins will have folding times within a factor of es&20 from the

time predicted by the rate law, and 95% will be within a factor of

e2s&400. Thus, with knowledge of only the chain length alone,

one can estimate the folding time of a protein to within about 2

orders of magnitude and be correct 95% of the time. Since the

available data spans folding times of more than 9 orders of

magnitude (between 1:9:10{7 and 9:9:102 seconds), this demon-

strates that chain length captures much of the variation in folding

times.

To further assess the presence or absence of an overall rate-

length law the likelihood of a null model, which modeled the

Figure 1. The size distribution of non-homologous protein
domains listed in the PDB. Of the 12,151 sequences reported, 39 are
larger than 1000 residues (0.32%) - while not shown here for clarity,
they were included in subsequent analyses. Data were obtained from
the NIH’s VAST algorithm (http://www.ncbi.nlm.nih.gov/Structure/
VAST/nrpdb.html) on 5/5/2012 with a dissimilarity p-value of 10{7 .
doi:10.1371/journal.pone.0078606.g001

Figure 2. The predicted models for the folding rate law, overlaid with measurements of folding times (top), and the putative
folding time distributions these models imply (bottom). Parameter values derived from a maximum likelihood fit are displayed, along with
intervals indicating the spread in the fit probability distribution. Dark grey shading indicates a factor of es, while light grey indicates e2s.
doi:10.1371/journal.pone.0078606.g002

Inferring the Rate-Length Law of Protein Folding
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logarithm of folding rates as a Gaussian distributed independent of

chain length (f (N)~const:), was computed. This null model was

found to be significantly less likely (at least a factor of 109 less

probable) given the data than any of the four rate-length models

proposed (Table 1).

Do the data support any one model? The power-law model is

slightly favored by comparing the likelihoods that each model

generated the observed data (Table 1). In such comparisons,

typically a ratio of 102 or greater is considered significant, and

often models differ by hundreds of orders of magnitude [28] –

thus, the power law model is better supported by the data, but only

by a modest margin. Further, an attempt to fit the stretched

exponential form with b as a variable parameter resulted in an

unreasonably small value of b along with a very large value of a,

resulting in a fit that is very close to the power law (Fig. S2 in File

S1). Finally, the power law model has the smallest fit s, indicating

that it explains the most variation in the data, and attributes less to

orthogonal factors.

It is clear, however, that there is little difference between the

models in the range of available data. These models diverge

significantly only for very large proteins (Fig. 3). We conclude

that, with given experimental data, a direct statistical analysis

cannot support any one of the theoretically proposed rate-length

laws.

Despite this, each law yields significantly different predictions

for the distribution of folding times, generated by transforming the

known distribution of domain sizes into each of the different

models (Fig. 2). The most significant differences are in the tails of

these distributions, where the exponential forms predict much

longer folding times for the largest proteins (Table 2). The power

law model predicts no proteins fold in times longer than an hour,

while the exponential forms show a significant number of proteins

with folding times longer than a day (Fig. 3).

An evaluation of the reasonableness of these folding time

distributions is provided by the critical time tc for each model

(Table 3). For reasonable values of C (&10%, predicted from

experiment [25]), the power law tc is on the order of minutes. The

exponential forms, on the other hand, predict tc is on the order of

hours. Compare this to some cellular benchmarks, as done by

Rollins and Dill (personal communication): the 16 second average

time to synthesize a protein in E. Coli (325 residues60.05 s{1

synthesis rate) [29], the 30 seconds it takes for GroEL to refold a

protein [30,31], or the 20 min E. Coli doubling time.

Indeed, picking a reasonable value of tc and calculating the

probability of observing the empirically observed domain size

distribution (Fig. 4) shows that for values of tc*10 seconds, the

power law model is clearly the best. However, for any values of tc

greater than 100 seconds, the exponential laws are much better

models.

Figure 3. The predicted folding times from each model in
Figure 2, in a direct comparison. Intuitive timescales are denoted
for clarity.
doi:10.1371/journal.pone.0078606.g003

Table 2. Estimated Fraction of Protein Domains with Folding
Times Greater than Time Indicated.

Hour Day Month Year

Power Law 0.41% 0.01% 0.00% 0.00%

Exponential 9.56% 5.70% 3.34% 2.46%

S. E. 1/2 5.48% 2.37% 0.95% 0.57%

S. E. 2/3 7.49% 3.53% 1.74% 1.11%

doi:10.1371/journal.pone.0078606.t002

Table 3. Most Likely tc for Values of C (in seconds).

C 0.1 0.05 0.01 0.001

Power Law 1:10:101 2:88:101 1:23:102 4:36:102

Exponential 3:03:102 5:85:103 1:51:106 7:64:108

S. E. 1/2 9:99:101 6:54:102 1:53:104 3:47:105

S. E. 2/3 1:68:102 1:57:103 7:67:104 4:25:106

doi:10.1371/journal.pone.0078606.t003

Figure 4. The probability that each of the rate-length laws
reproduces the experimentally observed domain size distribu-
tion given a value of tc. Given a rate-length law mapping chain
length to folding times, if the distribution of sizes of protein domains is
modeled as a Gaussian, choosing a timescale tc above which proteins
need assistance to fold, and an approximate fraction C of proteins that
need assistance to fold fully specifies the distribution of domain sizes
(eq. 3; here, C~0:10). That distribution was used as a model for the
generation of the empirically observed domain size distribution
reported in Fig. 1,. Here, we plot the probability that the empirically
observed distribution resulted from the model indicated. Note the y-
axis is log10 and divided by 103 for clarity, so small differences on the
plot are actually quite large.
doi:10.1371/journal.pone.0078606.g004
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Conclusions

We conclude that while chain length is a statistically

significant factor for predicting folding rates, current experi-

mental data do no support any one of the proposed models for

the rate-length relationship over any other. While the power law

model appears to best explain the available raw data, it results in

very fast predicted folding times. The exponential forms, while

doing a marginally poorer job of explaining the raw data, yield a

distribution of folding times more in line with what we expect

from biology. Given the current available data, no clear victor

emerges.

Previous theories have claimed that simply predicting one

of the four laws investigated here is strong evidence in

support of that theory. This is manifestly not the case – not

only must the proposed law be reasonable, but it must also

predict reasonable parameter estimates, and even then the

supporting evidence the rate scaling law can provide given

current data is limited. Conversely, the analytical theories

mentioned here are not ruled out by the current available

data. This is most striking in the case of the exponential

form, since exponential scaling of the folding times has often

been associated with Levinthal’s paradox. This study shows

that exponential scaling is reasonable given current experi-

mental data, so long as the exponential scaling constant (a) is

sufficiently small.

Clear evidence for any one rate law remains missing.

However with a few clear examples of very large globular

proteins (500 residues or larger) capable of folding unassisted

in vitro, it might be possible to discriminate between the

models proposed here. Figure 3 clearly shows the divergences

between predicted folding times for large proteins, and shows

how just a few data points in this extreme regime might be

able to begin differentiating between the proposed models

investigated here.

Supporting Information

File S1 Supplemental Information.

Figure S1. The rate-length data from each source used, plotted

together. Even though there is some overlap in reported

sequences, many identical proteins have different chain lengths

or folding times reported. We combined these data for our

analysis, eliminating only identical measurements.

Figure S2. The parameter fit for a stretched exponential,

log t!aNb, with b a free parameter. Notice how the fit is perfectly

straight on a log-log plot, a characteristic trait of power laws.

Figure S3. The parameter posteriors for each model are sharply

peaked around their modes. Plotted here is the maximum (not the

marginal value) of the posterior at various values of the key

parameters a or n. One can see that the likelihood has a sharply

peaked value along this dimension.

Table S1. The KineticDB dataset with mutants included. Since

there are only a few proteins with mutants, and there are many

mutants for these few proteins, this database gives artificially more

weight to those individual proteins.

Table S2. Bayes factors comparing datasets.

(PDF)
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