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Exploring the Roles of HERC2 and
the NEDD4L HECT E3 Ubiquitin
Ligase Subfamily in p53 Signaling
and the DNA Damage Response
Nicholas A. Mathieu, Rafael H. Levin and Donald E. Spratt*

Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States

Cellular homeostasis is governed by the precise expression of genes that control the
translation, localization, and termination of proteins. Oftentimes, environmental and
biological factors can introduce mutations into the genetic framework of cells during
their growth and division, and these genetic abnormalities can result in malignant
transformations caused by protein malfunction. For example, p53 is a prominent tumor
suppressor protein that is capable of undergoing more than 300 posttranslational
modifications (PTMs) and is involved with controlling apoptotic signaling, transcription,
and the DNA damage response (DDR). In this review, we focus on the molecular
mechanisms and interactions that occur between p53, the HECT E3 ubiquitin ligases
WWP1, SMURF1, HECW1 and HERC2, and other oncogenic proteins in the cell to
explore how irregular HECT-p53 interactions can induce tumorigenesis.
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INTRODUCTION

Cell growth and division is controlled by the regulated synthesis and degradation of proteins that
signal for and carry out the replication of DNA. This requires the timely expression and removal of
proteins at specific checkpoints during the cell cycle to ensure proper cell division and homeostasis
(1). When this delicate cellular equilibrium becomes imbalanced, unregulated cell division can
occur and lead to the development of cancer. To protect against the formation of cancers, the cell
has evolved an intricate network of proteins that work to recognize, target, and repair genetic
abnormalities prior to its division. If significant cellular stress is recognized by these surveillance
proteins, they will initiate a caspase cascade that activates lethal regulatory cell death (RCD)
pathways, thereby preventing that cell from undergoing replication (2–9). Perhaps the most
important protein involved in regulating these vital cellular activities is the tumor suppressor
protein p53. Generally considered the “guardian of the genome”, p53 is a 43.7 kDa protein capable
of undergoing more than 300 unique post translational modifications (i.e. phosphorylation (10),
acetylation (11), methylation (12), SUMOylation (13), O-GlcNAcylation (14)) and interacts with a
variety of proteins to dictate cellular fate following S-phase DNA duplication (15–20). One
prominent PTM involved with regulating p53 activity under genotoxic and carcinogenic
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environments is ubiquitylation—a catalytic process that is
carried out on p53 by select members of the homologous to
E6AP C-terminus (HECT) E3 ubiquitin ligase family (21–24).

Over the past two decades, HECT-related cancer research has
focused on the founding member of the HECT E3 ligase family,
E6 associate protein (E6AP) (25–30). There are many studies
that have cemented E6AP as a critical regulator of biochemical
processes involved in the development of cervical and prostate
cancer. For example, E6AP has been shown to interact with the
human papilloma virus (HPV) protein E6 to target p53 for
cellular degradation to produce unregulated cell division in the
female cervical tissues (25). In vivo studies have also linked E6AP
to metastatic forms of prostate cancer by acting to reduce tumor
suppressor protein p27 expression levels in prostate gland cells
(26, 30). Recent studies have also found that the members of the
NEDD4L subfamily of the HECT E3 ubiquitin ligases—
specifically WWP1, SMURF1, and HECW1—as well as the
large HECT E3 ubiquitin ligase HERC2, are linked to the
pathogenesis of prostate (31), lung (32–34), colon (35–38),
breast (39, 40), thyroid (41), gastric (42), liver (43), oral (44),
and ovarian cancers (45, 46).

This review aims to consolidate and examine the mounting
literature on how additional members of the HECT E3 ubiquitin
ligase family play integral roles in regulating DNA repair and p53
cellular activities. Here we explore and summarize the specific
pathways, structures, and catalytic mechanisms used by WWP1,
SMURF1, HECW1 and HERC2, and how their malfunction can
Abbreviations: APC, Anaphase promoting complex; ATM, Ataxia telangiectasia
mutated kinase; ATR, Ataxia telangiectasia and Rad3 related kinase; BARD1,
BRCA1 associated RING domain protein 1; Bax, Bcl-2 associated X protein; Bcl2 -
B-cell lymphoma 2; BRCA1, Breast cancer gene 1; ChIP, Chromatin
immunoprecipitation assays; CPH, Cullin-7-PARC-HERC2 domain; Cyt-b5,
Cytochrome-b5 like domain; DDR, DNA damage response; DOC,
Downregulated in ovarian cancer domain; DSB, Double strand break; E1,
Ubiquitin activating enzyme; E2, Ubiquitin conjugating enzyme; E3, Ubiquitin
ligase; H2AX, Histone 2A family member X; HECT, Homologous to E6AP C-
terminus; HECW1, HECT, C2, and WW-domain containing protein 1; HECW2,
HECT, C2, and WW-domain containing protein 2; HERC, HECT and RLD
containing; HERC2 - HECT and RLD containing protein 2; LATS1, Large tumor
suppressor kinase 1; MAPK8, Mitogen activated protein kinase 8; MDC1,
Mediator of DNA damage checkpoint 1; MDM2, Mouse double minute 2;
MDMX, Mouse double minute 4 (aka MDM4); MIB, Mind bomb domain;
MMP2, Matrix metallopeptidase 2; MMP9, Matrix metallopeptidase 9; MRE11,
Meiotic recombination 11; NBS1, Nijmegen breakage syndrome 1; NEDD4,
Neuronal precursor cell-expressed developmentally downregulated 4; NEURL4,
Neuralized E3 ubiquitin protein ligase 4; p53, Tumor suppressor protein p53;
PIKK, Phosphatidylinositol 3-kinase-like protein kinase; PPxY or PY, proline-rich
motif; PTM, Post translational modification; RAD50, Radiation sensitive protein
50; RAP80, Receptor associated protein 80; RBR, RING-between-RING, RING-
BRcat-Rcat; RCD, Regulatory cell death; RING, Really interesting new gene; RLD,
Regulator of chromosome condensation 1-like domain; RNF11, RING finger
protein 11; RNF8, RING finger protein 8; RUNX2, Runt-related transcription
factor 2; Smad2, Mothers against decapentplegic homolog 2; Smad7, Mothers
against decapentplegic homolog 7; SMURF1, SMAD ubiquitylation regulatory
factor 1; SMURF2, SMAD ubiquitylation regulatory factor 2; TGF-b,
Transforming growth factor beta; TRAIL, TNR-related apoptosis-inducing
ligand; TbR-I, TGF-b receptor I; UBE2N, Ubiquitin conjugating E2 enzyme
UBE2N (aka Ubc13); WW, Tryptophan-tryptophan domain; WWP1, WW-
domain containing protein 1; WWP2, WW-domain containing protein 2; ZF,
Zinc finger.
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result in oncogenesis. We also discuss developing a framework
for future HECT-based cancer research that builds toward an
improved overall understanding of oncogenic processes in the
cell. Research on the interplay between these important protein
networks will provide the necessary knowledge for developing
novel treatment methods that can slow or even prevent the
progression of HECT-dependent p53-related cancers.
UBIQUITYLATION—A BRIEF OVERVIEW

Ubiquitylation involves the post-translational attachment of
ubiquitin, a small 8.6 kDa protein, on to a substrate protein by
an E1-E2-E3 enzymatic cascade (47–49). The human genome
codes for two ubiquitin specific E1 enzymes (i.e. UBE1 and
UBE1L2), 38 distinct E2 enzymes (ex. UBE2D3, UBE2L3,
UBE2C, etc.) and over 1,000 unique E3 ligases (50). As
ubiquitin is passed along the ubiquitylation signaling enzyme
cascade (E1 to E2 to E3), the attachment of ubiquitin becomes
more specific to ensure that the precise target protein is modified.
This specificity from the ubiquitylation-signaling pathway can
regulate various intracellular processes including protein
turnover, cell cycle progression (51), apoptosis (52), cell
differentiation and development (51), immune response and
inflammation (53), intracellular trafficking (54), signal
transduction (23), DNA transcription and repair (55), viral
infection (53) and more. For the cell to carry out these
processes, ubiquitin is first activated by an ubiquitin activating
enzyme (E1; EC 6.2.1.45) through an ATP-dependent
mechanism to form a thioester bond between the C-terminal
carboxyl of ubiquitin and the catalytic cysteine of the E1. The
ubiquitin is then transferred to an ubiquitin conjugating enzyme
(E2; EC 2.3.2.23) via a trans-thiolation reaction to form a
thioester bond between the C-terminus of ubiquitin and the
conserved catalytic cysteine residue of the E2 (47, 56–58). The
E2~ubiquitin complex next interacts with an ubiquitin ligase
(E3) to properly coordinate the transfer of ubiquitin on to a
specific lysine of the target substrate protein. Recent studies have
also demonstrated that under specific cellular conditions the E3
ligases are able to catalyze the attachment of ubiquitin on to
cysteine, threonine and N-terminal methionine residues of select
target proteins (59–61). While the specific function of these
alternative ubiquitin substrate attachments is not fully
understood and requires further examination, they do add a
further dimension to the permutations that can occur with the
cellular ubiquitin machinery.

There are several different classes of E3 ubiquitin ligases
found in humans that include the really interesting new gene
finger domain-containing (RING; EC 2.3.2.27) (62), U-box (63),
RING-between-RING (RBR; also known as RING-BRcat-Rcat;
EC 2.3.2.31) (64) and HECT (E.C. 2.3.2.26) E3 ubiquitin ligases.
The RING E3 ubiquitin ligases are the largest and most widely
studied family of E3 ligases with over 600 members identified in
the human genome (65). During ubiquitylation, these enzymes
act as protein scaffolds that orient the E2~ubiquitin thiolester
complex and target substrate to allow for efficient ubiquitin
March 2021 | Volume 11 | Article 659049
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transfer (62, 66). In contrast, the RBRs catalyze substrate
ubiquitylation by using a RING-like mechanism to coordinate
an ubiquitin charged E2 cognate enzyme, followed by the
formation of a HECT-like thiolester intermediate between
ubiquitin and the enzyme’s Rcat domain to complete the
ubiquitin cargo transfer onto the substrate (64, 67–69). Lastly,
the HECT E3 ubiquitin ligases play a catalytic role in the final
attachment of ubiquitin by forming a thiolester intermediate
with its conserved catalytic cysteine prior to transferring the
ubiquitin to a substrate protein (70–74).

In the context of p53 ubiquitylation, several HECT E3 ubiquitin
ligases have been shown to play a role in the final attachment of
ubiquitin to p53. The specific HECT E3 ubiquitin ligase that
attaches ubiquitin onto p53 decides the isopeptide linkages
formed in a mono-, multi mono- or polyubiquitin chain (i.e.,
linear via N-terminal M1, or K6, K11, K27, K29, K33, K48, and/
or K63) to modulate p53 activity and dictate its cellular function
(47–49). For example, a K48-linked polyubiquitin chain attached to
p53 signals for p53 turnover by the 26S proteasome (47–49), while
K63-linked polyubiquitin chains control p53 intracellular trafficking
(75) and transcriptional regulation of the complex between p53 and
the RINGE3 ubiquitin ligase mouse doubleminute 2 (MDM2) (76).
Recent studies have also demonstrated that the HECT E3 ubiquitin
ligases SMURF1 and HERC2 can regulate the activity of p53
independent of their ubiquitylation activities (i.e., no ubiquitin
transfer or chain formation) (77, 78).
HECT E3 UBIQUITIN LIGASES—
IMPORTANT ENZYMES IN ONCOGENESIS

The HECT E3 ubiquitin ligase family is comprised of 28 enzymes
that contain a characteristic ~350 residue catalytic HECT domain
found near their C-termini (70, 79, 80). The HECT domain is bi-
lobal, where the N-lobe (~250 residues) is responsible for recruiting
and binding the E2~ubiquitin complex, while the C-lobe contains
the absolutely conserved catalytic cysteine responsible for the
ubiquitin transfer onto a target substrate (81, 82). Structures of
the isolated HECT domains from different HECT family members
have revealed unique conformational orientations for the C-lobe,
with some showing the C-lobe in close proximity to the N-lobe
while others showing a large distance of separation. These findings
suggest that a flexible linker exists between theN-lobe and C-lobe of
the HECT domain that allows for the free rotation of the C-lobe for
accepting ubiquitin from the E2 and subsequently transferring it to
a target substrate.

Apart from the highly conserved HECT domain, there is
remarkable diversity in the protein-protein interaction domains
found at the N-termini of members in the HECT family. Through
the biochemical and structural distinction of these N-terminal
domains, the family of 28 enzymes has been classified into three
different HECT subfamilies i) neuronal precursor cell-expressed
developmentally downregulated 4 (NEDD4), ii) HECT and RLD
containing (HERC), and iii) “Other” (70, 83). Focusing specifically
on the NEDD4 subfamily, each of the nine members have been
shown to contain an N-terminal C2 calcium binding domain
Frontiers in Oncology | www.frontiersin.org 3
involved with binding phospholipids through a calcium
dependent mechanism (84), and two, three or four tryptophan-
tryptophan (WW) domains involved in recognition of substrates
with proline-rich motifs (i.e., PPxY or PY) (85) (Figure 1).
Additionally, NEDD4 family members HECT, C2 and WW-
domain containing protein 1 (HECW1) and HECW2 contain a
unique HECW1/2 N-terminal domain thought to be involved in
substrate recognition but has yet to be documented in the literature.
Another HECT E3 ubiquitin ligase member belonging to the HERC
subfamily, HECT and RLD containing protein 2 (HERC2),
illustrates the vast diversity in N-terminal interaction domains
(Figure 1). The HERC2 N-terminal protein-protein interaction
domains include three regulator of chromosome condensation 1-
like domains (RLDs) that are suggested to be involved in chromatin
binding, centrosome assembly and guanine nucleotide exchange
(101, 102), a zinc finger (ZF) domain that is required for protein/
DNA binding (103), a unique Cullin-7-PARC-HERC2 (CPH)
domain predicted to be involved in binding to tetramerized p53
(104, 105), and a cytochrome-b5 like domain (cyt-b5) that binds to
heme and acts as a redox potential interaction domain with electron
transport like properties (106). HERC2 also contains a mind bomb
(MIB) domain that is thought to be involved in regulating the Notch
signaling pathway to ensure proper intercellular communication
during embryonic stem cell differentiation (107) and a
downregulated in ovarian cancer (DOC) domain, which is similar
to the anaphase promoting complex (APC) and may have a role in
in the ubiquitylation activity of HERC2 (108).

The variability at the N-terminal protein-protein interaction
domains in members of the NEDD4 subfamily and HERC2
suggest that these enzymes bind and recognize a broad range of
substrate proteins in the context of oncogenesis (70) (Table 1). For
example, it has been shown that HECW1 (aka NEDL1), SMAD
ubiquitylation regulatory factor 1 (SMURF1), WW-domain
containing protein 1 (WWP1) and HERC2 each carryout unique
interactions with p53 that involve either the direct K63 ubiquitylation
of p53, as in the case of WWP1 (75) (89), and/or the formation of
multiprotein enzymatic complexes that act to modulate p53 activity
independent from HECT-dependent ubiquitylation (149).
Collectively, these HECT-dependent interactions have been
identified as critical regulators of p53 activity that impact apoptotic
signaling (149), the transcription of p53 related genes (75),
equilibrium of the MDM2-p53 feedback loop (105, 150), ataxia
telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3
related (ATR) dependent DNA double strand break responses (151),
and other oncological-related cellular responses.
THE NEDD4 HECT E3 UBIQUITIN LIGASES
PLAY DIVERSE ROLES IN P53
MODULATION

The NEDD4 subfamily has become increasingly important in the
field of oncology, as various members have been found to
upregulate and interact with important tumor suppressor network
proteins such as p53. Here we describe how WWP1, HECW1 and
SMURF1 regulate p53-dependent cellular functions.
March 2021 | Volume 11 | Article 659049
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WWP1 Facilitates p53 Aggregation in the
Cytoplasm in Response to p53
Overexpression
WWP1 is a member of the NEDD4 subfamily that has been
linked to colon, breast and oral cancers (31, 35, 39, 44, 152).
WWP1 contains two WW domains that have been shown to
recruit and modulate the activity of cancer related proteins like
Frontiers in Oncology | www.frontiersin.org 4
Runt-related transcription factor 2 (RUNX2) (153, 154), RING
finger protein 11 (RNF11) (155, 156) and large tumor suppressor
kinase 1 (LATS1) (157) via their proline-rich (PY) motifs
(Figure 1). In addition to the interplay that occurs between
WWP1 and these cancer-associated proteins, the enzyme can
also interact with and regulate the activity of p53. Although p53
does contain a PY motif in its sequence (aa 68-91), WWP1 was
FIGURE 1 | Domain architecture and catalogue of three-dimensional structures of domains for members for the NEDD4L subfamily and HERC2. Domain
architecture schematics are based upon annotated boundaries on Uniprot. All of the published or publicly available 3D structures were visualized using PyMol.
NEDD4 – C2 domain bound to calcium (purple and silver spheres; PDB 3B7Y), WW domain 1 (PDB 2N8S) (86), WW domain 2 (cyan) in complex with
phosphorylated Cx43CT (red; PBD 2N8T) (86), WW domain 3 (cyan) in complex with COMM (red; PDB 2EZ5) (87), WW domain 4 (cyan) in complex with NOTCH
(red; PDB 2JMF) (88), and HECT domain (grey; PDB 2XBF) (89). NEDD4-2 – C2 domain (purple; PDB 2NSQ), WW domain 2 (cyan) in complex with Smad7 (red;
PDB 2LTY) (90), WW domain 3 in complex with phosphorylated Smad3 (PDB 2LAJ) (91) HECT domain in complex with ubiquitin (PDB 5HPK) (92). ITCH – C2
domain (purple; PDB 2NQ3), proline-rich region (green) with bPix SH3 domains (reds; PDB 5SXP) (93), WW domain 1 (cyan; PDB 2DMV), WW domain 2 (cyan; PDB
2KYK), WW domains 3 and 4 (cyan) in complex with TXNIP peptide (red; PDB 5CQ2) (94), and HECT domain (grey; PDB 3TUG). WWP1 – WW domain 4 (cyan;
PDB 2OP7), and WW domains 2, 3 and 4 (cyan) with HECT domain (grey; PDB 6J1X) (95). WWP2 – WW domain 4 (cyan; PDB 6RSS) (96), and WW domains 2, 3
and 4 (cyan) with HECT domain (grey; PDB 6J1Z) (95). SMURF1 – C2 domain (purple; PDB 3PYC), WW domain 1 (cyan) in complex with phosphorylated Smad1
(red; PDB 2LAZ) (91), and WW domain 2 (cyan) in complex with Smad7 (red; PDB 2LTX) (90). SMURF2 – C2 domain (purple; PDB 2JQZ) (97), WW domains 2 and 3
(cyan) in complex with Smad7 (red; PDB 2KXQ) (98), and HECT domain (grey; PDB 1ZVD) (99). HECW1 – Helical box (orange) with WW domain 2 (cyan; PDB
3L4H). HECW2 – HECWN domain (pink; PDB 2LFE). HERC2 – RLD domain 1 (green; PDB 4L1M), Cyt-b5 domain (orange; PDB 2KEO), ZZ domain bound to zinc
ions (purple and grey spheres) in complex with Histone H3 tail (red; PDB 6WW4) (100), RLD domain 3 (green; PDB 3KCI).
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observed to bind to p53’s DNA binding domain and not with its
WW domains (Figure 2). Intriguingly, this association was
abolished when the PY motif of p53 was deleted, suggesting
that the conformation p53 adopts in the presence of its PY motif
is required for proper WWP1-p53 complex formation (75). This
unusual interaction was also found to increase the stability of
p53, in contrast to the destructive effects mediated by binding of
other ubiquitin ligases such as the RING E3 ubiquitin ligase
MDM2 (158). The ubiquitylation activity of WWP1 was required
for p53 stabilization, as an inactive version of WWP1 with its
catalytic cysteine substituted with an alanine reduced p53
stability in a dominant negative fashion (75). Surprisingly, the
WWP1-dependent stability of p53 was inversely proportional to
the transcriptional activities of p53, which can attributed to the
WWP1-p53 complex translocation from the nucleus to the
cytoplasm and its subsequent aggregation (75).

The observation that WWP1 interacts with p53 suggests that
WWP1 might be involved in tumor suppressor networks. For
example, WWP1 silencing in two osteosarcoma cell lines
promoted apoptosis and reduced cell invasion (159). This
suppression also resulted in decreased expression of B-cell
lymphoma 2 (Bcl2), matrix metallopeptidase 2 (MMP2),
matrix metallopeptidase 9 (MMP9) and b-catenin, while pro-
apoptotic proteins Bcl-2 associated X protein (Bax) and E-
cadherin expression levels increased indicating that WWP1
may play a role in pro-apoptotic pathways (159). Studies have
also demonstrated that WWP1 contributes to extrinsic
Frontiers in Oncology | www.frontiersin.org 5
apoptosis. For instance, the inhibition of WWP1 correlated
with elevated levels of apoptosis initiator caspases 8 and 9,
mitogen activated protein kinase 8 (MAPK8), as well as
executioner caspase 7 via the TNR-related apoptosis-inducing
ligand (TRAIL) death receptor (160). This change in phenotype
was shown to be reversible with the overexpression of wild-type
WWP1 but could not be rescued with an inactive version of the
protein (160). Taken together, these results show that the
ubiquitylation activity of WWP1 is required to inhibit
apoptosis and promote the progression of particular colon and
thyroidal cancers.

Studies have also demonstrated that WWP1 is involved in
prostate cancer. For example, WWP1 overexpression caused by
chromosomal duplication events was observed in prostate
xenografts (31). Knockout studies also revealed that the loss of
WWP1 resulted in increased transforming growth factor beta
(TGF-b ) receptor 1 (TbR-I) and mothers aga inst
decapentaplegic homolog 2 (Smad2) protein levels, which in
turn enhanced the inhibitory effect of TGF-b (31). These results
are consistent with previous studies highlighting the role of
WWP1 as a negative regulator of TGF-b. In this regulatory
pathway, WWP1 binds to Smad7 via a WW/PY interaction,
independent of its ubiquitylation activity (161). This binding and
regulation of Smad7 has also been observed with other members
of the NEDD4 family (i.e. SMURF1 and SMURF2) (162–165).
Co-immunoprecipitation experiments revealed that Smad7,
WWP1 and TbR-I are in close proximity within the cell and
TABLE 1 | Examples of experimentally observed protein-protein interaction of oncogenic proteins with HECT E3 ubiquitin ligases.

Oncogenic Protein HECT E3 ubiquitin
ligase

Experimental detection method Region of
interaction

References

Cellular tumor antigen p53
(p53, TP53)

E6AP 2H, 3H, CE, CL, IF, IP, ITC, MS, PD, SPR, UbA,
X-ray

280-781 aa (71, 79, 109–
130)

HECW1 IP (77)
WWP1 IP, PD, UbA (75)
HERC2 IP, PD CPH (2547-2640

aa)
(105)

Cellular tumor antigen p63
(p63, TP63)

WWP1 IP, UbA (131)
ITCH IF, IP, NMR WW domains 1&2 (132–136)
NEDD4 2H, IP, UbA (137)

Cellular tumor antigen p73
(p73, TP73)

HECW2 IP, PD, UbA WW domains 1&2 (138)
ITCH IP, TAP, UbA (139)

Apoptosis-stimulating of p53 protein 2
(TP53BP2)

E6AP 2H, 3H, IP (115)
ITCH IF, IP, MS, PD, TAP WW domains 1-4 (140, 141)

Melanoma-associated antigen 12 (MAGE12) E6AP 2H, 3H (115)
Promyelocytic leukemia protein
(PML, MYL TRIM19)

E6AP IF, IP, UbA (142)

Mouse double minute 2 homolog (MDM2) NEDD4 MS, PD, UbA (143)
Breast cancer type 1 susceptibility protein
(BRCA1)

HERC2 IP, MS, UbA HECT domain
(4252-4834 aa)

(144)

BCL-2-antagonist/killer (BAK) HERC1 IF, PLISA BH3 domain (145)
Large tumor suppressor 1 (LATS1) ITCH IP, MS, PD, UbA WW domains 1-4 (146, 147)
Protein Kinase B (AKT) ITCH MS Phosphorylation

@ S257
(148)
Mar
ch 2021 | Volume 11
Detection methods: 2H, yeast or mammalian-two hybrid; 3H, yeast or mammalian-three hybrid; CE, co-elution during chromatography purification; CL, chemical crosslinking; IF,
immunofluorescence; IP, immunoprecipitation; ITC, isothermal titration calorimetry; MS, liquid chromatography or MALDI MS/MS; NMR, nuclear magnetic resonance; PD, pulldown using
GST, His or MBP tag; PLISA, proximity ligation in situ assay; SPR, surface plasmon resonance; TAP, tandem affinity purification; UbA, ubiquitylation assay; X-ray, X-ray crystallography.
Given the HECT family’s diverse regulation of p53 coupled with the well-established role of p53 in maintaining proper cell division and DNA integrity, members of the HECT E3 ubiquitin
ligase family are promising oncological drug targets where their structural and mechanistic interactions with p53 can potentially be directed to modulate p53 activity and elicit precise
HECT-p53 dependent anti-cancer cellular responses.
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may form a complex that allows forWWP1 to ubiquitylate TbR-1
and target it for proteasomal degradation (161).

These cumulative studies demonstrate that WWP1 is an
important enzyme in the regulation p53 mediated gene
transcription and apoptosis. With research that implicates
WWP1 in prostate and osteosarcoma, it is critical that
additional studies be conducted to investigate possibilities of
modulating the activity of WWP1 to elicit specific anti-cancer
responses in the cell. For example, by using structural techniques
to determine how p53 is bound and stabilized by an active form
of WWP1 in the cytoplasm, it will become possible to elucidate
the biochemical and biophysical properties of the WWP1-p53
complex as well as the mechanism of ubiquitin transfer. This
newfound knowledge will aid in the design of artificial molecular
machinery that acts to repress WWP1 interactions with p53 and
hence regain normal p53 anti-tumor activity in active cancer
cells. Additionally, by expanding our knowledge of other
important WWP1-substrate interactions, including the
recognition and binding of WWP1 to TGF-b receptors, the
successful elucidation and categorization of the WWP1
interactome can be achieved to provide a clearer map of the
pathological role(s) of WWP1.

HECW1 Positively Regulates p53 to Induce
Apoptotic Pathway Activation
Recent biochemical studies have demonstrated that HECW1
possesses tumor suppressive activity by interacting with the C-
terminus of p53 to upregulate the activation of p53-cisplatin
dependent apoptotic cellular pathways (77, 149). This study also
found that both the wild-type and isolated HECT constructs of
HECW1 interact with p53, suggesting that the HECW1-
dependent pro-apoptotic activation of p53 is independent of
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its ubiquitylation activity (77). Additionally, chromatin
immunoprecipitation assays (ChIP) have demonstrated that
HECW1 directs p53 to the p21wafi promoter region to induce
the transcriptional activation of p53-related genes in response to
carcinogenic cellular signals (149). There are currently no
structural or mechanistic studies to explain how HECW1
forms a complex with p53 to regulate apoptotic anticancer
activities within the cell. Taken together, these findings
demonstrate the need for new structural and interactor-based
studies on HECW1 to begin elucidating the exact mechanisms
used by the enzyme to catalyze the activation of p53-induced
apoptosis in cancerous cell lines. It will be important to
determine the specific domains that HECW1 uses to recognize
p53, define the conformational changes that HECW1 and p53
undergo to modulate p53 cellular activity, and decipher how the
HECW1-p53 complex signals for the upregulation of p53
apoptotic signaling. Studies are also needed to examine how
the HECW1-p53 interaction directs the migration of HECW1 to
the nucleus where it promotes p53 activation of apoptotic related
genes. By addressing these unknowns about the interplay
between HECW1 and p53 cellular interplay, we may be able to
fine tune the design of small molecule drugs that stimulate,
activate, and enhance the HECW1-dependent activation of p53-
induced apoptotic pathways in malignant cells.

SMURF1-Dependent MDM2/MDMX
Heterodimerization Negatively Regulates
p53 Activity
SMURF1 is another member of the NEDD4 subfamily that acts
to negatively regulate p53 activity during breast (40), ovarian
(46), gastric (42), and glioblastoma (166) tumorigenesis by
augmenting the ubiquitylation activity of MDM2 – a RING E3
FIGURE 2 | Experimentally identified p53 protein-protein interaction sites of certain NEDD4L and HERC subfamily HECT E3 ligases linked to oncogenesis. The WW
domains of WWP1 are required to recruit p53 and induce its cytoplasmic aggregation (75). HECW1 uses an unknown domain to interact with p53 and upregulate
apoptotic cellular activity (149). SMURF1 coordinates the heterodimerization of MDM2 and MDMX via its second WW domain and the N-lobe of its HECT domain to
increase the MDM2-dependent K48 polyubiquitylation and subsequent degradation of p53 (78). ITCH is a NEDD4L subfamily E3 ligase that stimulates apoptotic
pathways by the WW1-4 domain-dependent activation of Tumor protein p53-binding protein 2 (TP53BP2) (140, 141). HERC2 interacts with p53 through its CPH
domain to monitor the p53-MDM2 feedback loop in NEURL4 DDR pathways (105).
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ligase that specifically targets p53 for proteasomal degradation
(76, 158, 167, 168). Previous findings have demonstrated that
SMURF1 uses its WW domains to recognize and bind target
substrates before carrying out their HECT-dependent
ubiquitylation (169–171). Contrary to this traditional HECT
E3 function, recent studies have discovered a unique function
of SMURF1 whereby it promotes the cellular stability of MDM2
substrates by facilitating the heterodimerization of MDM2 and
its homolog mouse double minute 4 protein (MDMX, aka
MDM4) (78). The ability of SMURF1 to mediate MDM2-
MDMX heterodimerization is thought to rely on the
coordination of MDM2 with its second WW domain while
MDMX interacts with the HECT N-lobe of SMURF1 (78)
(Figure 2). A consequence of these multiprotein interactions is
the structural inhibition of the MDM2 auto degradation pathway
by MDMX. Not surprisingly, this interaction has been shown to
result in the prolonged stability of MDM2 in vivo with an
increase in the K48-polyubiquitylation activity of MDM2 on
p53 (78).

To date, MDM2 andMDMX are the only substrates known to
interact with the second WW domain and HECT domain of
SMURF1 and not be targeted for ubiquitylation. It remains
unresolved how the unusual stabilization effects that SMURF1
provides for MDM2 and MDMX occur on the mechanistic and
molecular level. Of interesting note is that MDM2 and MDMX
are bound by SMURF1 at its second WW domain and HECT
domain, the same enzymatic regions used by the SMURF1 to
carry out the ubiquitylation of its target substrates (76, 78, 158,
167, 168). These findings make it conceivable that SMURF1
might bind MDMX in an analogous fashion to an E2 cognate
enzyme at the N-lobe of its HECT domain. Likewise, with
MDM2 bound by SMURF1 by its second WW domain, it is
possible that the coordination of MDM2 to MDMX is facilitated
by conformational shifts in the SMURF1 domain architecture
that are similar to the mechanisms used by the SMURF1 to carry
out the ubiquitylation of its target substrates.

Recent studies have determined that MDM2 and MDMX
form a ternary complex with SMURF1 to promote MDM2/
MDMX heterodimerization, which subsequently can recruit p53
to the complex with MDM2 serving as the bridging molecule
within the MDMX-SMURF1-MDM2-p53 multiprotein complex
(76, 78). While the exact function of this ternary intermediate
remains unclear in the context of p53 signaling, biochemical
pull-down assays have shown that p53 does not associate with
the MDMX-SMURF1-MDM2 heterotrimer if the N-terminus of
MDM2 is truncated (a.a. 1-76) (78), and that SMURF1 does not
interact with p53 in the absence from MDM2 (78). These
findings suggest that the N-terminus of MDM2 functions to
recognize and bind p53 in addition to being the point of
interaction for the second WW domain of SMURF1. It is
critical that follow up structural studies be performed to
examine if the N-terminal domain of MDM2 causes any
conformational changes within the MDMX-SMURF1-MDM2
ternary complex and how these conformational changes may
play a role in MDM2-MDMX heterodimerization and p53
regulation. Likewise, it will be important to examine how the
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unique structural interactions that occur between SMURF1,
MDM2, and MDMX impact the ability of SMURF1 to stabilize
MDM2, and how the subsequent regulation of MDM2 activity by
SMURF1 plays a role in p53-dependent cancer development.

SMURF1’s tight regulation of MDM2-dependent p53
ubiquitylation makes it a promising candidate for oncological
drug development. An improved understanding of the
mechanisms used by SMURF1 to promote MDM2-MDMX
heterodimerization at the molecular level can be applied
pharmacologically to regulate MDM2 p53 ubiquitylation
activity in cancer cells, and therefore serve as a powerful tool
to activate pro-apoptotic pathways and interrupt cell division.
HERC2—A NOVEL HECT E3 UBIQUITIN
LIGASE LINKED TO CANCER
DEVELOPMENT

Recent biochemical studies have identified HECT E3 ligases
outside of the NEDD4 subfamily that regulate p53 activity.
Here we describe how new research is beginning to reveal that
HERC2 is a major player in mediating DNA repair by regulating
p53 activity.

HERC2 Mediates p53 Activity Through the
Formation of a Multiprotein Ternary
Complex in Response to DNA Damage
HERC2 is a large 500 kDa multidomain E3 ubiquitin ligase that
interacts with neuralized E3 ubiquitin protein ligase 4 (NEURL4)
and MDM2 to modulate p53-dependent gene expression during
the ATM and ATR induced DNA double strand break (DSB)
repair response (105, 150). The HERC2-dependent activation of
p53 is initiated by HERC2-NEURL4 complex formation that
induces an allosteric conformational shift in the unique CPH
domain of HERC2 (105, 150) (Figure 3). This change in
conformation allows HERC2 to recruit oligomerized p53 with
its CPH domain to form a NEURL4-HERC2-p53 ternary
complex (105, 150). The NEURL4-HERC2-p53 complex then
coordinates with the RING E3 ubiquitin ligase MDM2 that is
usually responsible for targeting p53 for cytosolic trafficking via
monoubiquitylation (172) and/or proteasomal degradation via
K48-polyubiquitylation (57, 63, 64) under normal cellular
conditions. However, during the ATM and ATR-activated DSB
repair process, HERC2 is phosphorylated at T4827 on its C-
terminal tail by phosphatidylinositol 3-kinase-like protein kinase
(PIKK) to recruit the kinases ataxia telangiectasia mutated
(ATM) and ataxia telangiectasia and Rad3 related (ATR) to the
higher order NEURL4-HERC2-p53 complex where they catalyze
the phosphorylation of oligomerized p53 and MDM2 (105, 150,
173). Following phosphorylation, MDM2 releases itself from the
complex and carries out auto-polyubiquitylation to signal for its
proteasomal degradation. Simultaneously, p53 is further
stabilized by the CPH domain of HERC2 following its ATM
and ATR-mediated phosphorylation and is no longer a target of
MDM2 for polyubiquitylation (105, 150). The activated p53
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oligomers are then transported by the HERC2-NEURL4 complex
to the nucleus and bind to p53 promoter regions where p53-
regulated genes including p53, p21 and MDM2 become
upregulated to aid in cellular DNA repair (105, 150). Once the
cell’s DNA damage response (DDR) is complete, ATM and ATR
become targets of E3 ligases for proteasomal degradation and the
HERC2-NEURL4 complex coordinates the MDM2-dependent
degradation of p53 (167). Taken together, HERC2 acts as a
master regulator of p53 transcriptional activation by selectively
recruiting ATM and ATR kinases to modulate MDM2 and p53
stability throughout the DDR cycle. It remains unclear what
specific structural conformations and mechanisms are used by
HERC2 to control p53 stabilization by ATM and ATR dependent
phosphorylation, or how p53 is targeted for degradation by
MDM2-dependent ubiquitylation following its recruitment by
the CPH domain of HERC2. Future studies are needed to clarify
Frontiers in Oncology | www.frontiersin.org 8
how the unique domains of HERC2 direct the ATM and ATR-
dependent phosphorylation of p53 and p53-MDM2 regulation.
An improved understanding of these mechanisms can
potentially be exploited in novel oncological therapies that
specifically target the p53-MDM2 feedback loop as a regulator
of DNA replication and repair.
HERC2 Is a Novel Oncogenic Suppresser
That Regulates the DNA Damage
Responses and Screens the Genome
Prior to Replication
In addition to regulating the MDM2-p53 transcriptional feedback
loop, HERC2 can also prevent potentially oncogenic mutations
from being passed into daughter cells by coordinating DNA
double strand break (DSB) repair responses during the S and
FIGURE 3 | HERC2 serves as a master regulator of p53 gene transcription in response to DNA damage. HERC2 recruits oligomerized p53 with its CPH domain to
form a NEURL4-HERC2-p53 ternary complex and is phosphorylated at T4827 on its C-terminal tail by phosphatidylinositol 3-kinase-like protein kinase (PIKK). The
HERC2-NEURL4-p53 ternary complex coordinates with the RING E3 ubiquitin ligase MDM2. The kinases Ataxia telangiectasia mutated (ATM) and Ataxia
telangiectasia and Rad3 related (ATR) are also recruited to the multiprotein structure. ATR and ATM carry out the phosphorylation of MDM2 and oligomerized p53.
Phosphorylated MDM2 becomes unstable and dissociates from the HERC2 scaffolding to allow for its K48 auto-polyubiquitylation and the cytoplasmic stability of
the HERC2-NEURL4-p53 ternary complex. The HERC2-NEURL4-p53 ternary complex migrates to the nucleus where it releases oligomerized p53. p53 binds to
the p53 promoter regions where it initiates the upregulation of genes to aid in cellular DNA repair and the DNA damage response. This figure was created with
BioRender.com.
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G2-M phases of mitosis (174–179). The HERC2-DSB repair
pathway is initiated when a double strand break is sensed by the
MRN complex – meiotic recombination 11 (MRE11), Nijmegen
breakage syndrome 1 (NBS1), and radiation sensitive protein 50
(RAD50) (151). After recognizing the DSB, NBS1 recruits ATM
kinases to the damage site where they phosphorylate Histone 2A
Family Member X (H2AX) and Mediator of DNA Damage
Checkpoint 1 (MDC1) (151). These phosphorylation events
promote H2AX and MDC1 complexation and signal for the
recruitment of HERC2 and RNF8, a RING E3 ubiquitin ligase,
to the DSB (176, 180). Once arriving to the damage site, HERC2’s
C-terminal tail is phosphorylated by PIKK at T4827 to promote its
complexation with RING finger protein 8 (RNF8), an E3 ubiquitin
ligase (Figure 4). Following RNF8 recruitment, HERC2 uses its C-
terminal tail to stimulate the oligomerization of RNF8 and
facilitates the formation of the HERC2-MDC1-RNF8 ternary
complex. Phosphorylation signal cascades are used by these
ternary complexes to carry out RNF8 mediated recruitment of
RNF168, another RING E3 ubiquitin ligase, and its cognate E2
cognate enzyme UBE2N (aka Ubc13), to the DNA damage site
(181). This multiprotein complex then works cooperatively to
attach K63-polyubiquitin chains on to chromosomal histone
proteins H2A and H2Ax. The K63 polyubiquitin linkages made
on these histone sites are in close proximity to the DSB and serve
as biochemical markers that recruit homologous DNA repair
factors. These include breast cancer gene 1 (BRCA1), BRCA1
associated RING domain protein 1 (BARD1), receptor associated
protein 80 (RAP80), and the non-homologous end joining repair
Frontiers in Oncology | www.frontiersin.org 9
factor 53BP1, all of which are required to carry out the full DDR
response (176, 182, 183).

Recent studies indicate that HERC2 continues to play a role in
the DSB repair pathway after the recruitment of these DNA
repair factors. For example, it is suggested that HERC2 uses its
phosphorylated C-terminal tail to help stabilize BRCA1, BARD1,
and RAP80 by binding onto their degrons sites during the G2-M
phase transition of cell replication thereby protecting these DDR
proteins from proteasomal degradation while they carry out their
DNA repair activities (176). This HERC2-dependent activity is
critical to the prevention of cellular oncogenesis by acting to
screen and repair the cell’s genetic material at potentially
carcinogenic mutation sites that were overlooked during S-
phase DNA replication.

Collectively, studies on the onco-suppressive activities of
HERC2 suggest it as a promising drug target for future
immunotherapeutic treatments, particularly in cases of breast
cancer development and pathogenesis. While HERC2 has been
extensively characterized in a biochemical context, the
mechanistic and structural basis for the involvement of HERC2
in the NEURL4-p53-MDM2 mediated DSB and DDR pathways
remain largely unexplored. Intriguingly, in both pathways
HERC2 serves as a scaffold that recruits and orchestrates the
timely activities of regulatory proteins that are key to regulating
p53-MDM2 intracellular concentration and/or DNA integrity. It
is conceivable that HERC2 targeted drug development needs to
be focused on enhancing the onco-suppressive activities of
HERC2 to control the progression of cancer. As a prerequisite
to developing these treatments, it will be paramount that
structural studies be conducted to learn how HERC2 uses its
different protein-protein interaction domains, including its
catalytic HECT domain, to carry out specific molecular
mechanisms that regulate p53 activity and the DDR response.
For example, there are many unanswered questions on how the
N-terminal variable domains of HERC2 contribute to substrate
recognition and HERC2-dependent ubiquitylation. The
mechanisms used by HERC2 in DNA maintenance/repair and
p53-MDM2 modulation in the cell are also unknown.
Additionally, studies on the role of conformationally flexible in
the acidic C-terminal tail of HERC2 for building polyubiquitin
chains during DDR and p53 oligomerization and clarifying how
HERC2 recognizes and targets proteins to the p53 promoter
region to regulate p53-related gene expression and/or a damaged
DNA site to facilitate DNA repair are needed. Expanded studies
on HERC2 could prove to be pivotal in the development of new
immunotherapeutic treatments that target specific HECT E3
protein-protein interactions in the cell to elicit a specific
intracellular immunological response against cancers.
HECT E3 UBIQUITIN LIGASES AS
CANCER DRUG TARGETS—MOVING
FORWARD

Recent advances in the biochemical and structural
characterization of HECT E3 ubiquitin ligases have revealed
FIGURE 4 | HERC2 serves as a scaffold to facilitate H2A ubiquitylation in
response to DNA double strand breaks. HERC2 initiates the repair response
for DSBs by using its catalytic HECT domain as a binding scaffold for RING
finger protein 8 (RNF8), a RING E3 ubiquitin ligase, to bring RNF8 into close
proximity to a site of DNA damage. After binding RNF8 to its HECT domain,
HERC2 coordinates the formation of a complex between UBE2N (aka
Ubc13), an E2 ubiquitin conjugating enzyme, and RNF168 to catalyze the
attachment of K63-polyubiquitin chains onto histones at the site of damaged
DNA. This HERC2-mediated K63-polyubiquitylation activity then signals for
the recruitment of healing factors like breast cancer gene 1 (BRCA1), receptor
associate protein 80 (RAP80), and 53BP1 to elicit an effective DDR response.
This figure was created with BioRender.com.
March 2021 | Volume 11 | Article 659049

https://www.BioRender.com
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mathieu et al. HECT E3 Ligases in Oncogenesis
these enzymes are critical regulators of the p53-MDM2 and DDR
pathways. To date, only one HECT E3 ubiquitin ligase specific
cancer drug, Bortezomib, has been reported to effectively
modulate the activity of the NEDD4L and HERC subfamily
ligases discussed in this review (184). Intriguingly, a recent 2019
study used phage library analysis to identify a class of bicyclic
peptides that demonstrate a general inhibitory effect on the
HECT E3 ligases ITCH, WWP1, SMURF1 and HECW1 by
competitively binding to the E2 interaction site on the N-lobe
of the HECT domain (185). However, the activity of these small
molecule competitive inhibitors provided no specific anticancer
effects when tested in tumorigenic cell lines (185). Perhaps one of
the largest obstacles for developing HECT specific anticancer
therapeutics is the diversity of mechanisms and structures
associated within each HECT subfamily and the reality that
many of these mechanisms, structures, and their functional roles
in cancer pathogenesis remain largely unknown. Concurrently,
the amount of knowledge that remains to be uncovered on the
NEDD4L subgroup, as well as other members of the broader
HECT family, provide many opportunities for the generation of
novel therapeutics to treat a broad range of cancers. As new
discoveries continue to be made on this fascinating group of
proteins, our knowledge into the scope of molecular
mechanisms, protein-protein interactions, and identified
substrates engaged by HECT E3 ubiquitin ligases in
oncogenesis will continue to expand.

It will become increasingly important that new structural and
biophysical studies be conducted on members of the HECT E3
ubiquitin ligases to clarify how the HECT domain architecture
contributes to HECT catalytic dysfunction in p53 and related
cellular pathways. For example, further examination of the
mechanisms used by SMURF1 to catalyze MDM2/MDMX
heterodimerization and increase the MDM2-dependent
ubiquitylation of p53 could allow for the synthesis of small
Frontiers in Oncology | www.frontiersin.org 10
molecule inhibitors drugs that block MDMX-SMURF1
complex formation. Likewise, the development of therapies
that promote the upregulation of p53 pro-apoptotic cellular
signaling in SMURF1 overexpressed cells to disrupt tumor
growth is another avenue that needs to be studied. An
improved molecular understanding of how HERC2 uses its
multidomain structure to direct the ATM and ATR-dependent
phosphorylation of p53 and MDM2 will be pivotal to uncovering
the HERC2-dependent mechanisms involved with p53-MDM2
regulation. Expanded studies on HECW1 and WWP1 will also
be critical in the development of small molecule therapeutics to
target these enzymes and their roles in p53 regulation. With so
little known about the diverse structural, molecular, and
mechanistic bases used by HECT E3 ligases to regulate the
p53-MDM2, DDR, and other pathways implicated in
oncogenesis, now is an exciting time to be researching this
class of enzymes that are at the nexus for the development of
new onco-therapeutic treatments.
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